1
|
Pandita M, Shoket H, Kumar R, Bairwa NK. Genetic Interaction Between F-Box Encoding UCC1 and RRM3 Regulates Growth Rate, Cell Size, and Stress Tolerance in Saccharomyces cerevisiae. J Biochem Mol Toxicol 2024; 38:e70059. [PMID: 39558808 DOI: 10.1002/jbt.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Ucc1, an F-box motif-containing protein of Saccharomyces cerevisiae encoded by UCC1 regulates energy metabolism through proteasomal degradation of citrate synthase Cit2 and inactivation of the glyoxylate cycle when glucose is present as the main carbon source in the growth medium. Rrm3, a Pif1 family DNA helicase, encoded by RRM3 regulates the movement of the replication forks during the DNA replication process. Here in this study, we present evidence of binary genetic interaction between both the genes, UCC1 and RRM3, that determine the growth rate, cell morphology, cell size, apoptosis, and stress response. The absence of both genes UCC1 and RRM3 leads to altered cell morphology, increased growth rate, utilization of alternate carbon sources, resistance to hydrogen peroxide, and susceptibility to acetic acid-induced apoptosis. Further, the genetic interaction network analysis shows both the genes UCC1 and RRM3 interaction through the SGS1 and cross-link among metabolic, glyoxylate, DNA replication, and retrograde signaling pathways.
Collapse
Affiliation(s)
- Monika Pandita
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Heena Shoket
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Rakesh Kumar
- Cancer Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Narendra K Bairwa
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu & Kashmir, India
| |
Collapse
|
2
|
du Plooy LM, Telzrow CL, Nichols CB, Probst C, Castro-Lopez N, Wormley FL, Alspaugh JA. A fungal ubiquitin ligase and arrestin binding partner contribute to pathogenesis and survival during cellular stress. mBio 2024; 15:e0098124. [PMID: 39235249 PMCID: PMC11481503 DOI: 10.1128/mbio.00981-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Cellular responses to external stress allow microorganisms to adapt to a vast array of environmental conditions, including infection sites. The molecular mechanisms behind these responses are studied to gain insight into microbial pathogenesis, which could lead to new antimicrobial therapies. Here, we explore a role for arrestin protein-mediated ubiquitination in stress response and pathogenesis in the pathogenic fungus Cryptococcus neoformans. In a previous study, we identified four arrestin-like proteins in C. neoformans and found that one of these is required for efficient membrane synthesis, likely by directing interaction between fatty acid synthases and the Rsp5 E3 ubiquitin ligase. Here, we further explore Cn Rsp5 function and determine that this single Ub ligase is absolutely required for pathogenesis and survival in the presence of cellular stress. Additionally, we show that a second arrestin-like protein, Ali2, similarly facilitates interaction between Rsp5 and some of its protein targets. Of the four postulated C. neoformans arrestin-like proteins, Ali2 appears to contribute the most to C. neoformans pathogenesis, likely by directing Rsp5 to pathogenesis-related ubiquitination targets. A proteomics-based differential ubiquitination screen revealed that several known cell surface proteins are ubiquitinated by Rsp5 and a subset also requires Ali2 for their ubiquitination. Rsp5-mediated ubiquitination alters the stability and the localization of these proteins. A loss of Rsp5-mediated ubiquitination results in cell wall defects that increase susceptibility to external stresses. These findings support a model in which arrestin-like proteins guide Rsp5 to ubiquitinate specific target proteins, some of which are required for survival during stress. IMPORTANCE Microbial proteins involved in human infectious diseases often need to be modified by specific chemical additions to be fully functional. Here, we explore the role of a particular protein modification, ubiquitination, in infections due to the human fungal pathogen Cryptococcus neoformans. We identified a complex of proteins responsible for adding ubiquitin groups to fungal proteins, and this complex is required for virulence. These proteins are fungal specific and might be targets for novel anti-infection therapy.
Collapse
Affiliation(s)
- Lukas M. du Plooy
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Calla L. Telzrow
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Connie B. Nichols
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Corinna Probst
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Natalia Castro-Lopez
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - Floyd L. Wormley
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
| | - J. Andrew Alspaugh
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
Zhang A, Ding Y, Shao W. Manipulating the nucleolar serine-rich protein Srp40p in Saccharomyces cerevisiae may improve isobutanol production. World J Microbiol Biotechnol 2024; 40:349. [PMID: 39404979 DOI: 10.1007/s11274-024-04150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Isobutanol represents a promising second-generation biofuel. Saccharomyces cerevisiae can produce minor quantities of isobutanol as a byproduct. Increasing yeast tolerance to isobutanol is a crucial step toward achieving higher production levels. Previously, we discovered that expression of the srp40 gene could increase S. cerevisiae isobutanol tolerance. In this study, we explored the impact of overexpressing srp40 on isobutanol production. We used the CEN/ARS plasmid YCplac22-srp40 to overexpress srp40 in S. cerevisiae strain W303-1A. The resulting strain was named W303-1A-srp40. We subsequently performed metabolic engineering of isobutanol synthesis by overexpressing ILV2, ILV3 and ARO10 in W303-1 A-srp40. The resulting strain was named 303V2V3A10-22-srp40. Our findings revealed that, compared with the control strain, the 303V2V3A10-22-srp40 strain amplified isobutanol production by 50%. A transcriptome analysis revealed that upregulated genes associated with aminoacyl-tRNA biosynthesis or downregulated genes associated with phenylalanine, tyrosine, and tryptophan biosynthesis might yield increased isobutanol production in 303V2V3A10-22-srp40. Moreover, the decreases in the biosynthesis of amino acids and oxidative phosphorylation might play pivotal roles in the increased isobutanol tolerance of strain W303-1A-srp40. In summary, the overexpression of srp40 could increase isobutanol production and tolerance in S. cerevisiae. This study offers novel insights regarding strategies for increasing isobutanol production.
Collapse
Affiliation(s)
- Aili Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, No.5340 Xiping Road, Beichen District, Tianjin, 300401, People's Republic of China.
| | - Yunpeng Ding
- School of Chemical Engineering and Technology, Hebei University of Technology, No.5340 Xiping Road, Beichen District, Tianjin, 300401, People's Republic of China
| | - Wenju Shao
- School of Chemical Engineering and Technology, Hebei University of Technology, No.5340 Xiping Road, Beichen District, Tianjin, 300401, People's Republic of China
| |
Collapse
|
4
|
Azambuja SPH, de Mélo AHF, Bertozzi BG, Inoue HP, Egawa VY, Rosa CA, Rocha LO, Teixeira GS, Goldbeck R. Performance of Saccharomyces cerevisiae strains against the application of adaptive laboratory evolution strategies for butanol tolerance. Food Res Int 2024; 190:114637. [PMID: 38945626 DOI: 10.1016/j.foodres.2024.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 07/02/2024]
Abstract
Although the industrial production of butanol has been carried out for decades by bacteria of the Clostridium species, recent studies have shown the use of the yeast Saccharomyces cerevisiae as a promising alternative. While the production of n-butanol by this yeast is still very far from its tolerability (up to 2% butanol), the improvement in the tolerance can lead to an increase in butanol production. The aim of the present work was to evaluate the adaptive capacity of the laboratory strain X2180-1B and the Brazilian ethanol-producing strain CAT-1 when submitted to two strategies of adaptive laboratory Evolution (ALE) in butanol. The strains were submitted, in parallel, to ALE with successive passages or with UV irradiation, using 1% butanol as selection pressure. Despite initially showing greater tolerance to butanol, the CAT-1 strain did not show great improvements after being submitted to ALE. Already the laboratory strain X2180-1B showed an incredible increase in butanol tolerance, starting from a condition of inability to grow in 1% butanol, to the capacity to grow in this same condition. With emphasis on the X2180_n100#28 isolated colony that presented the highest maximum specific growth rate among all isolated colonies, we believe that this colony has good potential to be used as a model yeast for understanding the mechanisms that involve tolerance to alcohols and other inhibitory compounds.
Collapse
Affiliation(s)
- Suéllen P H Azambuja
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Allan H F de Mélo
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Bruno G Bertozzi
- Food Microbiology Laboratory I, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Heitor P Inoue
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Viviane Y Egawa
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Carlos A Rosa
- Departament of Microbiology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Liliana O Rocha
- Food Microbiology Laboratory I, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Gleidson S Teixeira
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Rosana Goldbeck
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
5
|
Anand R, Kashif M, Pandit A, Babu R, Singh AP. Reprogramming in Candida albicans Gene Expression Network under Butanol Stress Abrogates Hyphal Development. Int J Mol Sci 2023; 24:17227. [PMID: 38139056 PMCID: PMC10743114 DOI: 10.3390/ijms242417227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/24/2023] Open
Abstract
Candida albicans is the causative agent of invasive fungal infections. Its hyphae-forming ability is regarded as one of the important virulence factors. To unravel the impact of butanol on Candida albicans, it was placed in O+ve complete human serum with butanol (1% v/v). The Candida transcriptome under butanol stress was then identified by mRNA sequencing. Studies including electron microscopy demonstrated the inhibition of hyphae formation in Candida under the influence of butanol, without any significant alteration in growth rate. The numbers of genes upregulated in the butanol in comparison to the serum alone were 1061 (20 min), 804 (45 min), and 537 (120 min). Candida cells exhibited the downregulation of six hypha-specific transcription factors and the induction of four repressor/regulator genes. Many of the hypha-specific genes exhibited repression in the medium with butanol. The genes related to adhesion also exhibited repression, whereas, among the heat-shock genes, three showed inductions in the presence of butanol. The fungal-specific genes exhibited induction as well as repression in the butanol-treated Candida cells. Furthermore, ten upregulated genes formed the core stress gene set in the presence of butanol. In the gene ontology analysis, enrichment of the processes related to non-coding RNA, ribosome biosynthesis, and metabolism was observed in the induced gene set. On the other side, a few GO biological process terms, including biofilm formation and filamentous growth, were enriched in the repressed gene set. Taken together, under butanol stress, Candida albicans is unable to extend hyphae and shows growth by budding. Many of the genes with perturbed expression may have fitness or virulence attributes and may provide prospective sites of antifungal targets against C. albicans.
