1
|
Haq K, Yadav A, Mejia C. Approach to Kidney Allograft Dysfunction: A Brief Review. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:416-426. [PMID: 39232612 DOI: 10.1053/j.akdh.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 09/06/2024]
Abstract
It is important for providers caring for kidney transplant recipients to be familiar with the common causes of allograft dysfunction. Early detection of allograft dysfunction leads to timely management, with the goal of preventing or delaying progression to allograft failure. Although transplant rejection is always a concern, the differential diagnoses for allograft dysfunction are broad and include perioperative complications, infections, recurrent disease, and calcineurin nephrotoxicity. In this review, we will go over early and late causes of allograft dysfunction and discuss the basic workup and principles of management for each condition.
Collapse
Affiliation(s)
- Kanza Haq
- Division of Nephrology, Johns Hopkins University, Baltimore, MD
| | - Anju Yadav
- Division of Nephrology and Hypertension, Thomas Jefferson University, Philadelphia, PA
| | - Christina Mejia
- Division of Nephrology, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
2
|
Udomkarnjananun S, Schagen MR, Hesselink DA. A review of landmark studies on maintenance immunosuppressive regimens in kidney transplantation. ASIAN BIOMED 2024; 18:92-108. [PMID: 39175954 PMCID: PMC11338012 DOI: 10.2478/abm-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Immunosuppressive medications play a pivotal role in kidney transplantation, and the calcineurin inhibitors (CNIs), including cyclosporine A (CsA) and tacrolimus (TAC), are considered as the backbone of maintenance immunosuppressive regimens. Since the introduction of CNIs in kidney transplantation, the incidence of acute rejection has decreased, and allograft survival has improved significantly. However, CNI nephrotoxicity has been a major concern, believed to heavily impact long-term allograft survival and function. To address this concern, several CNI-sparing regimens were developed and studied in randomized, controlled, clinical trials, aiming to reduce CNI exposure and preserve long-term allograft function. However, more recent information has revealed that CNI nephrotoxicity is not the primary cause of late allograft failure, and its histopathology is neither specific nor pathognomonic. In this review, we discuss the historical development of maintenance immunosuppressive regimens in kidney transplantation, covering the early era of transplantation, the CNI-sparing era, and the current era where the alloimmune response, rather than CNI nephrotoxicity, appears to be the major contributor to late allograft failure. Our goal is to provide a chronological overview of the development of maintenance immunosuppressive regimens and summarize the most recent information for clinicians caring for kidney transplant recipients (KTRs).
Collapse
Affiliation(s)
- Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok10330, Thailand
- Excellence Center for Solid Organ Transplantation, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok10330, Thailand
- Renal Immunology and Transplantation Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok10330, Thailand
| | - Maaike R. Schagen
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam3000, The Netherlands
| | - Dennis A. Hesselink
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam3000, The Netherlands
| |
Collapse
|
3
|
Liang GQ, Mu W, Jiang CB. Baicalein improves renal interstitial fibrosis by inhibiting the ferroptosis in vivo and in vitro. Heliyon 2024; 10:e28954. [PMID: 38601597 PMCID: PMC11004807 DOI: 10.1016/j.heliyon.2024.e28954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Evidence indicates that Baicalein can ameliorate renal interstitial fibrosis by inducing myofibroblast apoptosis and inhibit the RLS3-induced ferroptosis in melanocytes. However, the relationship between renal interstitial fibrosis and anti-ferroptosis affected by Baicalein remains unclear. In our study, the anti-fibrosis and anti-ferroptosis effects of Baicalein were assessed in a rat model induced by the UUO method in vivo, and the effects of Baicalein on Erastin-induced ferroptosis of renal MPC-5 cells were examined by Western blot of fibrosis-related and ferroptosis-related proteins in vitro. In the UUO-induced rat model, Baicalein decreased kidney weight loss, improved renal function assessed the biomarks of urinary albumin excretion, serum creatine, and BUN levels, and reduced renal tubular injury. Furthermore, Baicalein inhibited renal ferroptosis by reducing ROS and MDA levels and increasing SOD and GSH levels in the UUO rat model. In addition, Baicalein potently reduced the expression of fibrosis-related proteins such as TGF-β1, a-SMA, and Smad-2 to prevent renal interstitial fibrosis, and increased the expression of ferroptosis-related proteins such as SLC7A11, GPX4, and FTH to inhibit ferroptosis both in vitro and in vivo. Taken together, Baicalein exerts anti-fibrosis activity by reducing the ferroptosis response on the UUO-induced rat model and renal MPC5 cells. Therefore, Baicalein, as a novel therapeutic method on kidney diseases with strong activity in suppressing ferroptosis, could be a potential alternative treatment for renal interstitial fibrosis.
