1
|
Das S, Bhati V, Dewangan BP, Gangal A, Mishra GP, Dikshit HK, Pawar PAM. Combining Fourier-transform infrared spectroscopy and multivariate analysis for chemotyping of cell wall composition in Mungbean (Vigna radiata (L.) Wizcek). PLANT METHODS 2024; 20:135. [PMID: 39223669 PMCID: PMC11367897 DOI: 10.1186/s13007-024-01260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Dissection of complex plant cell wall structures demands a sensitive and quantitative method. FTIR is used regularly as a screening method to identify specific linkages in cell walls. However, quantification and assigning spectral bands to particular cell wall components is still a major challenge, specifically in crop species. In this study, we addressed these challenges using ATR-FTIR spectroscopy as it is a high throughput, cost-effective and non-destructive approach to understand the plant cell wall composition. This method was validated by analysing different varieties of mungbean which is one of the most important legume crops grown widely in Asia. RESULTS Using standards and extraction of a specific component of cell wall components, we assigned 1050-1060 cm-1 and 1390-1420 cm-1 wavenumbers that can be widely used to quantify cellulose and lignin, respectively, in Arabidopsis, Populus, rice and mungbean. Also, using KBr as a diluent, we established a method that can relatively quantify the cellulose and lignin composition among different tissue types of the above species. We further used this method to quantify cellulose and lignin in field-grown mungbean genotypes. The ATR-FTIR-based study revealed the cellulose content variation ranges from 27.9% to 52.3%, and the lignin content variation ranges from 13.7% to 31.6% in mungbean genotypes. CONCLUSION Multivariate analysis of FT-IR data revealed differences in total cell wall (600-2000 cm-1), cellulose (1000-1100 cm-1) and lignin (1390-1420 cm-1) among leaf and stem of four plant species. Overall, our data suggested that ATR-FTIR can be used for the relative quantification of lignin and cellulose in different plant species. This method was successfully applied for rapid screening of cell wall composition in mungbean stem, and similarly, it can be used for screening other crops or tree species.
Collapse
Affiliation(s)
- Shouvik Das
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
| | - Vikrant Bhati
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Bhagwat Prasad Dewangan
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Apurva Gangal
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Gyan Prakash Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Harsh Kumar Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prashant Anupama Mohan Pawar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science, Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
| |
Collapse
|
2
|
Schultz JA, Coleman HD. Pectin and Xylan Biosynthesis in Poplar: Implications and Opportunities for Biofuels Production. FRONTIERS IN PLANT SCIENCE 2021; 12:712083. [PMID: 34490013 PMCID: PMC8418221 DOI: 10.3389/fpls.2021.712083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
A potential method by which society's reliance on fossil fuels can be lessened is via the large-scale utilization of biofuels derived from the secondary cell walls of woody plants; however, there remain a number of technical challenges to the large-scale production of biofuels. Many of these challenges emerge from the underlying complexity of the secondary cell wall. The challenges associated with lignin have been well explored elsewhere, but the dicot cell wall components of hemicellulose and pectin also present a number of difficulties. Here, we provide an overview of the research wherein pectin and xylan biosynthesis has been altered, along with investigations on the function of irregular xylem 8 (IRX8) and glycosyltransferase 8D (GT8D), genes putatively involved in xylan and pectin synthesis. Additionally, we provide an analysis of the evidence in support of two hypotheses regarding GT8D and conclude that while there is evidence to lend credence to these hypotheses, there are still questions that require further research and examination.
Collapse
|
3
|
Bryant ND, Pu Y, Tschaplinski TJ, Tuskan GA, Muchero W, Kalluri UC, Yoo CG, Ragauskas AJ. Transgenic Poplar Designed for Biofuels. TRENDS IN PLANT SCIENCE 2020; 25:881-896. [PMID: 32482346 DOI: 10.1016/j.tplants.2020.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 05/12/2023]
Abstract
Members of the genus Populus (i.e., cottonwood, hybrid poplar) represent a promising source of lignocellulosic biomass for biofuels. However, one of the major factors negatively affecting poplar's efficient conversion to biofuel is the inherent recalcitrance to enzymatic saccharification due to cell wall components such as lignin. To this effect, there have been efforts to modify gene expression to reduce biomass recalcitrance by changing cell wall properties. Here, we review recent genetic modifications of poplar that led to change cell wall properties and the resulting effects on subsequent pretreatment efficacy and saccharification. Although genetic engineering's impacts on cell wall properties are not fully predictable, recent studies have shown promising improvement in the biological conversion of transgenic poplar to biofuels.