Collapse
Affiliation(s)
- Rajesh Anand
- Infectious Disease Laboratory, National Institute of Immunology, New Delhi 110067, India; (R.A.)
| | - Mohammad Kashif
- Infectious Disease Laboratory, National Institute of Immunology, New Delhi 110067, India; (R.A.)
| | - Awadhesh Pandit
- Next Generation Sequencing Facility, National Institute of Immunology, New Delhi 110067, India
| | - Ram Babu
- Department of Botany, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Agam P. Singh
- Infectious Disease Laboratory, National Institute of Immunology, New Delhi 110067, India; (R.A.)
| |
Collapse
|
6
|
Lee YJ, Hoang Nguyen Tran P, Ko JK, Gong G, Um Y, Han SO, Lee SM. Glucose/Xylose Co-Fermenting Saccharomyces cerevisiae Increases the Production of Acetyl-CoA Derived n-Butanol From Lignocellulosic Biomass. Front Bioeng Biotechnol 2022; 10:826787. [PMID: 35252135 PMCID: PMC8889018 DOI: 10.3389/fbioe.2022.826787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Efficient xylose catabolism in engineered Saccharomyces cerevisiae enables more economical lignocellulosic biorefinery with improved production yields per unit of biomass. Yet, the product profile of glucose/xylose co-fermenting S. cerevisiae is mainly limited to bioethanol and a few other chemicals. Here, we introduced an n-butanol-biosynthesis pathway into a glucose/xylose co-fermenting S. cerevisiae strain (XUSEA) to evaluate its potential on the production of acetyl-CoA derived products. Higher n-butanol production of glucose/xylose co-fermenting strain was explained by the transcriptomic landscape, which revealed strongly increased acetyl-CoA and NADPH pools when compared to a glucose fermenting wild-type strain. The acetate supplementation expected to support acetyl-CoA pool further increased n-butanol production, which was also validated during the fermentation of lignocellulosic hydrolysates containing acetate. Our findings imply the feasibility of lignocellulosic biorefinery for producing fuels and chemicals derived from a key intermediate of acetyl-CoA through glucose/xylose co-fermentation.
Collapse
Affiliation(s)
- Yeon-Jung Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Department of Biotechnology, Korea University, Seoul, South Korea
| | - Phuong Hoang Nguyen Tran
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea
- Green School, Korea University, Seoul, South Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul, South Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Energy and Environment Technology, University of Science and Technology (UST), Daejeon, South Korea
- Green School, Korea University, Seoul, South Korea
- *Correspondence: Sun-Mi Lee,
| |
Collapse
|
7
|
Liu HL, Wang CHT, Chiang EPI, Huang CC, Li WH. Tryptophan plays an important role in yeast's tolerance to isobutanol. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:200. [PMID: 34645498 PMCID: PMC8513309 DOI: 10.1186/s13068-021-02048-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Isobutanol is considered a potential biofuel, thanks to its high-energy content and octane value, limited water solubility, and compatibility with gasoline. As its biosynthesis pathway is known, a microorganism, such as Saccharomyces cerevisiae, that inherently produces isobutanol, can serve as a good engineering host. Isobutanol's toxicity, however, is a major obstacle for bioproduction. This study is to understand how yeast tolerates isobutanol. RESULTS A S. cerevisiae gene-deletion library with 5006 mutants was used to screen genes related to isobutanol tolerance. Image recognition was efficiently used for high-throughput screening via colony size on solid media. In enrichment analysis of the 161 isobutanol-sensitive clones identified, more genes than expected were mapped to tryptophan biosynthesis, ubiquitination, and the pentose phosphate pathway (PPP). Interestingly, adding exogenous tryptophan enabled both tryptophan biosynthesis and PPP mutant strains to overcome the stress. In transcriptomic analysis, cluster analysis of differentially expressed genes revealed the relationship between tryptophan and isobutanol stress through some specific cellular functions, such as biosynthesis and transportation of amino acids, PPP, tryptophan metabolism, nicotinate/nicotinamide metabolism (e.g., nicotinamide adenine dinucleotide biosynthesis), and fatty acid metabolism. CONCLUSIONS The importance of tryptophan in yeast's tolerance to isobutanol was confirmed by the recovery of isobutanol tolerance in defective strains by adding exogenous tryptophan to the growth medium. Transcriptomic analysis showed that amino acid biosynthesis- and transportation-related genes in a tryptophan biosynthesis-defective host were up-regulated under conditions similar to nitrogen starvation. This may explain why ubiquitination was required for the protein turnover. PPP metabolites may serve as precursors and cofactors in tryptophan biosynthesis to enhance isobutanol tolerance. Furthermore, the tolerance mechanism may also be linked to tryptophan downstream metabolism, including the kynurenine pathway and nicotinamide adenine dinucleotide biosynthesis. Both pathways are responsible for cellular redox balance and anti-oxidative ability. Our study highlights the central role of tryptophan in yeast's isobutanol tolerance and offers new clues for engineering a yeast host with strong isobutanol tolerance.
Collapse
Affiliation(s)
- Hsien-Lin Liu
- Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Taipei, 115, Taiwan
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Rd., Taichung, 402, Taiwan
| | - Christine H-T Wang
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Taipei, 115, Taiwan
| | - En-Pei Isabel Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 145, Xingda Rd., Taichung, 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, No. 145, Xingda Rd. , Taichung, 402, Taiwan
| | - Chieh-Chen Huang
- Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.
- Department of Life Sciences, National Chung Hsing University, No. 145, Xingda Rd., Taichung, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, No. 145, Xingda Rd. , Taichung, 402, Taiwan.
| | - Wen-Hsiung Li
- Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Taipei, 115, Taiwan.
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
8
|
Co-Production of Isobutanol and Ethanol from Prairie Grain Starch Using Engineered Saccharomyces cerevisiae. FERMENTATION 2021. [DOI: 10.3390/fermentation7030150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Isobutanol is an important and valuable platform chemical and an appealing biofuel that is compatible with contemporary combustion engines and existing fuel distribution infrastructure. The present study aimed to compare the potential of triticale, wheat and barley starch as feedstock for isobutanol production using an engineered strain of Saccharomyces cerevisiae. A simultaneous saccharification and fermentation (SSF) approach showed that all three starches were viable feedstock for co-production of isobutanol and ethanol and could produce titres similar to that produced using purified sugar as feedstock. A fed-batch process using triticale starch yielded 0.006 g isobutanol and 0.28 g ethanol/g starch. Additionally, it is demonstrated that Fusarium graminearum infected grain starch contaminated with mycotoxin can be used as an effective feedstock for isobutanol and ethanol co-production. These findings demonstrate the potential for triticale as a purpose grown energy crop and show that mycotoxin-contaminated grain starch can be used as feedstock for isobutanol biosynthesis, thus adding value to a grain that would otherwise be of limited use.
Collapse
|
9
|
Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv 2021; 54:107795. [PMID: 34246744 DOI: 10.1016/j.biotechadv.2021.107795] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Adaptive laboratory evolution (ALE) is an innovative approach for the generation of evolved microbial strains with desired characteristics, by implementing the rules of natural selection as presented in the Darwinian Theory, on the laboratory bench. New as it might be, it has already been used by several researchers for the amelioration of a variety of characteristics of widely used microorganisms in biotechnology. ALE is used as a tool for the deeper understanding of the genetic and/or metabolic pathways of evolution. Another important field targeted by ALE is the manufacturing of products of (high) added value, such as ethanol, butanol and lipids. In the current review, we discuss the basic principles and techniques of ALE, and then we focus on studies where it has been applied to bacteria, fungi and microalgae, aiming to improve their performance to biotechnological procedures and/or inspect the genetic background of evolution. We conclude that ALE is a promising and efficacious method that has already led to the acquisition of useful new microbiological strains in biotechnology and could possibly offer even more interesting results in the future.