Collapse
Affiliation(s)
- Guo-qiang Liang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- Suzhou Academy of Wumen Chinese Medicine, Suzhou, China
| | - Wei Mu
- Department of Pharmacy and Clinical Pharmacy, Precision Medicine Center, 904th Hospital of PLA, Wuxi, China
| | - Chun-bo Jiang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
- Department of Nephrology, Suzhou Hospital of Traditional Chinese Medicine, Suzhou, China
| |
Collapse
|
4
|
Zhang YH, Bin Liu, Meng Q, Zhang D, Yang H, Li G, Wang Y, Liu M, Liu N, Yu J, Liu S, Zhou H, Xu ZX, Wang Y. ACOX1 deficiency-induced lipid metabolic disorder facilitates chronic interstitial fibrosis development in renal allografts. Pharmacol Res 2024; 201:107105. [PMID: 38367917 DOI: 10.1016/j.phrs.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Chronic interstitial fibrosis presents a significant challenge to the long-term survival of transplanted kidneys. Our research has shown that reduced expression of acyl-coenzyme A oxidase 1 (ACOX1), which is the rate-limiting enzyme in the peroxisomal fatty acid β-oxidation pathway, contributes to the development of fibrosis in renal allografts. ACOX1 deficiency leads to lipid accumulation and excessive oxidation of polyunsaturated fatty acids (PUFAs), which mediate epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) reorganization respectively, thus causing fibrosis in renal allografts. Furthermore, activation of Toll-like receptor 4 (TLR4)-nuclear factor kappa-B (NF-κB) signaling induced ACOX1 downregulation in a DNA methyltransferase 1 (DNMT1)-dependent manner. Overconsumption of PUFA resulted in endoplasmic reticulum (ER) stress, which played a vital role in facilitating ECM reorganization. Supplementation with PUFAs contributed to delayed fibrosis in a rat model of renal transplantation. The study provides a novel therapeutic approach that can delay chronic interstitial fibrosis in renal allografts by targeting the disorder of lipid metabolism.
Collapse
Affiliation(s)
- Yang-He Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Nian Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinyu Yu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Si Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
5
|
Zhang YH, Liu B, Meng Q, Zhang D, Yang H, Li G, Wang Y, Zhou H, Xu ZX, Wang Y. Targeted changes in blood lipids improves fibrosis in renal allografts. Lipids Health Dis 2023; 22:215. [PMID: 38049842 PMCID: PMC10694909 DOI: 10.1186/s12944-023-01978-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Chronic interstitial fibrosis is the primary barrier against the long-term survival of transplanted kidneys. Extending the lifespan of allografts is vital for ensuring the long-term health of patients undergoing kidney transplants. However, few targets and their clinical applications have been identified. Moreover, whether dyslipidemia facilitates fibrosis in renal allograft remains unclear. METHODS Blood samples were collected from patients who underwent kidney transplantation. Correlation analyses were conducted between the Banff score and body mass index, and serum levels of triacylglycerol, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. A rat model of renal transplantation was treated with the lipid-lowering drug, fenofibrate, and kidney fibrosis levels were determined by histochemical staining. Targeted metabolomic detection was conducted in blood samples from patients who underwent kidney transplantation and were divided into fibrotic and non-fibrotic groups. Rats undergoing renal transplantation were fed either an n-3 or n-6 polyunsaturated fatty acid (PUFA)-enriched diet. Immunohistochemical and Masson's trichrome staining were used to determine the degree of fibrosis. RESULTS Hyperlipidemia was associated with fibrosis development. Treatment with fenofibrate contributed to improve fibrosis in a rat model of renal transplantation. Moreover, n-3 PUFAs from fibrotic group showed significant downregulation compared to patients without fibrotic renal allografts, and n-3 PUFAs-enriched diet contributed to delayed fibrosis in a rat model of renal transplantation. CONCLUSIONS This study suggests that hyperlipidemia facilitates fibrosis of renal allografts. Importantly, a new therapeutic approach was provided that may delay chronic interstitial fibrosis in transplanted kidneys by augmenting the n-3 PUFA content in the diet.
