1
|
Khanna D, Kramer F, Höfler J, Ghadessi M, Sandner P, Allanore Y, Denton CP, Kuwana M, Matucci-Cerinic M, Pope JE, Atsumi T, Bečvář R, Czirják L, De Langhe E, Hachulla E, Ishii T, Ishikawa O, Johnson SR, Riccieri V, Schiopu E, Silver RM, Smith V, Stagnaro C, Steen V, Stevens W, Szücs G, Truchetet ME, Wosnitza M, Distler O. Biomarker analysis from the phase 2b randomized placebo-controlled trial of riociguat in early diffuse cutaneous systemic sclerosis. Rheumatology (Oxford) 2024; 63:3124-3134. [PMID: 38460548 PMCID: PMC11534119 DOI: 10.1093/rheumatology/keae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/11/2024] [Accepted: 02/07/2024] [Indexed: 03/11/2024] Open
Abstract
OBJECTIVE To examine disease and target engagement biomarkers in the RISE-SSc trial of riociguat in early diffuse cutaneous systemic sclerosis and their potential to predict the response to treatment. METHODS Patients were randomized to riociguat (n = 60) or placebo (n = 61) for 52 weeks. Skin biopsies and plasma/serum samples were obtained at baseline and week 14. Plasma cyclic guanosine monophosphate (cGMP) was assessed using radio-immunoassay. α-Smooth muscle actin (αSMA) and skin thickness were determined by immunohistochemistry, mRNA markers of fibrosis by qRT-PCR in skin biopsies, and serum CXC motif chemokine ligand 4 (CXCL-4) and soluble platelet endothelial cell adhesion molecule-1 (sPECAM-1) by enzyme-linked immunosorbent assay. RESULTS By week 14, cGMP increased by 94 (78)% with riociguat and 10 (39)% with placebo (P < 0.001, riociguat vs placebo). Serum sPECAM-1 and CXCL-4 decreased with riociguat vs placebo (P = 0.004 and P = 0.008, respectively). There were no differences in skin collagen markers between the two groups. Higher baseline serum sPECAM-1 or the detection of αSMA-positive cells in baseline skin biopsies was associated with a larger reduction of modified Rodnan skin score from baseline at week 52 with riociguat vs placebo (interaction P-values 0.004 and 0.02, respectively). CONCLUSION Plasma cGMP increased with riociguat, suggesting engagement with the nitric oxide-soluble guanylate cyclase-cGMP pathway. Riociguat was associated with a significant reduction in sPECAM-1 (an angiogenic biomarker) vs placebo. Elevated sPECAM-1 and the presence of αSMA-positive skin cells may help to identify patients who could benefit from riociguat in terms of skin fibrosis. TRIAL REGISTRATION Clinicaltrials.gov, NCT02283762.
Collapse
Affiliation(s)
- Dinesh Khanna
- Division of Rheumatology, University of Michigan, Ann Arbor, MI, USA
| | - Frank Kramer
- Research and Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | | | - Mercedeh Ghadessi
- Research and Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Peter Sandner
- Research and Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Yannick Allanore
- Rheumatology A Department, Cochin Hospital, APAP, Paris Descartes University, Paris, France
| | - Christopher P Denton
- Division of Medicine, Centre for Rheumatology, University College London, London, UK
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, Tokyo, Japan
| | - Marco Matucci-Cerinic
- Division of Rheumatology, Department of Experimental and Clinical Medicine, University of Firenze, Florence, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milan, Italy
| | - Janet E Pope
- Division of Rheumatology, Schulich School of Medicine, University of Western Ontario, London, ON, Canada
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Radim Bečvář
- Institute of Rheumatology, Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - László Czirják
- Department of Rheumatology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Ellen De Langhe
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, Division of Rheumatology, Department of Development and Regeneration, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - Eric Hachulla
- Department of Internal Medicine and Clinical Immunology, Referral Centre for Centre for Rare Systemic Autoimmune Diseases North and North-West of France, CHU Lille, University of Lille, Inserm, U1286 - INFINITE—Institute for Translational Research in Inflammation, Lille, France
| | - Tomonori Ishii
- Clinical Research, Innovation and Education Center, Tohoku University, Sendai, Japan
| | - Osamu Ishikawa
- Department of Dermatology, Gunma University Postgraduate School of Medicine, Maebashi, Japan
| | - Sindhu R Johnson
- Division of Rheumatology, Department of Medicine, Toronto Western Hospital, University Health Network, Mount Sinai Hospital, University of Toronto, Toronto Scleroderma Research Program, Toronto, ON, Canada
| | - Valeria Riccieri
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Elena Schiopu
- Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Richard M Silver
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Vanessa Smith
- Department of Internal Medicine, Ghent University, Belgium and Department of Rheumatology, Ghent University Hospital, Belgium, and Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center, Ghent, Belgium
| | - Chiara Stagnaro
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Virginia Steen
- Division of Rheumatology, Department of Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Wendy Stevens
- Department of Rheumatology, St Vincent's Hospital Melbourne, Melbourne, VIC, Australia
| | - Gabriella Szücs
- Department of Rheumatology, University of Debrecen, Debrecen, Hungary
| | | | - Melanie Wosnitza