Collapse
Affiliation(s)
- Maria Mavrommati
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece; Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Alexandra Daskalaki
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Aggelis
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
10
|
Pandita M, Shoket H, Rakewal A, Wazir S, Kumar P, Kumar R, Bairwa NK. Genetic interaction between glyoxylate pathway regulator UCC1 and La-motif-encoding SRO9 regulates stress response and growth rate improvement in Saccharomyces cerevisiae. J Biochem Mol Toxicol 2021; 35:e22781. [PMID: 33797855 DOI: 10.1002/jbt.22781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/12/2021] [Accepted: 03/22/2021] [Indexed: 11/11/2022]
Abstract
Nonavailability of glucose as a carbon source results in glyoxylate pathway activation, which metabolizes nonfermentable carbon for energy generation in Saccharomyces cerevisiae. Ucc1p of S. cerevisiae inhibits activation of the glyoxylate pathway by targeting Cit2p, a key glyoxylate enzyme for ubiquitin-mediated proteasomal degradation when glucose is available as a carbon source. Sro9p, a La-motif protein involved in RNA biogenesis, interacts physically with the messenger RNA of UCC1; however, its functional relevance is yet to be discovered. This study presents binary epistatic interaction between UCC1 and SRO9, with functional implication on the growth rate, response to genotoxic stress, resistance to apoptosis, and petite mutation. Cells with ucc1Δsro9Δ, as their genetic background, exhibit alteration in morphology, improvement in growth rate, resistance to apoptosis, and petite mutation. Moreover, the study indicates a cross-link between ubiquitin-proteasome system and RNA biogenesis and metabolism, with applications in industrial fermentation and screening for cancer therapeutics.
Collapse
Affiliation(s)
- Monika Pandita
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Heena Shoket
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Aayushi Rakewal
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Shreya Wazir
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Prabhat Kumar
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Rakesh Kumar
- Cancer Genetics Research Group, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Narendra K Bairwa
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| |
Collapse
|
11
|
Schalck T, den Bergh BV, Michiels J. Increasing Solvent Tolerance to Improve Microbial Production of Alcohols, Terpenoids and Aromatics. Microorganisms 2021; 9:249. [PMID: 33530454 PMCID: PMC7912173 DOI: 10.3390/microorganisms9020249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Fuels and polymer precursors are widely used in daily life and in many industrial processes. Although these compounds are mainly derived from petrol, bacteria and yeast can produce them in an environment-friendly way. However, these molecules exhibit toxic solvent properties and reduce cell viability of the microbial producer which inevitably impedes high product titers. Hence, studying how product accumulation affects microbes and understanding how microbial adaptive responses counteract these harmful defects helps to maximize yields. Here, we specifically focus on the mode of toxicity of industry-relevant alcohols, terpenoids and aromatics and the associated stress-response mechanisms, encountered in several relevant bacterial and yeast producers. In practice, integrating heterologous defense mechanisms, overexpressing native stress responses or triggering multiple protection pathways by modifying the transcription machinery or small RNAs (sRNAs) are suitable strategies to improve solvent tolerance. Therefore, tolerance engineering, in combination with metabolic pathway optimization, shows high potential in developing superior microbial producers.
Collapse
Affiliation(s)
- Thomas Schalck
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Bram Van den Bergh
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jan Michiels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
12
|
Liang L, Liu R, Freed EF, Eckert CA, Gill RT. Transcriptional Regulatory Networks Involved in C3-C4 Alcohol Stress Response and Tolerance in Yeast. ACS Synth Biol 2021; 10:19-28. [PMID: 33356165 DOI: 10.1021/acssynbio.0c00253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Alcohol toxicity significantly impacts the titer and productivity of industrially produced biofuels. To overcome this limitation, we must find and use strategies to improve stress tolerance in production strains. Previously, we developed a multiplex navigation of a global regulatory network (MINR) library that targeted 25 regulatory genes that are predicted to modify global regulation in yeast under different stress conditions. In this study, we expanded this concept to target the active sites of 47 transcriptional regulators using a saturation mutagenesis library. The 47 targeted regulators interact with more than half of all yeast genes. We then screened and selected for C3-C4 alcohol tolerance. We identified specific mutants that have resistance to isopropanol and isobutanol. Notably, the WAR1_K110N variant improved tolerance to both isopropanol and isobutanol. In addition, we investigated the mechanisms for improvement of isopropanol and isobutanol stress tolerance and found that genes related to glycolysis play a role in tolerance to isobutanol, while changes in ATP synthesis and mitochondrial respiration play a role in tolerance to both isobutanol and isopropanol. Overall, this work sheds light on basic mechanisms for isopropanol and isobutanol toxicity and demonstrates a promising strategy to improve tolerance to C3-C4 alcohols by perturbing the transcriptional regulatory network.
Collapse
Affiliation(s)
- Liya Liang
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder 80303, Colorado United States
| | - Rongming Liu
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder 80303, Colorado United States
| | - Emily F Freed
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder 80303, Colorado United States
| | - Carrie A Eckert
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder 80303, Colorado United States
- National Renewable Energy Laboratory (NREL), Golden 80401, Colorado United States
| | - Ryan T Gill
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder 80303, Colorado United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby DK-2800, Denmark
| |
Collapse
|
13
|
How to outwit nature: Omics insight into butanol tolerance. Biotechnol Adv 2020; 46:107658. [PMID: 33220435 DOI: 10.1016/j.biotechadv.2020.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
Collapse
|
14
|
Siripong W, Angela C, Tanapongpipat S, Runguphan W. Metabolic engineering of Pichia pastoris for production of isopentanol (3-Methyl-1-butanol). Enzyme Microb Technol 2020; 138:109557. [PMID: 32527534 DOI: 10.1016/j.enzmictec.2020.109557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/21/2022]
Abstract
In recent years, the increasingly serious and clear effects of climate change have increased interest in renewable fuels and platform chemicals. Microbial platforms that can produce these compounds in an economically efficient way have emerged as an attractive alternative to the traditional production approaches. Here, we engineered the industrially-relevant yeast Pichia pastoris to produce the platform chemical 3-methyl-1-butanol (3M1B, isopentanol) directly from the renewable carbon source glucose. Specifically, we overexpressed the endogenous valine and leucine biosynthetic pathways to increase the production of the key pathway intermediate, 2-ketoisocaproate (2-KIC). Overexpression of the artificial keto-acid degradation pathway converted 2-KIC into 3M1B. Down-regulation of the side-product ethanol production using the CRISPR/Cas9 system led to a strain that is able to produce 3M1B at a titer of 191.0 ± 9.6 mg/L, the highest titer reported to date in a non-conventional yeast. We envision that our yeast system will pave the way for an efficient production system for this important class of platform compounds.
Collapse
Affiliation(s)
- Wiparat Siripong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Clara Angela
- Indonesia International Institute for Life-Sciences, Jl. Pulomas Barat Kav. 88, Kayu Putih, Pulo Gadung, Jakarta Timur, 13210, Indonesia
| | - Sutipa Tanapongpipat
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
15
|
Rpn4 and proteasome-mediated yeast resistance to ethanol includes regulation of autophagy. Appl Microbiol Biotechnol 2020; 104:4027-4041. [PMID: 32157425 DOI: 10.1007/s00253-020-10518-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/15/2020] [Accepted: 03/01/2020] [Indexed: 12/18/2022]
Abstract
Distilled spirits production using Saccharomyces cerevisiae requires understanding of the mechanisms of yeast cell response to alcohol stress. Reportedly, specific mutations in genes of the ubiquitin-proteasome system, e.g., RPN4, may result in strains exhibiting hyper-resistance to different alcohols. To study the Rpn4-dependent yeast response to short-term ethanol exposure, we performed a comparative analysis of the wild-type (WT) strain, strain with RPN4 gene deletion (rpn4-Δ), and a mutant strain with decreased proteasome activity and consequent Rpn4 accumulation due to PRE1 deregulation (YPL). The stress resistance tests demonstrated an increased sensitivity of mutant strains to ethanol compared with WT. Comparative proteomics analysis revealed significant differences in molecular responses to ethanol between these strains. GO analysis of proteins upregulated in WT showed enrichments represented by oxidative and heat responses, protein folding/unfolding, and protein degradation. Enrichment of at least one of these responses was not observed in the mutant strains. Moreover, activity of autophagy was not increased in the RPN4 deletion strain upon ethanol stress which agrees with changes in mRNA levels of ATG7 and PRB1 genes of the autophagy system. Activity of the autophagic system was clearly induced and accompanied with PRB1 overexpression in the YPL strain upon ethanol stress. We demonstrated that Rpn4 stabilization contributes to the PRB1 upregulation. CRISPR-Cas9-mediated repression of PACE-core Rpn4 binding sites in the PRB1 promoter inhibits PRB1 induction in the YPL strain upon ethanol treatment and results in YPL hypersensitivity to ethanol. Our data suggest that Rpn4 affects the autophagic system activity upon ethanol stress through the PRB1 regulation. These findings can be a basis for creating genetically modified yeast strains resistant to high levels of alcohol, being further used for fermentation in ethanol production.