Collapse
Affiliation(s)
- Nathan D Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Yunqiao Pu
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J Tschaplinski
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A Tuskan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C Kalluri
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chang Geun Yoo
- Department of Paper and Bioprocess Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA.
| |
Collapse
|
4
|
Bouriakova A, Mendes PS, Elst K, De Clercq J, Thybaut JW. Techno-economic evaluation of squalene recovery from oil deodorizer distillates. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Hooker CA, Hillman ET, Overton JC, Ortiz-Velez A, Schacht M, Hunnicutt A, Mosier NS, Solomon KV. Hydrolysis of untreated lignocellulosic feedstock is independent of S-lignin composition in newly classified anaerobic fungal isolate, Piromyces sp. UH3-1. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:293. [PMID: 30386430 PMCID: PMC6203967 DOI: 10.1186/s13068-018-1292-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/15/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Plant biomass is an abundant but underused feedstock for bioenergy production due to its complex and variable composition, which resists breakdown into fermentable sugars. These feedstocks, however, are routinely degraded by many uncommercialized microbes such as anaerobic gut fungi. These gut fungi express a broad range of carbohydrate active enzymes and are native to the digestive tracts of ruminants and hindgut fermenters. In this study, we examine gut fungal performance on these substrates as a function of composition, and the ability of this isolate to degrade inhibitory high syringyl lignin-containing forestry residues. RESULTS We isolated a novel fungal specimen from a donkey in Independence, Indiana, United States. Phylogenetic analysis of the Internal Transcribed Spacer 1 sequence classified the isolate as a member of the genus Piromyces within the phylum Neocallimastigomycota (Piromyces sp. UH3-1, strain UH3-1). The isolate penetrates the substrate with an extensive rhizomycelial network and secretes many cellulose-binding enzymes, which are active on various components of lignocellulose. These activities enable the fungus to hydrolyze at least 58% of the glucan and 28% of the available xylan in untreated corn stover within 168 h and support growth on crude agricultural residues, food waste, and energy crops. Importantly, UH3-1 hydrolyzes high syringyl lignin-containing poplar that is inhibitory to many fungi with efficiencies equal to that of low syringyl lignin-containing poplar with no reduction in fungal growth. This behavior is correlated with slight remodeling of the fungal secretome whose composition adapts with substrate to express an enzyme cocktail optimized to degrade the available biomass. CONCLUSIONS Piromyces sp. UH3-1, a newly isolated anaerobic gut fungus, grows on diverse untreated substrates through production of a broad range of carbohydrate active enzymes that are robust to variations in substrate composition. Additionally, UH3-1 and potentially other anaerobic fungi are resistant to inhibitory lignin composition possibly due to changes in enzyme secretion with substrate. Thus, anaerobic fungi are an attractive platform for the production of enzymes that efficiently use mixed feedstocks of variable composition for second generation biofuels. More importantly, our work suggests that the study of anaerobic fungi may reveal naturally evolved strategies to circumvent common hydrolytic inhibitors that hinder biomass usage.
Collapse
Affiliation(s)
- Casey A. Hooker
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093 USA
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, 500 Central Drive, West Lafayette, IN 47907-2022 USA
| | - Ethan T. Hillman
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093 USA
- Purdue University Interdisciplinary Life Sciences (PULSe) Program, Purdue University, 155 South Grant Street, West Lafayette, IN 47907-2114 USA
| | - Jonathan C. Overton
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093 USA
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, 500 Central Drive, West Lafayette, IN 47907-2022 USA
| | - Adrian Ortiz-Velez
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093 USA
| | - Makayla Schacht
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054 USA
| | - Abigail Hunnicutt
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093 USA
| | - Nathan S. Mosier
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093 USA
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, 500 Central Drive, West Lafayette, IN 47907-2022 USA
| | - Kevin V. Solomon
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093 USA
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, 500 Central Drive, West Lafayette, IN 47907-2022 USA
- Purdue University Interdisciplinary Life Sciences (PULSe) Program, Purdue University, 155 South Grant Street, West Lafayette, IN 47907-2114 USA
| |
Collapse
|
6
|
Boboescu IZ, Gélinas M, Beigbeder JB, Lavoie JM. High-efficiency second generation ethanol from the hemicellulosic fraction of softwood chips mixed with construction and demolition residues. BIORESOURCE TECHNOLOGY 2018; 266:421-430. [PMID: 29990759 DOI: 10.1016/j.biortech.2018.06.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Using lignocellulosic residues for bioethanol production could provide an alternative solution to current approaches at competitive costs once challenges related to substrate recalcitrance, process complexity and limited knowledge are overcome. Thus, the impact of different process variables on the ethanol production by Saccharomyces cerevisiae using the hemicellulosic fraction extracted through the steam-treatment of softwood chips mixed with construction and demolition residues was assessed. A statistical design of experiments approach was developed and implemented in order to identify the influencing factors (various nutrient addition sources as well as yeast inoculum growth conditions and inoculation strategies) relevant for enhancing the ethanol production potential and substrate uptake. Ethanol yields of 74.12% and monomeric sugar uptakes of 82.12 g/L were predicted and experimentally confirmed in bench and bioreactor systems. This innovative approach revealed the factors impacting the ethanol yields and carbohydrate consumption allowing powerful behavioral predictions spanning different process inputs and outputs.