Collapse
Affiliation(s)
- Yang-He Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Cieślik A, Burban A, Gniewkiewicz M, Gozdowska J, Dęborska-Materkowska D, Perkowska-Ptasinska A, Kosieradzki M, Durlik M. The Importance of 1-Year Protocol Biopsy in the Long-Term Prognosis of Kidney Transplants-5-Years Follow-Up. Transplant Proc 2023; 55:2053-2057. [PMID: 37778932 DOI: 10.1016/j.transproceed.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/01/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Protocol biopsies are performed to detect subclinical pathologies that may lead to future graft dysfunction. However, they are not routinely performed interventions in every transplant center. There is no established regimen for performing them. PURPOSE The study aimed to evaluate if protocol biopsies can improve long-term patient outcomes after detecting early disorders and modifying treatment. MATERIAL AND METHODS Our observational study included 61 patients who underwent protocol biopsy 12 months after the transplantation. Based on the biopsy results, patients with abnormal histologic material (n = 37) were divided into 3 study groups as follows: patients with mild inflammatory lesions (n = 21), patients with interstitial fibrosis and tubular atrophy (IFTA) grade II to III (n = 12), and patients with BK virus nephropathy (n = 4). The control group (n = 24) included kidney recipients with IFTA 0 to I grade. Outcomes after 5-year follow-up were evaluated. RESULTS Five years after the biopsy, patients in the control group had stable graft function (5-year change in serum creatinine was -0.09 mg/dL). An increase in serum creatinine levels was observed in patients with IFTA II to III compared with the control group (0.14 mg/dL, P = .04). Immunosuppressive treatment was modified in the group with mild inflammatory changes and in the BKV group after the biopsy result. In the group with mild inflammatory lesions, renal function was stable (change of serum creatinine was -0.01 mg/dL, P = .51). In the BKV nephropathy group, there was a significant reduction in serum creatine levels (-0.48 mg/dL, P = .016). The analysis showed no diagnostic value for serum creatinine concentration (95% CI 0.49-0.78, P = .08). CONCLUSIONS Protocol biopsies are useful for detecting early pathologies and preventing allograft failure. They greatly benefit patients with detectable pathology that can be treated or in whom therapy modification is possible.
Collapse
Affiliation(s)
- Aleksandra Cieślik
- Department of Transplantation Medicine, Nephrology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Anna Burban
- Department of Transplantation Medicine, Nephrology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Michał Gniewkiewicz
- Department of Transplantation Medicine, Nephrology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jolanta Gozdowska
- Department of Transplantation Medicine, Nephrology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.
| | - Dominika Dęborska-Materkowska
- Department of Transplantation Medicine, Nephrology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Maciej Kosieradzki
- Department of General and Transplantation Surgery, The Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Durlik
- Department of Transplantation Medicine, Nephrology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Yin Y, Zhang H, Sun L, Han Q, Zheng M, Chen H, Fei S, Tan R, Ju X, Wang Z, Gu M. Association between fibrosis-related gene polymorphism and long-term allograft outcome in renal transplant recipients. BMC Med Genomics 2023; 16:255. [PMID: 37867197 PMCID: PMC10591404 DOI: 10.1186/s12920-023-01686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Renal allograft fibrosis is one of characteristic causes of long-term renal function loss. The purpose of our study is to investigate the association between fibrosis-related genes single nucleotide polymorphism (SNPs) and kidney function in 5 years after kidney transplantation. METHODS A total of 143 recipients were eligible for screening with 5-year follow-up information and SNP sequencing information from blood samples were included in this study. Minor Allele Frequency (MAF) and Hardy-Weinberg Equilibrium (HWE) analysis was conducted to identify tagger single-nucleotide polymorphisms (SNPs) and haplotypes. SNPs associated with the fifth year chronic kidney disease (CKD) staging were screened by SPSS and the "SNPassoc" package in RStudio and used for subsequent prediction model construction. RESULTS A total of 275 renal transplant-related SNPs identified after target sequencing analysis. 64 Tagger SNPs were selected, and two SNPs (rs13969 and rs243849) were statistically significant for stage of CKD in 5 years. Finally, a model based on Gender, Age, rs1396, and rs243849 was constructed by multivariate linear regression analysis. Additionally, this model has a good performance in predicting uremia five years after kidney transplantation. CONCLUSION Two SNPs (rs13969 and rs243849) were identified to be significantly associated with long-term renal allograft function. Based on this, a prediction model for long-term allograft function was established containing Gender, Age, rs1396, and rs243849. However, an independent cohort should be enrolled to validate the predicting performance.