Collapse
|
16
|
Azambuja SPH, Goldbeck R. Butanol production by Saccharomyces cerevisiae: perspectives, strategies and challenges. World J Microbiol Biotechnol 2020; 36:48. [PMID: 32152786 DOI: 10.1007/s11274-020-02828-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
The search for gasoline substitutes has grown in recent decades, leading to the increased production of ethanol as viable alternative. However, research in recent years has shown that butanol exhibits various advantages over ethanol as a biofuel. Furthermore, butanol can also be used as a chemical platform, serving as an intermediate product and as a solvent in industrial reactions. This alcohol is naturally produced by some Clostridium species; however, Clostridial fermentation processes still have inherent problems, which focuses the interest on Saccharomyces cerevisiae for butanol production, as an alternative organism for the production of this alcohol. S. cerevisiae exhibits great adaptability to industrial conditions and can be modified with a wide range of genetic tools. Although S. cerevisiae is known to naturally produce isobutanol, the n-butanol synthesis pathway has not been well established in wild S. cerevisiae strains. Two strategies are most commonly used for of S. cerevisiae butanol production: the heterologous expression of the Clostridium pathway or the amino acid uptake pathways. However, butanol yields produced from S. cerevisiae are lower than ethanol yield. Thus, there are still many challenges needed to be overcome, which can be minimized through genetic and evolutive engineering, for butanol production by yeast to become a reality.
Collapse
Affiliation(s)
- Suéllen P H Azambuja
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil
| | - Rosana Goldbeck
- Laboratory of Bioprocesses and Metabolic Engineering, Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
17
|
Critical Roles of the Pentose Phosphate Pathway and GLN3 in Isobutanol-Specific Tolerance in Yeast. Cell Syst 2019; 9:534-547.e5. [DOI: 10.1016/j.cels.2019.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 08/23/2019] [Accepted: 10/18/2019] [Indexed: 02/01/2023]
|
18
|
Nakatsukasa K, Kawarasaki T, Moriyama A. Heterologous expression and functional analysis of the F-box protein Ucc1 from other yeast species in Saccharomyces cerevisiae. J Biosci Bioeng 2019; 128:704-709. [DOI: 10.1016/j.jbiosc.2019.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 11/17/2022]
|
19
|
Bacteria for Butanol Production: Bottlenecks, Achievements and Prospects. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
Zhou J, Lu X, Tian B, Wang C, Shi H, Luo C, Zhu X, Yuan X, Li X. Knockout of acetoacetate degradation pathway gene atoDA enhances the toxicity tolerance of Escherichia coli to isopropanol and acetone. 3 Biotech 2019; 9:343. [PMID: 31497461 DOI: 10.1007/s13205-019-1867-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023] Open
Abstract
Isopropanol and acetone are important chemical products and potential high-quality new fuels. Both of them are metabolites of isopropanol synthesis pathway, but they are toxic to most bacteria. In this study, toxicity tolerance of Escherichia coli strains was evaluated by detecting their growth rates under different concentrations of isopropanol and acetone. It was showed that isopropanol was more toxic to E. coli than acetone, and the native strain MG1655 had better tolerance over DH5α to either acetone or isopropanol of 300 mM. Key genes of ethanol synthesis pathway, acetic acid metabolism pathway, and acetoacetic acid degradation pathway, including adhE, ackA-pta, and atoDA, were knocked out in MG1655 to form mutants MGΔadhE, MGΔackA-pta, and MGΔatoDA. The tolerance performances of the mutants to isopropanol and acetone were determined under various concentrations including 300 mM, 500 mM, and 700 mM, respectively. The mutant MGΔatoDA exhibited excellent tolerance to both acetone and isopropanol of 500 mM, and MGΔackA-pta could tolerate acetone at 500 mM rather than isopropanol, while the deletion of adhE in MGΔadhE resulted in a severe cell growth defection. Although isopropanol and acetone at 700 mM caused severe growth inhibition on each strain, cell growth could be restored to varying degrees with the prolongation of culture time. This phenomenon was suggested to be related to the volatilization of isopropanol and acetone based on volatilization tests. It was envisioned that MG1655 was a suitable host strain for isopropanol metabolic engineering research, and the acetoacetic acid degradation pathway gene atoDA, was probably the key optimizing point for isopropanol production.
Collapse
Affiliation(s)
- Jia Zhou
- 1Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian, 223003 People's Republic of China
- 2Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003 People's Republic of China
| | - Xiaoqing Lu
- 1Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian, 223003 People's Republic of China
- 2Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003 People's Republic of China
| | - Baoxia Tian
- 1Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian, 223003 People's Republic of China
- 2Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003 People's Republic of China
| | - Chonglong Wang
- 3School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123 People's Republic of China
| | - Hao Shi
- 1Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian, 223003 People's Republic of China
- 2Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003 People's Republic of China
| | - Chuping Luo
- 1Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian, 223003 People's Republic of China
| | - Xiaoyan Zhu
- 1Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian, 223003 People's Republic of China
- 2Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003 People's Republic of China
| | - Xiaoqing Yuan
- Suzhou Xuhui Analysis Co., Ltd, 168 Yuan Feng Road, Kunshan High Tech Zone, Suzhou, 215300 People's Republic of China
| | - Xiangqian Li
- 1Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian, 223003 People's Republic of China
- 2Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003 People's Republic of China
| |
Collapse
|
21
|
Gorter de Vries AR, Koster CC, Weening SM, Luttik MAH, Kuijpers NGA, Geertman JMA, Pronk JT, Daran JMG. Phenotype-Independent Isolation of Interspecies Saccharomyces Hybrids by Dual-Dye Fluorescent Staining and Fluorescence-Activated Cell Sorting. Front Microbiol 2019; 10:871. [PMID: 31105669 PMCID: PMC6498416 DOI: 10.3389/fmicb.2019.00871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
Interspecies hybrids of Saccharomyces species are found in a variety of industrial environments and often outperform their parental strains in industrial fermentation processes. Interspecies hybridization is therefore increasingly considered as an approach for improvement and diversification of yeast strains for industrial application. However, current hybridization methods are limited by their reliance on pre-existing or introduced selectable phenotypes. This study presents a high-throughput phenotype-independent method for isolation of interspecies Saccharomyces hybrids based on dual dye-staining and subsequent mating of two strains, followed by enrichment of double-stained hybrid cells from a mating population by fluorescence-activated cell sorting (FACS). Pilot experiments on intra-species mating of heterothallic haploid S. cerevisiae strains showed that 80% of sorted double-stained cells were hybrids. The protocol was further optimized by mating an S. cerevisiae haploid with homothallic S. eubayanus spores with complementary selectable phenotypes. In crosses without selectable phenotype, using S. cerevisiae and S. eubayanus haploids derived from laboratory as well as industrial strains, 10 to 15% of double-stained cells isolated by FACS were hybrids. When applied to rare mating, sorting of double-stained cells consistently resulted in about 600-fold enrichment of hybrid cells. Mating of dual-stained cells and FACS-based selection allows efficient enrichment of interspecies Saccharomyces hybrids within a matter of days and without requiring selectable hybrid phenotypes, both for homothallic and heterothallic strains. This strategy should accelerate the isolation of laboratory-made hybrids, facilitate research into hybrid heterosis and offer new opportunities for non-GM industrial strain improvement and diversification.
Collapse
Affiliation(s)
| | - Charlotte C Koster
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Susan M Weening
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Marijke A H Luttik
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Niels G A Kuijpers
- Global Innovation and Research, HEINEKEN Supply Chain B.V., Zoeterwoude, Netherlands
| | | | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
22
|
Genotype-by-Environment-by-Environment Interactions in the Saccharomyces cerevisiae Transcriptomic Response to Alcohols and Anaerobiosis. G3-GENES GENOMES GENETICS 2018; 8:3881-3890. [PMID: 30301737 PMCID: PMC6288825 DOI: 10.1534/g3.118.200677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Next generation biofuels including longer-chain alcohols such as butanol are attractive as renewable, high-energy fuels. A barrier to microbial production of butanols is the increased toxicity compared to ethanol; however, the cellular targets and microbial defense mechanisms remain poorly understood, especially under anaerobic conditions used frequently in industry. Here we took a comparative approach to understand the response of Saccharomyces cerevisiae to 1-butanol, isobutanol, or ethanol, across three genetic backgrounds of varying tolerance in aerobic and anaerobic conditions. We find that strains have different growth properties and alcohol tolerances with and without oxygen availability, as well as unique and common responses to each of the three alcohols. Our results provide evidence for strain-by-alcohol-by-oxygen interactions that moderate how cells respond to alcohol stress.