Collapse
Affiliation(s)
- Iulian-Zoltan Boboescu
- Departement of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Malorie Gélinas
- Departement of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Baptiste Beigbeder
- Departement of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Michel Lavoie
- Departement of Chemical Engineering and Biotechnological Engineering, University of Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
7
|
Damay J, Boboescu IZ, Duret X, Lalonde O, Lavoie JM. A novel hybrid first and second generation hemicellulosic bioethanol production process through steam treatment of dried sorghum biomass. BIORESOURCE TECHNOLOGY 2018; 263:103-111. [PMID: 29734064 DOI: 10.1016/j.biortech.2018.04.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Sweet sorghum was subjected to an impregnation step, which recovered most of the 1st generation sugars, prior to a steam-treatment extraction of the 2nd generation sugars, at three different severity factors (SF). A medium severity (3.56 SF) treatment proved to be an optimal compromise between the amount of sugars extracted and the fermentation inhibitors generated following the subsequent depolymerization approaches applied on the broth. Next, a series of detoxification approaches (ozonation, overliming and a combination of both) were investigated following a concentration and depolymerization step. Results show that higher steam-treatment severity required more intense detoxification steps. However, when combining the 1st and 2nd generation streams at a 2:1 ratio, the inhibitors did not affect the fermentation process and ethanol yields above 90% of the theoretical maximum were achieved.
Collapse
Affiliation(s)
- Jérémie Damay
- Industrial Research Chair on Cellulosic Ethanol and Biocommodities (CRIEC-B), Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, Québec, Canada
| | - Iulian-Zoltan Boboescu
- Industrial Research Chair on Cellulosic Ethanol and Biocommodities (CRIEC-B), Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, Québec, Canada
| | - Xavier Duret
- Industrial Research Chair on Cellulosic Ethanol and Biocommodities (CRIEC-B), Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, Québec, Canada
| | - Olivier Lalonde
- Agri-recherche, 1008 5(ème) rang, La Présentation, Québec, Canada
| | - Jean-Michel Lavoie
- Industrial Research Chair on Cellulosic Ethanol and Biocommodities (CRIEC-B), Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, Québec, Canada.
| |
Collapse
|
8
|
Boboescu IZ, Gélinas M, Beigbeder JB, Lavoie JM. A two-step optimization strategy for 2nd generation ethanol production using softwood hemicellulosic hydrolysate as fermentation substrate. BIORESOURCE TECHNOLOGY 2017; 244:708-716. [PMID: 28822282 DOI: 10.1016/j.biortech.2017.07.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
Ethanol production using waste biomass represents a very attractive approach. However, there are considerable challenges preventing a wide distribution of these novel technologies. Thus, a fractional-factorial screening of process variables and Saccharomyces cerevisiae yeast inoculum conditions was performed using a synthetic fermentation media. Subsequently, a response-surface methodology was developed for maximizing ethanol yields using a hemicellulosic solution generated through the chemical hydrolysis of steam treatment broth obtained from residual softwood biomass. In addition, nutrient supplementation using starch-based ethanol production by-products was investigated. An ethanol yield of 74.27% of the theoretical maximum was observed for an initial concentration of 65.17g/L total monomeric sugars. The two-step experimental strategy used in this work represents the first successful attempt to developed and use a model to make predictions regarding the optimal ethanol production using both softwood feedstock residues as well as 1st generation ethanol production by-products.