Collapse
Affiliation(s)
- Yu Yin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Han Zhang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Sun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qianguang Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Zheng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Fei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaobing Ju
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Min Gu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Lee HK, Jung NH, Lee DE, Lee H, Yang J, Kim YS, Han SS, Han N, Kim IW, Oh JM. Discovery of Biomarkers Related to Interstitial Fibrosis and Tubular Atrophy among Kidney Transplant Recipients by mRNA-Sequencing. J Pers Med 2023; 13:1242. [PMID: 37623492 PMCID: PMC10455123 DOI: 10.3390/jpm13081242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Interstitial fibrosis and tubular atrophy (IF/TA) after kidney transplantation causes a chronic deterioration of graft function. IF/TA can be diagnosed by means of a graft biopsy, which is a necessity as non-invasive diagnostic methods are unavailable. In this study, we identified IF/TA-related differentially expressed genes (DEGs) through next-generation sequencing using peripheral blood mononuclear cells. Blood samples from kidney transplant recipients undergoing standard immunosuppressive therapy (tacrolimus/mycophenolate mofetil or mycophenolate sodium/steroid) and diagnosed as IF/TA (n = 41) or normal (controls; n = 41) at their one-year protocol biopsy were recruited between January of 2020 and August of 2020. DEGs were derived through mRNA sequencing and validated by means of a quantitative real-time polymerase chain reaction. We identified 34 DEGs related to IF/TA. ADAMTS2, PLIN5, CLDN9, and KCNJ15 demonstrated a log2(fold change) of >1.5 and an area under the receiver operating characteristic curve (AUC) value of >0.6, with ADAMTS2 showing the largest AUC value and expression levels, which were 3.5-fold higher in the IF/TA group relative to that observed in the control group. We identified and validated DEGs related to IF/TA progression at one-year post-transplantation. Specifically, we identified ADAMTS2 as a potential IF/TA biomarker.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Na Hyun Jung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Da Eun Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Hajeong Lee
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea (Y.S.K.)
- Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jaeseok Yang
- Transplantation Center, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yon Su Kim
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea (Y.S.K.)
- Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Seung Seok Han
- Division of Nephrology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea (Y.S.K.)
- Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Nayoung Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - In-Wha Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| | - Jung Mi Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; (H.K.L.)
| |
Collapse
|
9
|
Campeiro JD, Dam WA, Hayashi MAF, van den Born J. Crotamine/siRNA Nanocomplexes for Functional Downregulation of Syndecan-1 in Renal Proximal Tubular Epithelial Cells. Pharmaceutics 2023; 15:1576. [PMID: 37376025 DOI: 10.3390/pharmaceutics15061576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Proteinuria drives progressive tubulointerstitial fibrosis in native and transplanted kidneys, mainly through the activation of proximal tubular epithelial cells (PTECs). During proteinuria, PTEC syndecan-1 functions as a docking platform for properdin-mediated alternative complement activation. Non-viral gene delivery vectors to target PTEC syndecan-1 could be useful to slow down alternative complement activation. In this work, we characterize a PTEC-specific non-viral delivery vector composed of the cell-penetrating peptide crotamine complexed with a syndecan-1 targeting siRNA. Cell biological characterization was performed in the human PTEC HK2 cell line, using confocal microscopy, qRT-PCR, and flow cytometry. PTEC targeting in vivo was carried out in healthy mice. Crotamine/siRNA nanocomplexes are positively charged, about 100 nm in size, resistant to nuclease degradation, and showed in vitro and in vivo specificity and internalization into PTECs. The efficient suppression of syndecan-1 expression in PTECs mediated by these nanocomplexes significantly reduced properdin binding (p < 0.001), as well as the subsequent complement activation by the alternative complement pathway (p < 0.001), as observed in either normal or activated tubular conditions. To conclude, crotamine/siRNA-mediated downregulation of PTEC syndecan-1 reduced the activation of the alternative complement pathway. Therefore, we suggest that the present strategy opens new venues for targeted proximal tubular gene therapy in renal diseases.