Collapse
|
23
|
Diderich JA, Weening SM, van den Broek M, Pronk JT, Daran JMG. Selection of Pof -Saccharomyces eubayanus Variants for the Construction of S. cerevisiae × S. eubayanus Hybrids With Reduced 4-Vinyl Guaiacol Formation. Front Microbiol 2018; 9:1640. [PMID: 30100898 PMCID: PMC6074607 DOI: 10.3389/fmicb.2018.01640] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/02/2018] [Indexed: 01/27/2023] Open
Abstract
Saccharomyces pastorianus is an interspecies hybrid between S. cerevisiae and S. eubayanus. The identification of the parental species of S. pastorianus enabled the de novo reconstruction of hybrids that could potentially combine a wide array of phenotypic traits. Lager yeasts are characterized by their inability to decarboxylate ferulic acid present in wort, a phenotype also known as Pof - (phenolic off-flavor). However, all known S. eubayanus strains characterized so far produce clove-like aroma specific of 4-vinyl guaiacol, a decarboxylated form of ferulic acid. This study explored a non-GMO approach to construct Pof -S. eubayanus variants derived from the parental strain S. eubayanus CBS 12357. To rapidly screen a population of UV-mutagenized cells two complementary assays were developed. The first assay was based on the difference of light absorption spectra of ferulic acid and 4-vinyl guaiacol, while the second was based on the difference of sensitivity of Pof - and Pof+ strains to cinnamic acid. The S. eubayanus variant HTSE042 was selected and was confirmed not to produce 4-vinyl guaiacol. Whole genome sequencing revealed that this variant lost the subtelomeric region of the CHRXIII right arm that carried the two clustered genes SePAD1- SeFDC1 whose deletion in a naïve S. eubayanus strain (CBS 12357/FM1318) resulted in an identical phenotype. Subsequently, the Pof - variant was crossed with a Pof-S. cerevisiae partner. The resulting hybrid was not able to convert ferulic acid demonstrating the undisputable value of the mutagenized variant HTSE042 to eventually construct S. cerevisiae × S. eubayanus hybrids with phenotypic characteristics of S. pastorianus.
Collapse
Affiliation(s)
- Jasper A Diderich
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Susan M Weening
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | | | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
24
|
Davis López SA, Griffith DA, Choi B, Cate JHD, Tullman-Ercek D. Evolutionary engineering improves tolerance for medium-chain alcohols in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:90. [PMID: 29619086 PMCID: PMC5880003 DOI: 10.1186/s13068-018-1089-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Yeast-based chemical production is an environmentally friendly alternative to petroleum-based production or processes that involve harsh chemicals. However, many potential alcohol biofuels, such as n-butanol, isobutanol and n-hexanol, are toxic to production organisms, lowering the efficiency and cost-effectiveness of these processes. We set out to improve the tolerance of Saccharomyces cerevisiae toward these alcohols. RESULTS We evolved the laboratory strain of S. cerevisiae BY4741 to be more tolerant toward n-hexanol and show that the mutations which confer tolerance occur in proteins of the translation initiation complex. We found that n-hexanol inhibits initiation of translation and evolved mutations in the α subunit of eIF2 and the γ subunit of its guanine exchange factor eIF2B rescue this inhibition. We further demonstrate that translation initiation is affected by other alcohols such as n-pentanol and n-heptanol, and that mutations in the eIF2 and eIF2B complexes greatly improve tolerance to these medium-chain alcohols. CONCLUSIONS We successfully generated S. cerevisiae strains that have improved tolerance toward medium-chain alcohols and have demonstrated that the causative mutations overcome inhibition of translation initiation by these alcohols.
Collapse
Affiliation(s)
| | - Douglas Andrew Griffith
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E-136, Evanston, IL 60208-3109 USA
| | - Brian Choi
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 USA
| | - Jamie H. D. Cate
- Department of Chemistry, University of California, Berkeley, CA 94720 USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E-136, Evanston, IL 60208-3109 USA
| |
Collapse
|
25
|
Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 2018; 50:47-56. [DOI: 10.1016/j.copbio.2017.10.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 02/01/2023]
|
26
|
Shi S, Choi YW, Zhao H, Tan MH, Ang EL. Discovery and engineering of a 1-butanol biosensor in Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2017; 245:1343-1351. [PMID: 28712783 DOI: 10.1016/j.biortech.2017.06.114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
The present study aimed to develop a universal methodology for the discovery of biosensors sensitive to particular stresses or metabolites by using a transcriptome analysis, in order to address the need for in vivo biosensors to drive the engineering of microbial cell factories. The method was successfully applied to the discovery of 1-butanol sensors. In particular, the genome-wide transcriptome profiling of S. cerevisiae exposed to three similar short-chain alcohols, 1-butanol, 1-propanol, and ethanol, identified genes that were differentially expressed only under the treatment of 1-butanol. From these candidates, two promoters that responded specifically to 1-butanol were characterized in a dose-dependent manner and were used to distinguish differences in production levels among different 1-butanol producer strains. This strategy opens up new opportunities for the discovery of promoter-based biosensors and can potentially be used to identify biosensors for any metabolite that causes cellular transcriptomic changes.
Collapse
Affiliation(s)
- Shuobo Shi
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore.
| | - Yook Wah Choi
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore.
| | - Huimin Zhao
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Meng How Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore.
| | - Ee Lui Ang
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
27
|
Brickwedde A, van den Broek M, Geertman JMA, Magalhães F, Kuijpers NGA, Gibson B, Pronk JT, Daran JMG. Evolutionary Engineering in Chemostat Cultures for Improved Maltotriose Fermentation Kinetics in Saccharomyces pastorianus Lager Brewing Yeast. Front Microbiol 2017; 8:1690. [PMID: 28943864 PMCID: PMC5596070 DOI: 10.3389/fmicb.2017.01690] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023] Open
Abstract
The lager brewing yeast Saccharomyces pastorianus, an interspecies hybrid of S. eubayanus and S. cerevisiae, ferments maltotriose, maltose, sucrose, glucose and fructose in wort to ethanol and carbon dioxide. Complete and timely conversion ("attenuation") of maltotriose by industrial S. pastorianus strains is a key requirement for process intensification. This study explores a new evolutionary engineering strategy for improving maltotriose fermentation kinetics. Prolonged carbon-limited, anaerobic chemostat cultivation of the reference strain S. pastorianus CBS1483 on a maltotriose-enriched sugar mixture was used to select for spontaneous mutants with improved affinity for maltotriose. Evolved populations exhibited an up to 5-fold lower residual maltotriose concentration and a higher ethanol concentration than the parental strain. Uptake studies with 14C-labeled sugars revealed an up to 4.75-fold higher transport capacity for maltotriose in evolved strains. In laboratory batch cultures on wort, evolved strains showed improved attenuation and higher ethanol concentrations. These improvements were also observed in pilot fermentations at 1,000-L scale with high-gravity wort. Although the evolved strain exhibited multiple chromosomal copy number changes, analysis of beer made from pilot fermentations showed no negative effects on flavor compound profiles. These results demonstrate the potential of evolutionary engineering for strain improvement of hybrid, alloploid brewing strains.
Collapse
Affiliation(s)
- Anja Brickwedde
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | | | | | | | - Niels G A Kuijpers
- HEINEKEN Supply Chain, Global Innovation and ResearchZoeterwoude, Netherlands
| | - Brian Gibson
- VTT Technical Research Centre of Finland Ltd.Espoo, Finland
| | - Jack T Pronk
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| |
Collapse
|
28
|
Horinouchi T, Sakai A, Kotani H, Tanabe K, Furusawa C. Improvement of isopropanol tolerance of Escherichia coli using adaptive laboratory evolution and omics technologies. J Biotechnol 2017. [PMID: 28645581 DOI: 10.1016/j.jbiotec.2017.06.408] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Isopropanol (IPA) is the secondary alcohol that can be dehydrated to yield propylene. To produce IPA using microorganisms, a significant issue is that the toxicity of IPA causes retardation or inhibition of cell growth, decreasing the yield. One possible strategy to overcome this problem is to improve IPA tolerance of production organisms. For the understanding of tolerance to IPA, we performed parallel adaptive laboratory evolution (ALE) of Escherichia coli under IPA stress. To identify the genotypic change during ALE, we performed genome re-sequencing analyses of obtained tolerant strains. To verify which mutations were contributed to IPA tolerance, we constructed the mutant strains and quantify the IPA tolerance of the constructed mutants. From these analyses, we found that five mutations (relA, marC, proQ, yfgO, and rraA) provided the increase of IPA tolerance. To understand the phenotypic change during ALE, we performed transcriptome analysis of tolerant strains. From transcriptome analysis, we found that expression levels of genes related to biosynthetic pathways of amino acids, iron ion homeostasis, and energy metabolisms were changed in the tolerant strains. Results from these experiments provide fundamental bases for designing IPA tolerant strains for industrial purposes.
Collapse
Affiliation(s)
- Takaaki Horinouchi
- Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan.
| | - Aki Sakai
- Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Hazuki Kotani
- Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Kumi Tanabe
- Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Chikara Furusawa
- Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan; Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
29
|
Ho PW, Swinnen S, Duitama J, Nevoigt E. The sole introduction of two single-point mutations establishes glycerol utilization in Saccharomyces cerevisiae CEN.PK derivatives. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:10. [PMID: 28053667 PMCID: PMC5209837 DOI: 10.1186/s13068-016-0696-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Glycerol is an abundant by-product of biodiesel production and has several advantages as a substrate in biotechnological applications. Unfortunately, the popular production host Saccharomyces cerevisiae can barely metabolize glycerol by nature. RESULTS In this study, two evolved derivatives of the strain CEN.PK113-1A were created that were able to grow in synthetic glycerol medium (strains PW-1 and PW-2). Their growth performances on glycerol were compared with that of the previously published evolved CEN.PK113-7D derivative JL1. As JL1 showed a higher maximum specific growth rate on glycerol (0.164 h-1 compared to 0.119 h-1 for PW-1 and 0.127 h-1 for PW-2), its genomic DNA was subjected to whole-genome resequencing. Two point mutations in the coding sequences of the genes UBR2 and GUT1 were identified to be crucial for growth in synthetic glycerol medium and subsequently verified by reverse engineering of the wild-type strain CEN.PK113-7D. The growth rate of the resulting reverse-engineered strain was 0.130 h-1. Sanger sequencing of the GUT1 and UBR2 alleles of the above-mentioned evolved strains PW-1 and PW-2 also revealed one single-point mutation in these two genes, and both mutations were demonstrated to be also crucial and sufficient for obtaining a maximum specific growth rate on glycerol of ~0.120 h-1. CONCLUSIONS The current work confirmed the importance of UBR2 and GUT1 as targets for establishing glycerol utilization in strains of the CEN.PK family. In addition, it shows that a growth rate on glycerol of 0.130 h-1 can be established in reverse-engineered CEN.PK strains by solely replacing a single amino acid in the coding sequences of both Ubr2 and Gut1.