- Research and Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Somanader DVN, Zhao P, Widdop RE, Samuel CS. The involvement of the Wnt/β-catenin signaling cascade in fibrosis progression and its therapeutic targeting by relaxin. Biochem Pharmacol 2024; 223:116130. [PMID: 38490518 DOI: 10.1016/j.bcp.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Organ scarring, referred to as fibrosis, results from a failed wound-healing response to chronic tissue injury and is characterised by the aberrant accumulation of various extracellular matrix (ECM) components. Once established, fibrosis is recognised as a hallmark of stiffened and dysfunctional tissues, hence, various fibrosis-related diseases collectively contribute to high morbidity and mortality in developed countries. Despite this, these diseases are ineffectively treated by currently-available medications. The pro-fibrotic cytokine, transforming growth factor (TGF)-β1, has emerged as the master regulator of fibrosis progression, owing to its ability to promote various factors and processes that facilitate rapid ECM synthesis and deposition, whilst negating ECM degradation. TGF-β1 signal transduction is tightly controlled by canonical (Smad-dependent) and non-canonical (MAP kinase- and Rho-associated protein kinase-dependent) intracellular protein activity, whereas its pro-fibrotic actions can also be facilitated by the Wnt/β-catenin pathway. This review outlines the pathological sequence of events and contributing roles of TGF-β1 in the progression of fibrosis, and how the Wnt/β-catenin pathway contributes to tissue repair in acute disease settings, but to fibrosis and related tissue dysfunction in synergy with TGF-β1 in chronic diseases. It also outlines the anti-fibrotic and related signal transduction mechanisms of the hormone, relaxin, that are mediated via its negative modulation of TGF-β1 and Wnt/β-catenin signaling, but through the promotion of Wnt/β-catenin activity in acute disease settings. Collectively, this highlights that the crosstalk between TGF-β1 signal transduction and the Wnt/β-catenin cascade may provide a therapeutic target that can be exploited to broadly treat and reverse established fibrosis.
Collapse
Affiliation(s)
- Deidree V N Somanader
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Peishen Zhao
- Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
3
|
Spasovski V, Andjelkovic M, Parezanovic M, Komazec J, Ugrin M, Klaassen K, Stojiljkovic M. The Role of Autophagy and Apoptosis in Affected Skin and Lungs in Patients with Systemic Sclerosis. Int J Mol Sci 2023; 24:11212. [PMID: 37446389 DOI: 10.3390/ijms241311212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune inflammatory disorder with multiple organ involvement. Skin changes present the hallmark of SSc and coincide with poor prognosis. Interstitial lung diseases (ILD) are the most widely reported complications in SSc patients and the primary cause of death. It has been proposed that the processes of autophagy and apoptosis could play a significant role in the pathogenesis and clinical course of different autoimmune diseases, and accordingly in SSc. In this manuscript, we review the current knowledge of autophagy and apoptosis processes in the skin and lungs of patients with SSc. Profiling of markers involved in these processes in skin cells can be useful to recognize the stage of fibrosis and can be used in the clinical stratification of patients. Furthermore, the knowledge of the molecular mechanisms underlying these processes enables the repurposing of already known drugs and the development of new biological therapeutics that aim to reverse fibrosis by promoting apoptosis and regulate autophagy in personalized treatment approach. In SSc-ILD patients, the molecular signature of the lung tissues of each patient could be a distinctive criterion in order to establish the correct lung pattern, which directly impacts the course and prognosis of the disease. In this case, resolving the role of tissue-specific markers, which could be detected in the circulation using sensitive molecular methods, would be an important step toward development of non-invasive diagnostic procedures that enable early and precise diagnosis and preventing the high mortality of this rare disease.
Collapse
Affiliation(s)
- Vesna Spasovski
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marina Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Marina Parezanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Jovana Komazec
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Milena Ugrin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
| |
Collapse
|
4
|
Wong HH, Seet SH, Bascom CC, Isfort RJ, Bard F. Tonic repression of Collagen I by the Bradykinin receptor 2 in skin fibroblasts. Matrix Biol 2023; 118:110-128. [PMID: 36924903 DOI: 10.1016/j.matbio.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Imbalance of collagen I expression results in severe pathologies. Apart from activation by the TGFβ-receptor/Smad pathway, control of collagen I expression remains poorly understood. Here, we used human dermal fibroblasts expressing a mCherry fluorescent protein driven by endogenous COL1A1 promoter to functionally screen the kinome and phosphatome. We identify 8 negative regulators, revealing that collagen is under tonic repression. The cell surface receptor BDKRB2 represses collagen I and other pro-fibrotic genes. Interestingly, it also promotes other basal membrane ECM genes. This function is independent of the natural ligand, bradykinin, and of SMAD2/3 factors, instead requiring constant ERK1/2 repression. TGFβ stimulation induces rapid BDKRB2 transcriptional downregulation. Human fibrotic fibroblasts have reduced BDKRB2 levels and enhancing its expression in keloid fibroblasts represses COL1A1. We propose that tonic signalling by BDKRB2 prevents collagen overproduction in skin fibroblasts.