Collapse
Affiliation(s)
- Joana D'Arc Campeiro
- Department Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, De Brug, 4th Floor, AA53, 9713 GZ Groningen, The Netherlands
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed. INFAR, 3rd Floor, São Paulo 04044-020, Brazil
| | - Wendy A Dam
- Department Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, De Brug, 4th Floor, AA53, 9713 GZ Groningen, The Netherlands
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), Rua 3 de Maio 100, Ed. INFAR, 3rd Floor, São Paulo 04044-020, Brazil
| | - Jacob van den Born
- Department Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, De Brug, 4th Floor, AA53, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
10
|
Schuster A, Steines L, Müller K, Zeman F, Findeisen P, Banas B, Bergler T. Dickkopf 3-A New Indicator for the Deterioration of Allograft Function After Kidney Transplantation. Front Med (Lausanne) 2022; 9:885018. [PMID: 35646976 PMCID: PMC9130628 DOI: 10.3389/fmed.2022.885018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Evidence of tubular atrophy and interstitial fibrosis is prognostically unfavorable and associated with a premature graft loss after kidney transplantation. Recently, Dickkopf 3 (DKK3), a profibrotic glycoprotein released by stressed tubular epithelial cells, has been identified to cause IF/TA by regulating the Wnt/β-catenin signaling and seems to engage a T-cell response. The aim of our study was to determine if a correlation between DKK3 and graft function exists and if DKK3 could be a new indicator to identify patients at risk for a deterioration in graft function. Patients, transplanted between 2016 and 2018, were analyzed with regard to DKK3 in the urine and graft function (creatinine, eGFR, albuminuria). Multivariable analyzes were used including known factors influencing graft function (PRA, donor age) to stress robustness of DKK3. The 3 and 12 month DKK3 values were significant predictors for subsequent graft function up to 36 months. An increase of DKK3 from month 3 to 12 of ≥ 25% showed a higher risk of an impaired graft function, with, e.g., a reduction in eGFR of about 9–10 ml/min in contrast to patients without intensified DKK3 increase. Induction therapy has an influence on DKK3 as patients induced with a T-cell depleting therapy showed a trend toward lower DKK3 values. In summary, our study is the first investigation of DKK3 in kidney transplant recipients and was able to show that DKK3 could forecast graft function. It is recommended to investigate the potential of DKK3 as a predictor of kidney function after transplantation in further studies.
Collapse
Affiliation(s)
- Antonia Schuster
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Louisa Steines
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Karolina Müller
- Center for Clinical Studies, University Hospital Regensburg, Regensburg, Germany
| | - Florian Zeman
- Center for Clinical Studies, University Hospital Regensburg, Regensburg, Germany
| | | | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
11
|
Xiang X, Zhu J, Dong G, Dong Z. Epigenetic Regulation in Kidney Transplantation. Front Immunol 2022; 13:861498. [PMID: 35464484 PMCID: PMC9024296 DOI: 10.3389/fimmu.2022.861498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/17/2022] [Indexed: 12/29/2022] Open
Abstract
Kidney transplantation is a standard care for end stage renal disease, but it is also associated with a complex pathogenesis including ischemia-reperfusion injury, inflammation, and development of fibrosis. Over the past decade, accumulating evidence has suggested a role of epigenetic regulation in kidney transplantation, involving DNA methylation, histone modification, and various kinds of non-coding RNAs. Here, we analyze these recent studies supporting the role of epigenetic regulation in different pathological processes of kidney transplantation, i.e., ischemia-reperfusion injury, acute rejection, and chronic graft pathologies including renal interstitial fibrosis. Further investigation of epigenetic alterations, their pathological roles and underlying mechanisms in kidney transplantation may lead to new strategies for the discovery of novel diagnostic biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs (VA) Medical Center, Augusta, GA, United States.,Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiefu Zhu
- Center of Nephrology and Dialysis, Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs (VA) Medical Center, Augusta, GA, United States
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs (VA) Medical Center, Augusta, GA, United States
| |
Collapse
|
12
|