Collapse
Affiliation(s)
- Ping-Wei Ho
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Steve Swinnen
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Cra 1 Este No 19A-40, Bogotá, Colombia
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
30
|
Pereira JPC, Verheijen PJT, Straathof AJJ. Growth inhibition of S. cerevisiae, B. subtilis, and E. coli by lignocellulosic and fermentation products. Appl Microbiol Biotechnol 2016; 100:9069-9080. [PMID: 27262569 PMCID: PMC5056951 DOI: 10.1007/s00253-016-7642-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/08/2016] [Accepted: 05/18/2016] [Indexed: 12/27/2022]
Abstract
This paper describes the effect of several inhibiting components on three potential hosts for the bio-based production of methyl propionate, namely, wild-type Escherichia coli and Bacillus subtilis, and evolved Saccharomyces cerevisiae IMS0351. The inhibition by the lignocellulose-derived products 5-hydroxymethyl-2-furaldehyde, vanillin, and syringaldehyde and the fermentation products 2-butanol, 2-butanone, methyl propionate, and ethyl acetate has been assessed for these strains in defined medium. Multiple screenings were performed using small-scale cultures in both shake flasks and microtiter plates. Technical drawbacks revealed the limited applicability of the latter in this study. The microbial growth was characterized by means of a lag-time model, and the inhibitory thresholds were determined using product-inhibition models. The lignocellulose-derived products were found to be highly inhibitory, and none of the strains could grow in the presence of 2.0 g L-1 of product. From the fermentation products tested, methyl propionate had the most severe impact resulting in complete inhibition of all the strains when exposed to concentrations in the range of 12-18 g L-1. In general, S. cerevisiae and B. subtilis were comparatively more tolerant than E. coli to all the fermentation products, despite E. coli's lower sensitivity towards vanillin. The results suggest that, overall, the strains investigated have good potential to be engineered and further established as hosts for the bio-based production of methyl esters.
Collapse
Affiliation(s)
- Joana P C Pereira
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Peter J T Verheijen
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Adrie J J Straathof
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
31
|
Identification of gene knockdown targets conferring enhanced isobutanol and 1-butanol tolerance to Saccharomyces cerevisiae using a tunable RNAi screening approach. Appl Microbiol Biotechnol 2016; 100:10005-10018. [DOI: 10.1007/s00253-016-7791-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/25/2016] [Accepted: 08/03/2016] [Indexed: 10/21/2022]
|
32
|
Fletcher E, Pilizota T, Davies PR, McVey A, French CE. Characterization of the effects of n-butanol on the cell envelope of E. coli. Appl Microbiol Biotechnol 2016; 100:9653-9659. [DOI: 10.1007/s00253-016-7771-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/01/2016] [Indexed: 01/08/2023]
|
33
|
Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae. Metab Eng 2016; 36:68-79. [DOI: 10.1016/j.ymben.2016.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/12/2016] [Accepted: 03/10/2016] [Indexed: 11/21/2022]
|
34
|
Freedman BG, Zu TNK, Wallace RS, Senger RS. Raman spectroscopy detects phenotypic differences among
Escherichia coli
enriched for 1‐butanol tolerance using a metagenomic DNA library. Biotechnol J 2016; 11:877-89. [DOI: 10.1002/biot.201500144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 10/22/2015] [Accepted: 01/26/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Benjamin G. Freedman
- Department of Biological Systems Engineering; Virginia Tech Blacksburg Virginia USA
| | - Theresah N. K. Zu
- Department of Biological Systems Engineering; Virginia Tech Blacksburg Virginia USA
| | - Robert S. Wallace
- Department of Biological Systems Engineering; Virginia Tech Blacksburg Virginia USA
| | - Ryan S. Senger
- Department of Biological Systems Engineering; Virginia Tech Blacksburg Virginia USA
| |
Collapse
|
35
|
van Rossum HM, Kozak BU, Niemeijer MS, Duine HJ, Luttik MAH, Boer VM, Kötter P, Daran JMG, van Maris AJA, Pronk JT. Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae. FEMS Yeast Res 2016; 16:fow017. [PMID: 26895788 PMCID: PMC5815053 DOI: 10.1093/femsyr/fow017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 11/14/2022] Open
Abstract
Pyruvate and acetyl-coenzyme A, located at the interface between glycolysis and TCA cycle, are important intermediates in yeast metabolism and key precursors for industrially relevant products. Rational engineering of their supply requires knowledge of compensatory reactions that replace predominant pathways when these are inactivated. This study investigates effects of individual and combined mutations that inactivate the mitochondrial pyruvate-dehydrogenase (PDH) complex, extramitochondrial citrate synthase (Cit2) and mitochondrial CoA-transferase (Ach1) in Saccharomyces cerevisiae. Additionally, strains with a constitutively expressed carnitine shuttle were constructed and analyzed. A predominant role of the PDH complex in linking glycolysis and TCA cycle in glucose-grown batch cultures could be functionally replaced by the combined activity of the cytosolic PDH bypass and Cit2. Strongly impaired growth and a high incidence of respiratory deficiency in pda1Δ ach1Δ strains showed that synthesis of intramitochondrial acetyl-CoA as a metabolic precursor requires activity of either the PDH complex or Ach1. Constitutive overexpression of AGP2, HNM1, YAT2, YAT1, CRC1 and CAT2 enabled the carnitine shuttle to efficiently link glycolysis and TCA cycle in l-carnitine-supplemented, glucose-grown batch cultures. Strains in which all known reactions at the glycolysis-TCA cycle interface were inactivated still grew slowly on glucose, indicating additional flexibility at this key metabolic junction.
Collapse
Affiliation(s)
- Harmen M van Rossum
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| | - Barbara U Kozak
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| | - Matthijs S Niemeijer
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| | - Hendrik J Duine
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| | - Marijke A H Luttik
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| | - Viktor M Boer
- DSM Biotechnology Center, Alexander Fleminglaan 1, NL-2613 AX Delft, The Netherlands
| | - Peter Kötter
- Institute for Molecular Bio Sciences, Goethe University, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628 BC Delft, The Netherlands
| |
Collapse
|
36
|
Kozak BU, van Rossum HM, Niemeijer MS, van Dijk M, Benjamin K, Wu L, Daran JMG, Pronk JT, van Maris AJA. Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase. FEMS Yeast Res 2016; 16:fow006. [PMID: 26818854 PMCID: PMC5815134 DOI: 10.1093/femsyr/fow006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/25/2016] [Indexed: 11/17/2022] Open
Abstract
In Saccharomyces cerevisiae ethanol dissimilation is initiated by its oxidation and activation to cytosolic acetyl-CoA. The associated consumption of ATP strongly limits yields of biomass and acetyl-CoA-derived products. Here, we explore the implementation of an ATP-independent pathway for acetyl-CoA synthesis from ethanol that, in theory, enables biomass yield on ethanol that is up to 40% higher. To this end, all native yeast acetaldehyde dehydrogenases (ALDs) were replaced by heterologous acetylating acetaldehyde dehydrogenase (A-ALD). Engineered Ald− strains expressing different A-ALDs did not immediately grow on ethanol, but serial transfer in ethanol-grown batch cultures yielded growth rates of up to 70% of the wild-type value. Mutations in ACS1 were identified in all independently evolved strains and deletion of ACS1 enabled slow growth of non-evolved Ald− A-ALD strains on ethanol. Acquired mutations in A-ALD genes improved affinity—Vmax/Km for acetaldehyde. One of five evolved strains showed a significant 5% increase of its biomass yield in ethanol-limited chemostat cultures. Increased production of acetaldehyde and other by-products was identified as possible cause for lower than theoretically predicted biomass yields. This study proves that the native yeast pathway for conversion of ethanol to acetyl-CoA can be replaced by an engineered pathway with the potential to improve biomass and product yields. This manuscript investigates a metabolic engineering strategy to improve the use of ethanol as a feedstock for production of bio-based fuels and chemicals with yeast.