Collapse
Affiliation(s)
- Hui Hui Wong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Sze Hwee Seet
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Charles C Bascom
- The Procter & Gamble Company, 8700 Mason-Montgomery Road, Cincinnati, OH 45040, USA
| | - Robert J Isfort
- The Procter & Gamble Company, 8700 Mason-Montgomery Road, Cincinnati, OH 45040, USA
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673; Centre de Recherche en Cancérologie de Marseille, CRCM, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, 13009, Marseille, France..
| |
Collapse
|
5
|
Daghigh F, Karimi P, Alihemmati A, Majidi Zolbin M, Ahmadiasl N. Swimming training modulates lung injury induced by ovariectomy in diabetic rats: involvement of inflammatory and fibrotic biomarkers. Arch Physiol Biochem 2022; 128:514-520. [PMID: 31821061 DOI: 10.1080/13813455.2019.1699934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
CONTEXT Previous studies have noted that the incidence of inflammatory and fibrotic diseases is higher in diabetic menopausal women. OBJECTIVE In the present study, we evaluated effects of swimming training on inflammatory and fibrotic biomarkers in the lung of ovariectomized diabetic rats. MATERIALS AND METHODS Forty female rats were assigned into four groups: sham; rats underwent surgery without ovariectomies, OVX: rats that underwent ovariectomies, OVX.Dia: ovariectomized rats with high-fat diet, OVX.Dia. Exe: ovariectomized diabetic rats with 8 weeks of swimming training. At the end of experiment, protein expressions were assessed with western blot. Lung sections were subjected to immunohistochemical and haematoxylin eosin staining. RESULTS There was a significant difference in the protein expressions between exercise and ovariectomized diabetic groups (p < .05). CONCLUSION The present study showed strong potential of swimming training on oestrogen deficient diabetic lung. These data encourage further investigation into the inclusive effects of exercise in menopausal diabetic women.
Collapse
Affiliation(s)
- Faeze Daghigh
- Department of Physiology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Tuberculosis and Lung diseases research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Department of Histology & Embryology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Majidi Zolbin
- Department of Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naser Ahmadiasl
- Tuberculosis and Lung diseases research center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Myofibroblasts: Function, Formation, and Scope of Molecular Therapies for Skin Fibrosis. Biomolecules 2021; 11:biom11081095. [PMID: 34439762 PMCID: PMC8391320 DOI: 10.3390/biom11081095] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Myofibroblasts are contractile, α-smooth muscle actin-positive cells with multiple roles in pathophysiological processes. Myofibroblasts mediate wound contractions, but their persistent presence in tissues is central to driving fibrosis, making them attractive cell targets for the development of therapeutic treatments. However, due to shared cellular markers with several other phenotypes, the specific targeting of myofibroblasts has long presented a scientific and clinical challenge. In recent years, myofibroblasts have drawn much attention among scientific research communities from multiple disciplines and specialisations. As further research uncovers the characterisations of myofibroblast formation, function, and regulation, the realisation of novel interventional routes for myofibroblasts within pathologies has emerged. The research community is approaching the means to finally target these cells, to prevent fibrosis, accelerate scarless wound healing, and attenuate associated disease-processes in clinical settings. This comprehensive review article describes the myofibroblast cell phenotype, their origins, and their diverse physiological and pathological functionality. Special attention has been given to mechanisms and molecular pathways governing myofibroblast differentiation, and updates in molecular interventions.
Collapse
|
7
|
Lear TB, Lockwood KC, Larsen M, Tuncer F, Kennerdell JR, Morse C, Valenzi E, Tabib T, Jurczak MJ, Kass DJ, Evankovich JW, Finkel T, Lafyatis R, Liu Y, Chen BB. Kelch-like protein 42 is a profibrotic ubiquitin E3 ligase involved in systemic sclerosis. J Biol Chem 2020; 295:4171-4180. [PMID: 32071084 PMCID: PMC7105301 DOI: 10.1074/jbc.ac119.012066] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/07/2020] [Indexed: 01/08/2023] Open
Abstract
Systemic scleroderma (SSc) is an autoimmune disease that affects over 2.5 million people globally. SSc results in dysfunctional connective tissues with excessive profibrotic signaling, affecting skin, cardiovascular, and particularly lung tissue. Over three-quarters of individuals with SSc develop pulmonary fibrosis within 5 years, the main cause of SSc mortality. No approved medicines to manage lung SSc currently exist. Recent research suggests that profibrotic signaling by transforming growth factor β (TGF-β) is directly tied to SSc. Previous studies have also shown that ubiquitin E3 ligases potently control TGF-β signaling through targeted degradation of key regulatory proteins; however, the roles of these ligases in SSc-TGF-β signaling remain unclear. Here we utilized primary SSc patient lung cells for high-throughput screening of TGF-β signaling via high-content imaging of nuclear translocation of the profibrotic transcription factor SMAD family member 2/3 (SMAD2/3). We screened an RNAi library targeting ubiquitin E3 ligases and observed that knockdown of the E3 ligase Kelch-like protein 42 (KLHL42) impairs TGF-β-dependent profibrotic signaling. KLHL42 knockdown reduced fibrotic tissue production and decreased TGF-β-mediated SMAD activation. Using unbiased ubiquitin proteomics, we identified phosphatase 2 regulatory subunit B'ϵ (PPP2R5ϵ) as a KLHL42 substrate. Mechanistic experiments validated ubiquitin-mediated control of PPP2R5ϵ stability through KLHL42. PPP2R5ϵ knockdown exacerbated TGF-β-mediated profibrotic signaling, indicating a role of PPP2R5ϵ in SSc. Our findings indicate that the KLHL42-PPP2R5ϵ axis controls profibrotic signaling in SSc lung fibroblasts. We propose that future studies could investigate whether chemical inhibition of KLHL42 may ameliorate profibrotic signaling in SSc.