Collapse
Affiliation(s)
- Iulian-Zoltan Boboescu
- Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Malorie Gélinas
- Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Jean-Baptiste Beigbeder
- Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Jean-Michel Lavoie
- Department of Chemical Engineering and Biotechnology Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
9
|
Van Acker R, Déjardin A, Desmet S, Hoengenaert L, Vanholme R, Morreel K, Laurans F, Kim H, Santoro N, Foster C, Goeminne G, Légée F, Lapierre C, Pilate G, Ralph J, Boerjan W. Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1. PLANT PHYSIOLOGY 2017; 175:1018-1039. [PMID: 28878036 PMCID: PMC5664467 DOI: 10.1104/pp.17.00834] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/31/2017] [Indexed: 05/02/2023]
Abstract
In the search for renewable energy sources, genetic engineering is a promising strategy to improve plant cell wall composition for biofuel and bioproducts generation. Lignin is a major factor determining saccharification efficiency and, therefore, is a prime target to engineer. Here, lignin content and composition were modified in poplar (Populus tremula × Populus alba) by specifically down-regulating CINNAMYL ALCOHOL DEHYDROGENASE1 (CAD1) by a hairpin-RNA-mediated silencing approach, which resulted in only 5% residual CAD1 transcript abundance. These transgenic lines showed no biomass penalty despite a 10% reduction in Klason lignin content and severe shifts in lignin composition. Nuclear magnetic resonance spectroscopy and thioacidolysis revealed a strong increase (up to 20-fold) in sinapaldehyde incorporation into lignin, whereas coniferaldehyde was not increased markedly. Accordingly, ultra-high-performance liquid chromatography-mass spectrometry-based phenolic profiling revealed a more than 24,000-fold accumulation of a newly identified compound made from 8-8 coupling of two sinapaldehyde radicals. However, no additional cinnamaldehyde coupling products could be detected in the CAD1-deficient poplars. Instead, the transgenic lines accumulated a range of hydroxycinnamate-derived metabolites, of which the most prominent accumulation (over 8,500-fold) was observed for a compound that was identified by purification and nuclear magnetic resonance as syringyl lactic acid hexoside. Our data suggest that, upon down-regulation of CAD1, coniferaldehyde is converted into ferulic acid and derivatives, whereas sinapaldehyde is either oxidatively coupled into S'(8-8)S' and lignin or converted to sinapic acid and derivatives. The most prominent sink of the increased flux to hydroxycinnamates is syringyl lactic acid hexoside. Furthermore, low-extent saccharification assays, under different pretreatment conditions, showed strongly increased glucose (up to +81%) and xylose (up to +153%) release, suggesting that down-regulating CAD1 is a promising strategy for improving lignocellulosic biomass for the sugar platform industry.
Collapse
Affiliation(s)
- Rebecca Van Acker
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | - Sandrien Desmet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lennart Hoengenaert
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kris Morreel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | | | - Hoon Kim
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726-4084
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53726-4084
| | - Nicholas Santoro
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726-4084
| | - Cliff Foster
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726-4084
| | - Geert Goeminne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Frédéric Légée
- INRA/AgroParisTech, UMR1318, Saclay Plant Science, Jean-Pierre Bourgin Institute, Versailles, France
| | - Catherine Lapierre
- INRA/AgroParisTech, UMR1318, Saclay Plant Science, Jean-Pierre Bourgin Institute, Versailles, France
| | | | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726-4084
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
10
|
Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Höinghaus K. Advanced Biofuels and Beyond: Chemistry Solutions for Propulsion and Production. Angew Chem Int Ed Engl 2017; 56:5412-5452. [DOI: 10.1002/anie.201607257] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/18/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Walter Leitner
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 1 52074 Aachen Germany
| | - Jürgen Klankermayer
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 1 52074 Aachen Germany
| | - Stefan Pischinger
- Lehrstuhl für Verbrennungskraftmaschinen und Institut für Thermodynamik; RWTH Aachen University; Forckenbeckstrasse 4 52074 Aachen Germany
| | - Heinz Pitsch
- Institut für Technische Verbrennung; RWTH Aachen University; Templergraben 64 52056 Aachen Germany
| | | |
Collapse
|
11
|
Leitner W, Klankermayer J, Pischinger S, Pitsch H, Kohse-Höinghaus K. Synthese, motorische Verbrennung, Emissionen: Chemische Aspekte des Kraftstoffdesigns. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201607257] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Walter Leitner
