2
|
Zayed AA, Wainaina JM, Dominguez-Huerta G, Pelletier E, Guo J, Mohssen M, Tian F, Pratama AA, Bolduc B, Zablocki O, Cronin D, Solden L, Delage E, Alberti A, Aury JM, Carradec Q, da Silva C, Labadie K, Poulain J, Ruscheweyh HJ, Salazar G, Shatoff E, Coordinators TO, Bundschuh R, Fredrick K, Kubatko LS, Chaffron S, Culley AI, Sunagawa S, Kuhn JH, Wincker P, Sullivan MB. Cryptic and abundant marine viruses at the evolutionary origins of Earth's RNA virome. Science 2022; 376:156-162. [PMID: 35389782 PMCID: PMC10990476 DOI: 10.1126/science.abm5847] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.
Collapse
Affiliation(s)
- Ahmed A. Zayed
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - James M. Wainaina
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Guillermo Dominguez-Huerta
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Jiarong Guo
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Mohamed Mohssen
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
| | - Funing Tian
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Akbar Adjie Pratama
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Olivier Zablocki
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Dylan Cronin
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
| | - Lindsey Solden
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Erwan Delage
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Nantes Université, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Adriana Alberti
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Corinne da Silva
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Karine Labadie
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Elan Shatoff
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
| | | | - Ralf Bundschuh
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
- Department of Physics, Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Laura S. Kubatko
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
- Department of Statistics, Ohio State University, Columbus, OH 43210, USA
| | - Samuel Chaffron
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
- Nantes Université, CNRS UMR 6004, LS2N, F-44000 Nantes, France
| | - Alexander I. Culley
- Département de Biochimie, Microbiologie et Bio-informatique, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, 75016 Paris, France
| | - Matthew B. Sullivan
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
- EMERGE Biology Integration Institute, Ohio State University, Columbus, OH 43210, USA
- Center of Microbiome Science, Ohio State University, Columbus, OH 43210, USA
- The Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, OH 43210, USA
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH 43210, USA
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Souza RCD, Marques DDA, de Carvalho Filho MM, Oliveira ARDS, Siqueira WJ, Benko-Iseppon AM, Brasileiro-Vidal AC. Genome composition and pollen viability of Jatropha (Euphorbiaceae) interspecific hybrids by Genomic In Situ Hybridization (GISH). Genet Mol Biol 2020; 42:e20190112. [PMID: 32059051 PMCID: PMC7198012 DOI: 10.1590/1678-4685-gmb-2019-0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/10/2019] [Indexed: 11/24/2022] Open
Abstract
Interspecific hybridization is required for the development of Jatropha
curcas L. improved cultivars, due to its narrow genetic basis. The
present study aimed to analyze the parental genomic composition of F1
and BC1F1 generations derived from interspecific crosses
(J. curcas/J. integerrima and J. curcas/J.
multifida) by GISH (Genomic In Situ
Hybridization), and the meiotic index and pollen viability of F1
hybrids. In F1 cells from both hybrids, 11 chromosomes of each
parental was observed, as expected, but chromosome rearrangement events could be
detected using rDNA chromosome markers, suggesting unbalanced cells. In the
BC1F1, both hybrids had 22 chromosomes, suggesting
that only n = 11 gametes were viable in the next generation.
However, GISH allowed the identification of three and two alien chromosomes in
J. curcas//J. integerrima and J. curcas//J.
multifida BC1F1 hybrids, respectively,
suggesting a preferential transmission of J. curcas chromosomes
for both hybrids. Pollen viability in F1 hybrids derived from
J. curcas/J. integerrima crosses were higher (82-83%) than
those found for J. curcas/J. multifida (68%), showing
post-meiotic problems in these last hybrids, with dyads, triads, polyads, and
micronuclei as post-meiosis results. The here presented cytogenetic
characterization of interspecific hybrids and their backcross progenies can
contribute to the selection of the best genotypes for future assisted breeding
of J. curcas.
Collapse
Affiliation(s)
- Rosilda Cintra de Souza
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, PE, Brazil.,Universidade Federal Rural de Pernambuco, Departamento de Agronomia, Recife, Pernambuco, Brazil
| | | | | | | | | | | | - Ana Christina Brasileiro-Vidal
- Universidade Federal de Pernambuco, Departamento de Genética, Recife, PE, Brazil.,Universidade Federal Rural de Pernambuco, Departamento de Agronomia, Recife, Pernambuco, Brazil
| |
Collapse
|
6
|
Muakrong N, Kikuchi S, Fukuhara S, Tanya P, Srinives P. Two jatropha karyotypes constructed from meiotic pachytene chromosomes: Pericentric distribution of heterochromatin and variation in repetitive DNAs. PLoS One 2018; 13:e0208549. [PMID: 30521604 PMCID: PMC6283608 DOI: 10.1371/journal.pone.0208549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022] Open
Abstract
Jatropha (Jatropha curcas) is an oil-bearing plant used for biodiesel production. Construction of its standard karyotype and identification of the euchromatin/heterochromatin distribution associated with gene expression and meiotic recombination are essential to fully characterize its genome. Here, we developed a J. curcas karyotype based on meiotic pachytene chromosomes. In addition, a karyotype of J. integerrima, a useful species for jatropha breeding, was also constructed. Five out of eleven J. curcas chromosomes were metacentric, but only two were metacentric in J. integerrima. Almost all of the heterochromatin was distributed around the pericentric regions. The interstitial and distal regions were euchromatic without heterochromatic knobs, except for small heterochromatin regions associated with the subtelomeric repeat sequence JcSat1. These pericentric heterochromatin distribution patterns, together with chromosome structure data and the results of FISH probing with rDNA and JcSat1, allowed us to classify all chromosomes of both species. The two species had two 35S rDNA loci and one 5S rDNA locus; one 35S rDNA locus in J. integerrima was located on the interstitial region of the short arms. In addition, JcSat1 was found at only the heterochromatic ends of the J. curcas chromosome, not the J. integerrima chromosome. Despite the same chromosome number, the two pachytene chromosome-based karyotypes suggest variation in chromosome structure and distribution of repetitive DNAs in these two species.