Collapse
Affiliation(s)
- Travis B Lear
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Karina C Lockwood
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Mads Larsen
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Ferhan Tuncer
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Jason R Kennerdell
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Christina Morse
- Division of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Eleanor Valenzi
- Division of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - John W Evankovich
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Toren Finkel
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Division of Cardiology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Yuan Liu
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| | - Bill B Chen
- Aging Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; Vascular Medicine Institute, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213.
| |
Collapse
|
8
|
Čolić J, Matucci Cerinic M, Guiducci S, Damjanov N. Microparticles in systemic sclerosis, targets or tools to control fibrosis: This is the question! JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:6-20. [PMID: 35382401 PMCID: PMC8922594 DOI: 10.1177/2397198319857356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/20/2019] [Indexed: 07/25/2023]
Abstract
Systemic sclerosis is the main systemic fibrotic disease with unknown etiology characterized by peripheral microvascular injury, activation of immune system, and wide-spread progressive fibrosis. Microparticles can be derived from any cell type during normal cellular differentiation, senescence, and apoptosis, and also upon cellular activation. Carrying along a broad range of surface cytoplasmic and nuclear molecules of originating cells, microparticles are closely implicated in inflammation, thrombosis, angiogenesis, and immunopathogenesis. Recently, microparticles have been proposed as biomarkers of endothelial injury, which is the primary event in the genesis of tissue fibrosis. Microparticles may have a role in fostering endothelial to mesenchymal transition, thus giving a significant contribution to the development of myofibroblasts, the most important final effectors responsible for tissue fibrosis and fibroproliferative vasculopathy. Thanks to potent profibrotic mediators, such as transforming growth factor beta, platelet-derived growth factor, high mobility group box 1 protein, nicotinamide adenine dinucleotide phosphate oxidase 4, and antifibrotic agents, such as matrix metalloproteinases, microparticles may play an opposite role in fibrosis.
Collapse
Affiliation(s)
- Jelena Čolić
- Department of Rheumatology, Institute of
Rheumatology, Belgrade, Serbia
| | - Marco Matucci Cerinic
- Division of Rheumatology, Department of
Experimental and Clinical Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC)
and Denothe Centre, University of Florence, Florence, Italy
| | - Serena Guiducci
- Division of Rheumatology, Department of
Experimental and Clinical Medicine, Azienda Ospedaliero-Universitaria Careggi (AOUC)
and Denothe Centre, University of Florence, Florence, Italy
| | - Nemanja Damjanov
- Department of Rheumatology, Institute of
Rheumatology, Belgrade, Serbia
- School of Medicine, University of
Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Matei AE, Beyer C, Györfi AH, Soare A, Chen CW, Dees C, Bergmann C, Ramming A, Friebe A, Hofmann F, Distler O, Schett G, Distler JHW. Protein kinases G are essential downstream mediators of the antifibrotic effects of sGC stimulators. Ann Rheum Dis 2018; 77:459. [PMID: 29311148 DOI: 10.1136/annrheumdis-2017-212489] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Stimulators of soluble guanylate cyclase (sGC) are currently investigated in clinical trials for the treatment of fibrosis in systemic sclerosis (SSc). In this study, we aim to investigate the role of protein kinases G (PKG) as downstream mediators of sGC-cyclic guanosine monophosphate (cGMP) in SSc. METHODS Mice with combined knockout of PKG1 and 2 were challenged with bleomycin and treated with the sGC stimulator BAY 41-2272. Fibroblasts were treated with BAY 41-2272 and with the PKG inhibitor KT 5823. RESULTS PKG1 and 2 are upregulated in SSc in a transforming growth factor-β1 (TGFβ1)-dependent manner, as an attempt to compensate for the decreased signalling through the sGC-cGMP-PKG pathway. Inhibition or knockout of PKG1 and 2 abrogates the inhibitory effects of sGC stimulation on fibroblast activation in a SMAD-independent, but extracellular signal-regulated kinase (ERK)-dependent manner. In vivo, sGC stimulation fails to prevent bleomycin-induced fibrosis in PKG1 and 2 knockout mice. CONCLUSIONS Our data provide evidence that PKGs are essential mediators of the antifibrotic effects of sGC stimulators through interfering with non-canonical TGFβ signalling. TGFβ1 promotes its profibrotic effects through inhibition of sGC-cGMP-PKG signalling, sGC stimulation exerts its antifibrotic effects by inhibition of TGFβ1-induced ERK phosphorylation.