Collapse
Affiliation(s)
- Barbara U Kozak
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Harmen M van Rossum
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Matthijs S Niemeijer
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Marlous van Dijk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Kirsten Benjamin
- Amyris Inc, 5885 Hollis Street, Ste. 100, Emeryville, CA94608, USA
| | - Liang Wu
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, the Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands
| |
Collapse
|
37
|
González-Ramos D, Gorter de Vries AR, Grijseels SS, van Berkum MC, Swinnen S, van den Broek M, Nevoigt E, Daran JMG, Pronk JT, van Maris AJA. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:173. [PMID: 27525042 PMCID: PMC4983051 DOI: 10.1186/s13068-016-0583-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/27/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Acetic acid, released during hydrolysis of lignocellulosic feedstocks for second generation bioethanol production, inhibits yeast growth and alcoholic fermentation. Yeast biomass generated in a propagation step that precedes ethanol production should therefore express a high and constitutive level of acetic acid tolerance before introduction into lignocellulosic hydrolysates. However, earlier laboratory evolution strategies for increasing acetic acid tolerance of Saccharomyces cerevisiae, based on prolonged cultivation in the presence of acetic acid, selected for inducible rather than constitutive tolerance to this inhibitor. RESULTS Preadaptation in the presence of acetic acid was shown to strongly increase the fraction of yeast cells that could initiate growth in the presence of this inhibitor. Serial microaerobic batch cultivation, with alternating transfers to fresh medium with and without acetic acid, yielded evolved S. cerevisiae cultures with constitutive acetic acid tolerance. Single-cell lines isolated from five such evolution experiments after 50-55 transfers were selected for further study. An additional constitutively acetic acid tolerant mutant was selected after UV-mutagenesis. All six mutants showed an increased fraction of growing cells upon a transfer from a non-stressed condition to a medium containing acetic acid. Whole-genome sequencing identified six genes that contained (different) mutations in multiple acetic acid-tolerant mutants. Haploid segregation studies and expression of the mutant alleles in the unevolved ancestor strain identified causal mutations for the acquired acetic acid tolerance in four genes (ASG1, ADH3, SKS1 and GIS4). Effects of the mutations in ASG1, ADH3 and SKS1 on acetic acid tolerance were additive. CONCLUSIONS A novel laboratory evolution strategy based on alternating cultivation cycles in the presence and absence of acetic acid conferred a selective advantage to constitutively acetic acid-tolerant mutants and may be applicable for selection of constitutive tolerance to other stressors. Mutations in four genes (ASG1, ADH3, SKS1 and GIS4) were identified as causative for acetic acid tolerance. The laboratory evolution strategy as well as the identified mutations can contribute to improving acetic acid tolerance in industrial yeast strains.
Collapse
Affiliation(s)
- Daniel González-Ramos
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Arthur R. Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Sietske S. Grijseels
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Margo C. van Berkum
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Steve Swinnen
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Elke Nevoigt
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Jean-Marc G. Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Antonius J. A. van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
38
|
Solis-Escalante D, van den Broek M, Kuijpers NGA, Pronk JT, Boles E, Daran JM, Daran-Lapujade P. The genome sequence of the popular hexose-transport-deficient Saccharomyces cerevisiae strain EBY.VW4000 reveals LoxP/Cre-induced translocations and gene loss. FEMS Yeast Res 2015; 15:fou004. [PMID: 25673752 DOI: 10.1093/femsyr/fou004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Saccharomyces cerevisiae harbours a large group of tightly controlled hexose transporters with different characteristics. Construction and characterization of S. cerevisiae EBY.VW4000, a strain devoid of glucose import, was a milestone in hexose-transporter research. This strain has become a widely used platform for discovery and characterization of transporters from a wide range of organisms. To abolish glucose uptake, 21 genes were knocked out, involving 16 successive deletion rounds with the LoxP/Cre system. Although such intensive modifications are known to increase the risk of genome alterations, the genome of EBY.VW4000 has hitherto not been characterized. Based on a combination of whole genome sequencing, karyotyping and molecular confirmation, the present study reveals that construction of EBY.VW4000 resulted in gene losses and chromosomal rearrangements. Recombinations between the LoxP scars have led to the assembly of four neo-chromosomes, truncation of two chromosomes and loss of two subtelomeric regions. Furthermore, sporulation and spore germination are severely impaired in EBY.VW4000. Karyotyping of the EBY.VW4000 lineage retraced its current chromosomal architecture to four translocations events occurred between the 6th and the 12th rounds of deletion. The presented data facilitate further studies on EBY.VW4000 and highlight the risks of genome alterations associated with repeated use of the LoxP/Cre system.
Collapse
Affiliation(s)
- Daniel Solis-Escalante
- Department of Biotechnology, Delft University of Technology Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Niels G A Kuijpers
- Department of Biotechnology, Delft University of Technology Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology Julianalaan 67, 2628 BC Delft, The Netherlands Platform Green Synthetic Biology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Eckhard Boles
- Institute for Molecular Biosciences, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology Julianalaan 67, 2628 BC Delft, The Netherlands Platform Green Synthetic Biology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
39
|
Grineva EN, Leinsoo AT, Spasskaya DS, Karpov DS, Karpov VL. Functional analysis of Rpn4-like proteins from Komagataella (Pichia) pastoris and Yarrowia lipolytica on a genetic background of Saccharomyces cerevisiae. APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815070029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin Biotechnol 2015; 33:1-7. [DOI: 10.1016/j.copbio.2014.09.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/09/2014] [Accepted: 09/17/2014] [Indexed: 11/22/2022]
|
41
|
Yeast toxicogenomics: lessons from a eukaryotic cell model and cell factory. Curr Opin Biotechnol 2015; 33:183-91. [DOI: 10.1016/j.copbio.2015.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 02/16/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
|
42
|
The Ubiquitin Ligase SCF(Ucc1) Acts as a Metabolic Switch for the Glyoxylate Cycle. Mol Cell 2015; 59:22-34. [PMID: 25982115 DOI: 10.1016/j.molcel.2015.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/03/2015] [Accepted: 04/07/2015] [Indexed: 01/14/2023]
Abstract
Despite the crucial role played by the glyoxylate cycle in the virulence of pathogens, seed germination in plants, and sexual development in fungi, we still have much to learn about its regulation. Here, we show that a previously uncharacterized SCF(Ucc1) ubiquitin ligase mediates proteasomal degradation of citrate synthase in the glyoxylate cycle to maintain metabolic homeostasis in glucose-grown cells. Conversely, transcription of the F box subunit Ucc1 is downregulated in C2-compound-grown cells, which require increased metabolic flux for gluconeogenesis. Moreover, in vitro analysis demonstrates that oxaloacetate regenerated through the glyoxylate cycle induces a conformational change in citrate synthase and inhibits its recognition and ubiquitination by SCF(Ucc1), suggesting the existence of an oxaloacetate-dependent positive feedback loop that stabilizes citrate synthase. We propose that SCF(Ucc1)-mediated regulation of citrate synthase acts as a metabolic switch for the glyoxylate cycle in response to changes in carbon source, thereby ensuring metabolic versatility and flexibility.
Collapse
|
43
|
Zhang Y, Liu ZL, Song M. ChiNet uncovers rewired transcription subnetworks in tolerant yeast for advanced biofuels conversion. Nucleic Acids Res 2015; 43:4393-407. [PMID: 25897127 PMCID: PMC4482087 DOI: 10.1093/nar/gkv358] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 04/06/2015] [Indexed: 12/14/2022] Open
Abstract
Analysis of rewired upstream subnetworks impacting downstream differential gene expression aids the delineation of evolving molecular mechanisms. Cumulative statistics based on conventional differential correlation are limited for subnetwork rewiring analysis since rewiring is not necessarily equivalent to change in correlation coefficients. Here we present a computational method ChiNet to quantify subnetwork rewiring by statistical heterogeneity that enables detection of potential genotype changes causing altered transcription regulation in evolving organisms. Given a differentially expressed downstream gene set, ChiNet backtracks a rewired upstream subnetwork from a super-network including gene interactions known to occur under various molecular contexts. We benchmarked ChiNet for its high accuracy in distinguishing rewired artificial subnetworks, in silico yeast transcription-metabolic subnetworks, and rewired transcription subnetworks for Candida albicans versus Saccharomyces cerevisiae, against two differential-correlation based subnetwork rewiring approaches. Then, using transcriptome data from tolerant S. cerevisiae strain NRRL Y-50049 and a wild-type intolerant strain, ChiNet identified 44 metabolic pathways affected by rewired transcription subnetworks anchored to major adaptively activated transcription factor genes YAP1, RPN4, SFP1 and ROX1, in response to toxic chemical challenges involved in lignocellulose-to-biofuels conversion. These findings support the use of ChiNet in rewiring analysis of subnetworks where differential interaction patterns resulting from divergent nonlinear dynamics abound.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA
| | - Z Lewis Liu
- National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, IL 61604, USA
| | - Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
44
|
Bachmann H, Pronk JT, Kleerebezem M, Teusink B. Evolutionary engineering to enhance starter culture performance in food fermentations. Curr Opin Biotechnol 2015; 32:1-7. [DOI: 10.1016/j.copbio.2014.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/05/2014] [Accepted: 09/12/2014] [Indexed: 01/08/2023]
|
45
|
Becerra M, Cerdán ME, González-Siso MI. Biobutanol from cheese whey. Microb Cell Fact 2015; 14:27. [PMID: 25889728 PMCID: PMC4404668 DOI: 10.1186/s12934-015-0200-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/26/2015] [Indexed: 11/17/2022] Open
Abstract
At present, due to environmental and economic concerns, it is urgent to evolve efficient, clean and secure systems for the production of advanced biofuels from sustainable cheap sources. Biobutanol has proved better characteristics than the more widely used bioethanol, however the main disadvantage of biobutanol is that it is produced in low yield and titer by ABE (acetone-butanol-ethanol) fermentation, this process being not competitive from the economic point of view. In this review we summarize the natural metabolic pathways for biobutanol production by Clostridia and yeasts, together with the metabolic engineering efforts performed up to date with the aim of either enhancing the yield of the natural producer Clostridia or transferring the butanol production ability to other hosts with better attributes for industrial use and facilities for genetic manipulation. Molasses and starch-based feedstocks are main sources for biobutanol production at industrial scale hitherto. We also review herewith (and for the first time up to our knowledge) the research performed for the use of whey, the subproduct of cheese making, as another sustainable source for biobutanol production. This represents a promising alternative that still needs further research. The use of an abundant waste material like cheese whey, that would otherwise be considered an environmental pollutant, for biobutanol production, makes economy of the process more profitable.