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 1 52074 Aachen Deutschland
| | - Jürgen Klankermayer
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Worringerweg 1 52074 Aachen Deutschland
| | - Stefan Pischinger
- Lehrstuhl für Verbrennungskraftmaschinen und Institut für Thermodynamik; RWTH Aachen University; Forckenbeckstraße 4, 5 2074 Aachen Deutschland
| | - Heinz Pitsch
- Institut für Technische Verbrennung; RWTH Aachen University; Templergraben 64 52056 Aachen Deutschland
| | | |
Collapse
|
12
|
Review of Alkali-Based Pretreatment To Enhance Enzymatic Saccharification for Lignocellulosic Biomass Conversion. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01907] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Guo M, Li C, Facciotto G, Bergante S, Bhatia R, Comolli R, Ferré C, Murphy R. Bioethanol from poplar clone Imola: an environmentally viable alternative to fossil fuel? BIOTECHNOLOGY FOR BIOFUELS 2015; 8:134. [PMID: 26339291 PMCID: PMC4558961 DOI: 10.1186/s13068-015-0318-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Environmental issues, e.g. climate change, fossil resource depletion have triggered ambitious national/regional policies to develop biofuel and bioenergy roles within the overall energy portfolio to achieve decarbonising the global economy and increase energy security. With the 10 % binding target for the transport sector, the Renewable Energy Directive confirms the EU's commitment to renewable transport fuels especially advanced biofuels. Imola is an elite poplar clone crossed from Populus deltoides Bartr. and Populus nigra L. by Research Units for Intensive Wood Production, Agriculture Research Council in Italy. This study examines its suitability for plantation cultivation under short or very short rotation coppice regimes as a potential lignocellulosic feedstock for the production of ethanol as a transport biofuel. A life cycle assessment (LCA) approach was used to model the cradle-to-gate environmental profile of Imola-derived biofuel benchmarked against conventional fossil gasoline. Specific attention was given to analysing the agroecosystem fluxes of carbon and nitrogen occurring in the cultivation of the Imola biomass in the biofuel life cycle using a process-oriented biogeochemistry model (DeNitrification-DeComposition) specifically modified for application to 2G perennial bioenergy crops and carbon and nitrogen cycling. RESULTS Our results demonstrate that carbon and nitrogen cycling in perennial crop-soil ecosystems such as this example can be expected to have significant effects on the overall environmental profiles of 2G biofuels. In particular, soil carbon accumulation in perennial biomass plantations is likely to be a significant component in the overall greenhouse gas balance of future biofuel and other biorefinery products and warrants ongoing research and data collection for LCA models. We conclude that bioethanol produced from Imola represents a promising alternative transport fuel offering some savings ranging from 35 to 100 % over petrol in global warming potential, ozone depletion and photochemical oxidation impact categories. CONCLUSIONS Via comparative analyses for Imola-derived bioethanol across potential supply chains, we highlight priority issues for potential improvement in 2G biofuel profiling. Advanced clones of poplar such as Imola for 2G biofuel production in Italy as modelled here show potential to deliver an environmentally sustainable lignocellulosic biorefinery industry and accelerate advanced biofuel penetration in the transport sector.
Collapse
Affiliation(s)
- Miao Guo
- />Department of Chemical Engineering, Imperial College London, London, SW7 2AZ UK
- />Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - Changsheng Li
- />Institute for the Study of Earth, Oceans, and Space, Morse Hall, University of New Hampshire, Durham, NH 03824 USA
| | - Gianni Facciotto
- />Research Units for Intensive Wood Production (PLF), Agriculture Research Council (CRA), Casale Monferrato, Italy
| | - Sara Bergante
- />Research Units for Intensive Wood Production (PLF), Agriculture Research Council (CRA), Casale Monferrato, Italy
| | - Rakesh Bhatia
- />Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3EB UK
| | - Roberto Comolli
- />Department of Environmental and Land Sciences, Milano Bicocca University, Milan, Italy
| | - Chiara Ferré
- />Department of Environmental and Land Sciences, Milano Bicocca University, Milan, Italy
| | - Richard Murphy
- />Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
- />Centre for Environmental Strategy, University of Surrey, Guildford, Surrey, GU2 7XH UK
| |
Collapse
|
14
|
Porth I, El-Kassaby YA. Using Populus as a lignocellulosic feedstock for bioethanol. Biotechnol J 2015; 10:510-24. [PMID: 25676392 DOI: 10.1002/biot.201400194] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/11/2014] [Accepted: 12/30/2014] [Indexed: 11/10/2022]
Abstract
Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome.
Collapse
Affiliation(s)
- Ilga Porth
- Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|