Collapse
Affiliation(s)
- Alexandru-Emil Matei
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Beyer
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andrea-Hermina Györfi
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alina Soare
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Friebe
- Institute for Physiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Franz Hofmann
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine III - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
10
|
Amini-Nik S, Yousuf Y, Jeschke MG. Scar management in burn injuries using drug delivery and molecular signaling: Current treatments and future directions. Adv Drug Deliv Rev 2018; 123:135-154. [PMID: 28757325 PMCID: PMC5742037 DOI: 10.1016/j.addr.2017.07.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
In recent decades, there have been tremendous improvements in burn care that have allowed patients to survive severe burn injuries that were once fatal. However, a major limitation of burn care currently is the development of hypertrophic scars in approximately 70% of patients. This significantly decreases the quality of life for patients due to the physical and psychosocial symptoms associated with scarring. Current approaches to manage scarring include surgical techniques and non-surgical methods such as laser therapy, steroid injections, and compression therapy. These treatments are limited in their effectiveness and regularly fail to manage symptoms. As a result, the development of novel treatments that aim to improve outcomes and quality of life is imperative. Drug delivery that targets the molecular cascades of wound healing to attenuate or prevent hypertrophic scarring is a promising approach that has therapeutic potential. In this review, we discuss current treatments for scar management after burn injury, and how drug delivery targeting molecular signaling can lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Saeid Amini-Nik
- Sunnybrook Research Institute, Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada.
| | - Yusef Yousuf
- Institute of Medical Science, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada; Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada; Ross-Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada.
| |
Collapse
|
11
|
Tao M, Liu L, Shen M, Zhi Q, Gong FR, Zhou BP, Wu Y, Liu H, Chen K, Shen B, Wu MY, Shou LM, Li W. Inflammatory stimuli promote growth and invasion of pancreatic cancer cells through NF-κB pathway dependent repression of PP2Ac. Cell Cycle 2016; 15:381-93. [PMID: 26761431 DOI: 10.1080/15384101.2015.1127468] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Previous studies have indicated that inflammatory stimulation represses protein phosphatase 2A (PP2A), a well-known tumor suppressor. However, whether PP2A repression participates in pancreatic cancer progression has not been verified. We used lipopolysaccharide (LPS) and macrophage-conditioned medium (MCM) to establish in vitro inflammation models, and investigated whether inflammatory stimuli affect pancreatic cancer cell growth and invasion PP2A catalytic subunit (PP2Ac)-dependently. Via nude mouse models of orthotopic tumor xenografts and dibutyltin dichloride (DBTC)-induced chronic pancreatitis, we evaluated the effect of an inflammatory microenvironment on PP2Ac expression in vivo. We cloned the PP2Acα and PP2Acβ isoform promoters to investigate the PP2Ac transcriptional regulation mechanisms. MCM accelerated pancreatic cancer cell growth; MCM and LPS promoted cell invasion. DBTC promoted xenograft growth and metastasis, induced tumor-associated macrophage infiltration, promoted angiogenesis, activated the nuclear factor-κB (NF-κB) pathway, and repressed PP2Ac expression. In vitro, LPS and MCM downregulated PP2Ac mRNA and protein. PP2Acα overexpression attenuated JNK, ERK, PKC, and IKK phosphorylation, and impaired LPS/MCM-stimulated cell invasion and MCM-promoted cell growth. LPS and MCM activated the NF-κB pathway in vitro. LPS and MCM induced IKK and IκB phosphorylation, leading to p65/RelA nuclear translocation and transcriptional activation. Overexpression of the dominant negative forms of IKKα attenuated LPS and MCM downregulation of PP2Ac, suggesting inflammatory stimuli repress PP2Ac expression NF-κB pathway-dependently. Luciferase reporter gene assay verified that LPS and MCM downregulated PP2Ac transcription through an NF-κB-dependent pathway. Our study presents a new mechanism in inflammation-driven cancer progression through NF-κB pathway-dependent PP2Ac repression.
Collapse
Affiliation(s)
- Min Tao
- a Department of Oncology , the First Affiliated Hospital of Soochow University , Suzhou , China.,b PREMED Key Laboratory for Precision Medicine, Soochow University , Suzhou , China.,c Jiangsu Institute of Clinical Immunology , Suzhou , China.,d Institute of Medical Biotechnology, Soochow University , Suzhou , China
| | - Lu Liu
- a Department of Oncology , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Meng Shen
- e Department of General Surgery , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Qiaoming Zhi
- e Department of General Surgery , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Fei-Ran Gong
- f Department of Hematology , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Binhua P Zhou
- g Markey Cancer Center, University of Kentucky College of Medicine , Lexington , KY , USA.,h Departments of Molecular and Cellular Biochemistry , University of Kentucky College of Medicine , Lexington , KY , USA
| | - Yadi Wu
- g Markey Cancer Center, University of Kentucky College of Medicine , Lexington , KY , USA.,i Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine , Lexington , KY , USA