Collapse
Affiliation(s)
- Manuel Becerra
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain.
| | - María Esperanza Cerdán
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain.
| | - María Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Coruña, 15071, A Coruña, Spain.
| |
Collapse
|
46
|
Hebly M, Brickwedde A, Bolat I, Driessen MRM, de Hulster EAF, van den Broek M, Pronk JT, Geertman JM, Daran JM, Daran-Lapujade P. S. cerevisiae × S. eubayanus interspecific hybrid, the best of both worlds and beyond. FEMS Yeast Res 2015; 15:fov005. [PMID: 25743788 DOI: 10.1093/femsyr/fov005] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2015] [Indexed: 12/16/2022] Open
Abstract
Saccharomyces pastorianus lager-brewing yeasts have descended from natural hybrids of S. cerevisiae and S. eubayanus. Their alloploidy has undoubtedly contributed to successful domestication and industrial exploitation. To understand the early events that have led to the predominance of S. pastorianus as lager-brewing yeast, an interspecific hybrid between S. cerevisiae and S. eubayanus was experimentally constructed. Alloploidy substantially improved the performance of the S. cerevisiae × S. eubayanus hybrid as compared to either parent regarding two cardinal features of brewing yeasts: tolerance to low temperature and oligosaccharide utilization. The hybrid's S. eubayanus subgenome conferred better growth rates and biomass yields at low temperature, both on glucose and on maltose. Conversely, the ability of the hybrid to consume maltotriose, which was absent in the S. eubayanus CBS12357 type strain, was inherited from its S. cerevisiae parent. The S. cerevisiae × S. eubayanus hybrid even outperformed its parents, a phenomenon known as transgression, suggesting that fast growth at low temperature and oligosaccharide utilization may have been key selective advantages of the natural hybrids in brewing environments. To enable sequence comparisons of the parental and hybrid strains, the genome of S. eubayanus CBS12357 type strain (Patagonian isolate) was resequenced, resulting in an improved publicly available sequence assembly.
Collapse
Affiliation(s)
- Marit Hebly
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands Netherlands Consortium for Systems Biology, 1098 XH Amsterdam, the Netherlands
| | - Anja Brickwedde
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands
| | - Irina Bolat
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands
| | - Maureen R M Driessen
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands
| | - Erik A F de Hulster
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands Netherlands Consortium for Systems Biology, 1098 XH Amsterdam, the Netherlands Platform Green Synthetic Biology, 2628 BC Delft, the Netherlands
| | - Jan-Maarten Geertman
- Heineken Global Supply Chain, Technology & Policies, 2382 PH Zoeterwoude, the Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands Platform Green Synthetic Biology, 2628 BC Delft, the Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, 2628 BC Delft, the Netherlands Netherlands Consortium for Systems Biology, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
47
|
Mans R, van Rossum HM, Wijsman M, Backx A, Kuijpers NGA, van den Broek M, Daran-Lapujade P, Pronk JT, van Maris AJA, Daran JMG. CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res 2015; 15:fov004. [PMID: 25743786 PMCID: PMC4399441 DOI: 10.1093/femsyr/fov004] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A variety of techniques for strain engineering in Saccharomyces cerevisiae have recently been developed. However, especially when multiple genetic manipulations are required, strain construction is still a time-consuming process. This study describes new CRISPR/Cas9-based approaches for easy, fast strain construction in yeast and explores their potential for simultaneous introduction of multiple genetic modifications. An open-source tool (http://yeastriction.tnw.tudelft.nl) is presented for identification of suitable Cas9 target sites in S. cerevisiae strains. A transformation strategy, using in vivo assembly of a guideRNA plasmid and subsequent genetic modification, was successfully implemented with high accuracies. An alternative strategy, using in vitro assembled plasmids containing two gRNAs, was used to simultaneously introduce up to six genetic modifications in a single transformation step with high efficiencies. Where previous studies mainly focused on the use of CRISPR/Cas9 for gene inactivation, we demonstrate the versatility of CRISPR/Cas9-based engineering of yeast by achieving simultaneous integration of a multigene construct combined with gene deletion and the simultaneous introduction of two single-nucleotide mutations at different loci. Sets of standardized plasmids, as well as the web-based Yeastriction target-sequence identifier and primer-design tool, are made available to the yeast research community to facilitate fast, standardized and efficient application of the CRISPR/Cas9 system. CRISPR/Cas9 like a Swiss army knife enables molecular biologists to quickly introduce simultaneous multiple and diverse genetic modifications in baker's yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Robert Mans
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Harmen M van Rossum
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Melanie Wijsman
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Antoon Backx
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Niels G A Kuijpers
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Antonius J A van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
48
|
Shen H, McHale CM, Smith MT, Zhang L. Functional genomic screening approaches in mechanistic toxicology and potential future applications of CRISPR-Cas9. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:31-42. [PMID: 26041264 DOI: 10.1016/j.mrrev.2015.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 01/25/2023]
Abstract
Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Chemical toxicants act by many different mechanisms, however, and the genes involved in adverse outcome pathways (AOPs) and AOP networks are not yet characterized. Functional genomic approaches can reveal both toxicity pathways and susceptibility genes, through knockdown or knockout of all non-essential genes in a cell of interest, and identification of genes associated with a toxicity phenotype following toxicant exposure. Screening approaches in yeast and human near-haploid leukemic KBM7 cells have identified roles for genes and pathways involved in response to many toxicants but are limited by partial homology among yeast and human genes and limited relevance to normal diploid cells. RNA interference (RNAi) suppresses mRNA expression level but is limited by off-target effects (OTEs) and incomplete knockdown. The recently developed gene editing approach called clustered regularly interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9, can precisely knock-out most regions of the genome at the DNA level with fewer OTEs than RNAi, in multiple human cell types, thus overcoming the limitations of the other approaches. It has been used to identify genes involved in the response to chemical and microbial toxicants in several human cell types and could readily be extended to the systematic screening of large numbers of environmental chemicals. CRISPR-Cas9 can also repress and activate gene expression, including that of non-coding RNA, with near-saturation, thus offering the potential to more fully characterize AOPs and AOP networks. Finally, CRISPR-Cas9 can generate complex animal models in which to conduct preclinical toxicity testing at the level of individual genotypes or haplotypes. Therefore, CRISPR-Cas9 is a powerful and flexible functional genomic screening approach that can be harnessed to provide unprecedented mechanistic insight in the field of modern toxicology.
Collapse
Affiliation(s)
- Hua Shen
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Cliona M McHale
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Martyn T Smith
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Luoping Zhang
- Superfund Research Program, Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
49
|
Tsai CS, Kwak S, Turner TL, Jin YS. Yeast synthetic biology toolbox and applications for biofuel production. FEMS Yeast Res 2015; 15:1-15. [PMID: 25195615 DOI: 10.1111/1567-1364.12206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/16/2014] [Accepted: 08/31/2014] [Indexed: 01/04/2023] Open
Abstract
Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains.
Collapse
Affiliation(s)
- Ching-Sung Tsai
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Suryang Kwak
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy L Turner
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yong-Su Jin
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA .,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
50
|
Jensen MK, Keasling JD. Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res 2015; 15:1-10. [PMID: 25041737 DOI: 10.1111/1567-1364.12185] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/04/2014] [Accepted: 07/10/2014] [Indexed: 11/29/2022] Open
Abstract
The last 20 years of metabolic engineering has enabled bio-based production of fuels and chemicals from renewable carbon sources using cost-effective bioprocesses. Much of this work has been accomplished using engineered microorganisms that act as chemical factories. Although the time required to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed synthetic biology tools and their application to improve production of chemicals and fuels in yeast. Finally, we provide a perspective for the challenges that lie ahead.
Collapse
Affiliation(s)
- Michael K Jensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Jay D Keasling
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.,Joint BioEnergy Institute, Emeryville, CA, USA.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Chemical and Biomolecular Engineering & Department of Bioengineering University of California, Berkeley, CA, USA
| |
Collapse
|