Collapse
Affiliation(s)
- Narathid Muakrong
- Faculty of Agriculture, Princess of Naradhiwas University, Narathiwat, Thailand
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Shinji Kikuchi
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
- * E-mail: (PS); (SK)
| | - Shuto Fukuhara
- Laboratory of Genetics and Plant Breeding, Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Patcharin Tanya
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Peerasak Srinives
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
- Associate Fellow of the Royal Society of Thailand, Sanam Suea Pa, Dusit, Bangkok, Thailand
- * E-mail: (PS); (SK)
| |
Collapse
|
10
|
Li H, Tsuchimoto S, Harada K, Yamasaki M, Sakai H, Wada N, Alipour A, Sasai T, Tsunekawa A, Tsujimoto H, Ando T, Tomemori H, Sato S, Hirakawa H, Quintero VP, Zamarripa A, Santos P, Hegazy A, Ali AM, Fukui K. Genetic Tracing of Jatropha curcas L. from Its Mesoamerican Origin to the World. FRONTIERS IN PLANT SCIENCE 2017; 8:1539. [PMID: 28936216 PMCID: PMC5594977 DOI: 10.3389/fpls.2017.01539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/22/2017] [Indexed: 05/14/2023]
Abstract
Jatropha curcas L. (Jatropha), a shrub species of the family Euphorbiaceae, has been recognized as a promising biofuel plant for reducing greenhouse gas emissions. However, recent attempts at commercial cultivation in Africa and Asia have failed because of low productivity. It is important to elucidate genetic diversity and relationship in worldwide Jatropha genetic resources for breeding of better commercial cultivars. Here, genetic diversity was analyzed by using 246 accessions from Mesoamerica, Africa and Asia, based on 59 simple sequence repeat markers and eight retrotransposon-based insertion polymorphism markers. We found that central Chiapas of Mexico possesses the most diverse genetic resources, and the Chiapas Central Depression could be the center of origin. We identified three genetic groups in Mesoamerica, whose distribution revealed a distinct geographic cline. One of them consists mainly of accessions from central Chiapas. This suggests that it represents the original genetic group. We found two Veracruz accessions in another group, whose ancestors might be shipped from Port of Veracruz to the Old World, to be the source of all African and Asian Jatropha. Our results suggest the human selection that caused low productivity in Africa and Asia, and also breeding strategies to improve African and Asian Jatropha. Cultivars improved in the productivity will contribute to expand mass commercial cultivation of Jatropha in Africa and Asia to increase biofuel production, and finally will support in the battle against the climate change.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Biotechnology, Graduate School of Engineering, Osaka UniversityOsaka, Japan
| | - Suguru Tsuchimoto
- Plant Bioengineering for Bioenergy Laboratory, Graduate School of Engineering, Osaka UniversityOsaka, Japan
| | - Kyuya Harada
- Plant Bioengineering for Bioenergy Laboratory, Graduate School of Engineering, Osaka UniversityOsaka, Japan
| | - Masanori Yamasaki
- Kobe Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe UniversityHyogo, Japan
| | - Hiroe Sakai
- Plant Bioengineering for Bioenergy Laboratory, Graduate School of Engineering, Osaka UniversityOsaka, Japan
| | - Naoki Wada
- Plant Bioengineering for Bioenergy Laboratory, Graduate School of Engineering, Osaka UniversityOsaka, Japan
| | - Atefeh Alipour
- Department of Biotechnology, Graduate School of Engineering, Osaka UniversityOsaka, Japan
| | - Tomohiro Sasai
- Department of Biotechnology, Graduate School of Engineering, Osaka UniversityOsaka, Japan
| | | | | | - Takayuki Ando
- The Center for International Affairs, Tottori UniversityTottori, Japan
| | | | - Shusei Sato
- Graduate School of Life Sciences, Tohoku UniversityMiyagi, Japan
| | | | | | | | - Primitivo Santos
- College of Agriculture, University of the Philippines Los BanosLaguna, Philippines
| | - Adel Hegazy
- Genetic Engineering and Biotechnology Research Institute, University of Sadat CitySadat City, Egypt
| | - Abdalla M. Ali
- Faculty of Agriculture, Shambat, University of KhartoumKhartoum, Sudan
| | - Kiichi Fukui
- Graduate School of Pharmaceutical Science, Osaka UniversityOsaka, Japan
- *Correspondence: Kiichi Fukui,
| |
Collapse
|