| | - Haiyan Liu
- j Laboratory of Cellular and Molecular Tumor Immunology, Institute of Biology and Medical Sciences, Soochow University , Suzhou , Jiangsu Province , China
| | - Kai Chen
- a Department of Oncology , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Bairong Shen
- k Center for Systems Biology, Soochow University , Suzhou , China
| | - Meng-Yao Wu
- a Department of Oncology , the First Affiliated Hospital of Soochow University , Suzhou , China
| | - Liu-Mei Shou
- a Department of Oncology , the First Affiliated Hospital of Soochow University , Suzhou , China.,l Department of Oncology , the First Affiliated Hospital of Zhejiang Chinese Medicine University , Hangzhou , China
| | - Wei Li
- a Department of Oncology , the First Affiliated Hospital of Soochow University , Suzhou , China.,b PREMED Key Laboratory for Precision Medicine, Soochow University , Suzhou , China.,c Jiangsu Institute of Clinical Immunology , Suzhou , China.,k Center for Systems Biology, Soochow University , Suzhou , China
| |
Collapse
|
12
|
Deng Y, Guo Y, Liu P, Zeng R, Ning Y, Pei G, Li Y, Chen M, Guo S, Li X, Han M, Xu G. Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: a peptide-based drug therapy. Sci Rep 2016; 6:19821. [PMID: 26805394 PMCID: PMC4726189 DOI: 10.1038/srep19821] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/18/2015] [Indexed: 02/04/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) contributes to the emergence of fibroblasts and plays a significant role in renal interstitial fibrosis. Protein phosphatase 2A (PP2A) is a major serine/threonine protein phosphatase in eukaryotic cells and regulates many signaling pathways. However, the significance of PP2A in EndMT is poorly understood. In present study, the role of PP2A in EndMT was evaluated. We demonstrated that PP2A activated in endothelial cells (EC) during their EndMT phenotype acquisition and in the mouse model of obstructive nephropathy (i.e., UUO). Inhibition of PP2A activity by its specific inhibitor prevented EC undergoing EndMT. Importantly, PP2A activation was dependent on tyrosine nitration at 127 in the catalytic subunit of PP2A (PP2Ac). Our renal-protective strategy was to block tyrosine127 nitration to inhibit PP2A activation by using a mimic peptide derived from PP2Ac conjugating a cell penetrating peptide (CPP: TAT), termed TAT-Y127WT. Pretreatment withTAT-Y127WT was able to prevent TGF-β1-induced EndMT. Administration of the peptide to UUO mice significantly ameliorated renal EndMT level, with preserved density of peritubular capillaries and reduction in extracellular matrix deposition. Taken together, these results suggest that inhibiting PP2Ac nitration using a mimic peptide is a potential preventive strategy for EndMT in renal fibrosis.
Collapse
Affiliation(s)
- Yuanjun Deng
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yanyan Guo
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ping Liu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Rui Zeng
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yong Ning
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Guangchang Pei
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yueqiang Li
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Meixue Chen
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shuiming Guo
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaoqing Li
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Min Han
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Gang Xu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
13
|
Luzina IG, Todd NW, Sundararajan S, Atamas SP. The cytokines of pulmonary fibrosis: Much learned, much more to learn. Cytokine 2015; 74:88-100. [DOI: 10.1016/j.cyto.2014.11.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/09/2014] [Accepted: 11/10/2014] [Indexed: 02/07/2023]
|
14
|
Li H, Nagai T, Hasui K, Matsuyama T. Depletion of folate receptor β-expressing macrophages alleviates bleomycin-induced experimental skin fibrosis. Mod Rheumatol 2014; 24:816-22. [PMID: 24498991 DOI: 10.3109/14397595.2013.879415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Folate receptor β (FRβ)-expressing macrophages have been identified as activated macrophages. Here, we investigated the infiltration of FRβ-expressing macrophages in a murine model of bleomycin (BLM)-induced skin fibrosis and assessed the antifibrotic effects of depletion of FRβ-expressing macrophages in this model using a recombinant immunotoxin to FRβ. METHODS A recombinant immunotoxin (anti-FRβ-PE38) was prepared by conjugating the Fv portion of the anti-mouse FRβ heavy chain with truncated Pseudomonas exotoxin A (VH-PE38) and the Fv portion of the anti-mouse FRβ light chain. BLM-induced skin fibrosis mice were intravenously treated with either anti-FRβ-PE38 or VH-PE38 as a control protein. Skin fibrosis was evaluated by the change of skin thickness and hydroxyproline content on Day 29. The TGFβ1 mRNA levels in the treated skin were assessed by quantitative real-time RT-PCR on Day 9. RESULTS Numbers of FRβ-expressing macrophages increased in BLM-injected skin. Anti-FRβ-PE38 treatment led to a dramatic reduction in the number of FRβ-expressing macrophages. Additionally, skin thickness and hydroxyproline content, were markedly reduced. TGFβ1 mRNA levels were also down-regulated after the treatment. TGFβ1 expression was enriched in FRβ-expressing macrophages compared with FRβ-negative macrophages. CONCLUSION These results indicated that anti-FRβ-PE38 treatment efficiently depleted FRβ-expressing macrophages and consequently alleviated BLM-induced skin fibrosis.
Collapse
Affiliation(s)
- Hua Li
- Department of Immunology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima , Japan
| | | | | | | |
Collapse
|
15
|
Zhang Q, Yu N, Lee C. Mysteries of TGF-β Paradox in Benign and Malignant Cells. Front Oncol 2014; 4:94. [PMID: 24860782 PMCID: PMC4026682 DOI: 10.3389/fonc.2014.00094] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/16/2014] [Indexed: 11/17/2022] Open
Abstract
TGF-β regulates a wide range of biological functions including embryonic development, wound healing, organogenesis, immune modulation, and cancer progression. Interestingly, TGF-β is known to inhibit cell growth in benign cells but promote progression in cancer cells; this phenomenon is known as TGF-β paradox. To date, the mechanism of this paradox still remains a scientific mystery. In this review, we present our experience, along with the literature, in an attempt to answer this mystery. First, we observed that, on TGF-β engagement, there is a differential activation of Erk between benign and cancer cells. Since activated Erk is a major mediator in tumor progression and metastasis, a differentially activated Erk represents the answer to this mystery. Second, we identified a key player, PP2A-B56α, which is differentially recruited by the activated type I TGF-β receptor (TBRI) in benign and tumor cells, resulting in differential Erk activation. Finally, TGF-β stimulation leads to suppressed TBRs in tumor cells but not in benign cells. This differentially suppressed TBRs triggers differential recruitment of PP2A-B56α and, thus, differential activation of Erk. The above three events explain the mysteries of TGF-β paradox. Understanding the mechanism of TGF-β paradox will help us to predict indolent from aggressive cancers and develop novel anti-cancer strategies.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Urology, Northwestern University School of Medicine, Chicago, IL, USA
| | - Nengwang Yu
- Department of Urology, General Hospital of Jinan Military Command, Jinan, China
| | - Chung Lee
- Department of Urology, Northwestern University School of Medicine, Chicago, IL, USA
- Department of Surgery, NorthShore University HealthSystem, Evanston Hospital, Evanston, IL, USA
- Department of Pathology and Laboratory Medicine, University of California at Irvine, Irvine, CA, USA
- Department of Urology, University of California at Irvine, Irvine, CA, USA
| |
Collapse
|
16
|
Samuel GH, Lenna S, Bujor AM, Lafyatis R, Trojanowska M. Acid sphingomyelinase deficiency contributes to resistance of scleroderma fibroblasts to Fas-mediated apoptosis. J Dermatol Sci 2012; 67:166-72. [PMID: 22771321 PMCID: PMC3423203 DOI: 10.1016/j.jdermsci.2012.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 05/02/2012] [Accepted: 06/01/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Scleroderma (SSc) is characterized by excess production and deposition of extracellular matrix (ECM) proteins. Activated fibroblasts play a key role in fibrosis in SSc and are resistant to Fas-mediated apoptosis. Acid sphingomyelinase (ASMase), a major sphingolipid enzyme, plays an important role in the Fas-mediated apoptosis. OBJECTIVE We investigated whether dysregulation of ASMase contributes to Fas-mediated apoptosis resistance in SSc fibroblasts. METHODS Fibroblasts were isolated from SSc patients and healthy controls. Western blot was performed to analyze protein levels and quantitative real time RT-PCR was used to determine mRNA expression. Cells were transiently transfected with siRNA oligos against ASMase or transduced with adenoviruses overexpressing ASMase. Apoptosis was induced using anti-Fas antibody (1 μg/mL) and analyzed using caspase-3 antibody or Cell Death Detection ELISA. RESULTS SSc fibroblasts showed increased resistance to Fas-mediated apoptosis. ASMase expression was decreased in SSc fibroblasts and Transforming Growth Factor beta (TGFβ), the major fibrogenic cytokine involved in the pathogenesis of SSc, downregulated ASMase in normal fibroblasts. Forced expression of ASMase in SSc fibroblasts restored sensitivity of these cells to Fas-mediated apoptosis while blockade of ASMase was sufficient to induce partial resistance to Fas-induced apoptosis in normal fibroblasts. In addition, ASMase blockade decreased activity of protein phosphatase 2A (PP2A) through phosphorylation on Tyr(307) and resulted in activation of extracellular regulated kinase 1/2 (Erk1/2) and protein kinase B (Akt/PKB). CONCLUSION In conclusion, this study suggests that ASMase deficiency promotes apoptosis resistance and contributes to activation of profibrotic signaling in SSc fibroblasts.
Collapse
Affiliation(s)
- Glady Hazitha Samuel
- Arthritis Center, Division of Rheumatology, Boston University Medical Campus, Boston, MA, USA
| | - Stefania Lenna
- Arthritis Center, Division of Rheumatology, Boston University Medical Campus, Boston, MA, USA
| | - Andreea M Bujor
- Arthritis Center, Division of Rheumatology, Boston University Medical Campus, Boston, MA, USA
| | - Robert Lafyatis
- Arthritis Center, Division of Rheumatology, Boston University Medical Campus, Boston, MA, USA
| | - Maria Trojanowska
- Arthritis Center, Division of Rheumatology, Boston University Medical Campus, Boston, MA, USA
| |
Collapse
|
17
|
Lee CG, Herzog EL, Ahangari F, Zhou Y, Gulati M, Lee CM, Peng X, Feghali-Bostwick C, Jimenez SA, Varga J, Elias JA. Chitinase 1 is a biomarker for and therapeutic target in scleroderma-associated interstitial lung disease that augments TGF-β1 signaling. THE JOURNAL OF IMMUNOLOGY 2012; 189:2635-44. [PMID: 22826322 DOI: 10.4049/jimmunol.1201115] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interstitial lung disease (ILD) with pulmonary fibrosis is an important manifestation in systemic sclerosis (SSc, scleroderma) where it portends a poor prognosis. However, biomarkers that predict the development and or severity of SSc-ILD have not been validated, and the pathogenetic mechanisms that engender this pulmonary response are poorly understood. In this study, we demonstrate in two different patient cohorts that the levels of chitotriosidase (Chit1) bioactivity and protein are significantly increased in the circulation and lungs of SSc patients compared with demographically matched controls. We also demonstrate that, compared with patients without lung involvement, patients with ILD show high levels of circulating Chit1 activity that correlate with disease severity. Murine modeling shows that in comparison with wild-type mice, bleomycin-induced pulmonary fibrosis was significantly reduced in Chit1⁻/⁻ mice and significantly enhanced in lungs from Chit1 overexpressing transgenic animals. In vitro studies also demonstrated that Chit1 interacts with TGF-β1 to augment fibroblast TGF-β receptors 1 and 2 expression and TGF-β-induced Smad and MAPK/ERK activation. These studies indicate that Chit1 is potential biomarker for ILD in SSc and a therapeutic target in SSc-associated lung fibrosis and demonstrate that Chit1 augments TGF-β1 effects by increasing receptor expression and canonical and noncanonical TGF-β1 signaling.
Collapse
Affiliation(s)
- Chun Geun Lee
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Nakerakanti S, Trojanowska M. The Role of TGF-β Receptors in Fibrosis. Open Rheumatol J 2012; 6:156-62. [PMID: 22802914 PMCID: PMC3396054 DOI: 10.2174/1874312901206010156] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 03/27/2012] [Accepted: 04/04/2012] [Indexed: 02/04/2023] Open
Abstract
Recent advances in defining TGF-β signaling pathways have provided a new level of understanding of the role of this pleiotropic growth factor in the development of fibrosis. Here, we review selected topics related to the profibrotic role of TGF-β . We will discuss new insights into the mechanisms of ligand activation and the contribution of Erk1/2 MAPK, PI3K/FAK, and Endoglin/Smad1 signaling pathways to the process of fibrosis. There is growing evidence of the disease-specific alterations of the downstream components of the TGF-β signaling pathway that may be explored for the future therapeutic interventions.
Collapse
Affiliation(s)
- Sashidhar Nakerakanti
- Arthritis Center, Boston University School of Medicine, 72 East Concord St, Boston, MA 02118, USA
| | | |
Collapse
|
19
|
Tsou PS, Talia NN, Pinney AJ, Kendzicky A, Piera-Velazquez S, Jimenez SA, Seibold JR, Phillips K, Koch AE. Effect of oxidative stress on protein tyrosine phosphatase 1B in scleroderma dermal fibroblasts. ACTA ACUST UNITED AC 2011; 64:1978-89. [PMID: 22161819 DOI: 10.1002/art.34336] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Platelet-derived growth factor (PDGF) and its receptor, PDGFR, promote fibrosis in systemic sclerosis (SSc; scleroderma) dermal fibroblasts, and such cells in scleroderma skin lesions produce excessive reactive oxygen species (ROS). PDGFR is phosphorylated upon PDGF stimulation, and is dephosphorylated by protein tyrosine phosphatases (PTPs), including PTP1B. This study was undertaken to determine whether the thiol-sensitive PTP1B is affected by ROS in SSc dermal fibroblasts, thereby enhancing the phosphorylation of PDGFR and synthesis of type I collagen. This study also sought to investigate the effect of a thiol antioxidant, N-acetylcysteine (NAC), in SSc. METHODS Fibroblasts were isolated from the skin of patients with diffuse SSc and normal healthy donors for cell culture experiments and immunofluorescence analyses. A phosphate release assay was used to determine the activity of PTP1B. RESULTS Levels of ROS and type I collagen were significantly higher and amounts of free thiol were significantly lower in SSc fibroblasts compared to normal fibroblasts. After stimulation with PDGF, not only were PDGFR and ERK-1/2 phosphorylated to a greater extent, but also the ability to produce PTP1B was hampered in SSc fibroblasts. The activity of PTP1B was significantly inactivated in SSc fibroblasts as a result of cysteine oxidation by the raised levels of ROS, which was confirmed by the oxidation of multiple PTPs, including PTP1B, in SSc fibroblasts. Decreased expression of PTP1B in normal fibroblasts led to increased expression of type I collagen. Treatment of the cells with NAC restored the activity of PTP1B, improved the profile of PDGFR phosphorylation, decreased the numbers of tyrosine-phosphorylated proteins and levels of type I collagen, and scavenged ROS in SSc fibroblasts. CONCLUSION This study describes a new mechanism by which ROS may promote a profibrotic phenotype in SSc fibroblasts through the oxidative inactivation of PTP1B, leading to pronounced activation of PDGFR. The study also presents a novel molecular mechanism by which NAC may act on ROS and PTP1B to provide therapeutic benefit in SSc.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
MEK/ERK inhibitors: proof-of-concept studies in lung fibrosis. J Cell Commun Signal 2011; 6:59-60. [PMID: 22131200 DOI: 10.1007/s12079-011-0156-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 01/16/2023] Open
Abstract
There is no therapy for chronic fibroproliferative diseases, in spite of the fact that current health statistics suggest that these (which include cardiovascular disease, pulmonary fibrosis, diabetic nephropathy, liver cirrhosis and systemic sclerosis) have been estimated to cause approximately 45% of the deaths in the developed world. Recently, many studies have shown that mitogen activated protein kinases (MAPKs) are activated in response to fibrogenic agents and contribute to the formation and function of the myofibroblast, the critical cell type responsible for excessive scarring. A recent report by Madala and colleagues (Am J Respir Cell Mol Biol, 2011) has provided a proof-of-concept study showing that the specific MEK inhibitor ARRY-142886 (ARRY) can both suppress the progression of fibrosis and reverse an animal model of lung fibrosis. Thus MEK inhibition could be a valuable method to treat lung fibrosis.
Collapse
|