van Leeuwen LL, Leuvenink HGD, Olinga P, Ruigrok MJR. Shifting Paradigms for Suppressing Fibrosis in Kidney Transplants: Supplementing Perfusion Solutions With Anti-fibrotic Drugs. Front Med (Lausanne) 2022; 8:806774. [PMID: 35083254 PMCID: PMC8784659 DOI: 10.3389/fmed.2021.806774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Great efforts have been made toward addressing the demand for donor kidneys. One of the most promising approaches is to use kidneys from donation after circulatory death donors. These kidneys, however, suffer from more severe ischemia and reperfusion injury than those obtained via donation after brain death and are thus more prone to develop interstitial fibrosis and tubular atrophy. Even though machine perfusion is increasingly used to reduce ischemia and reperfusion injury, there are no effective treatments available to ameliorate interstitial fibrosis and tubular atrophy, forcing patients to resume dialysis, undergo re-transplantation, or suffer from premature death. Safe and effective anti-fibrotic therapies are therefore greatly desired. We propose a new therapeutic approach in which machine perfusion solutions are supplemented with anti-fibrotic compounds. This allows the use of higher concentrations than those used in humans whilst eliminating side effects in other organs. To the authors' knowledge, no one has reviewed whether such an approach could reduce interstitial fibrosis and tubular atrophy; we therefore set out to explore its merit. In this review, we first provide background information on ischemia and reperfusion injury as well as interstitial fibrosis and tubular atrophy, after which we describe currently available approaches for preserving donor kidneys. We then present an evaluation of selected compounds. To identify promising compounds, we analyzed publications describing the effects of anti-fibrotic molecules in precision-cut kidneys slices, which are viable explants that can be cultured ex vivo for up to a few days whilst retaining functional and structural features. LY2109761, galunisertib, imatinib, nintedanib, and butaprost were shown to exert anti-fibrotic effects in slices within a relatively short timeframe (<48 h) and are therefore considered to be excellent candidates for follow-up ex vivo machine perfusion studies.
Collapse
Affiliation(s)
- L. Leonie van Leeuwen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Mitchel J. R. Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| |
Collapse
|
13
|
Merveille O, Lampert T, Schmitz J, Forestier G, Feuerhake F, Wemmert C. An automatic framework for fusing information from differently stained consecutive digital whole slide images: A case study in renal histology. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106157. [PMID: 34091100 DOI: 10.1016/j.cmpb.2021.106157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This article presents an automatic image processing framework to extract quantitative high-level information describing the micro-environment of glomeruli in consecutive whole slide images (WSIs) processed with different staining modalities of patients with chronic kidney rejection after kidney transplantation. METHODS This four-step framework consists of: 1) approximate rigid registration, 2) cell and anatomical structure segmentation 3) fusion of information from different stainings using a newly developed registration algorithm 4) feature extraction. RESULTS Each step of the framework is validated independently both quantitatively and qualitatively by pathologists. An illustration of the different types of features that can be extracted is presented. CONCLUSION The proposed generic framework allows for the analysis of the micro-environment surrounding large structures that can be segmented (either manually or automatically). It is independent of the segmentation approach and is therefore applicable to a variety of biomedical research questions. SIGNIFICANCE Chronic tissue remodelling processes after kidney transplantation can result in interstitial fibrosis and tubular atrophy (IFTA) and glomerulosclerosis. This pipeline provides tools to quantitatively analyse, in the same spatial context, information from different consecutive WSIs and help researchers understand the complex underlying mechanisms leading to IFTA and glomerulosclerosis.
Collapse
Affiliation(s)
- Odyssee Merveille
- ICube, University of Strasbourg, CNRS (UMR 7357), Strasbourg, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69100, LYON, France.
| | - Thomas Lampert
- ICube, University of Strasbourg, CNRS (UMR 7357), Strasbourg, France
| | | | | | - Friedrich Feuerhake
- Institute of Pathology, Hannover Medical School, Germany; University Clinic, Freiburg, Germany
| | - Cédric Wemmert
- ICube, University of Strasbourg, CNRS (UMR 7357), Strasbourg, France
| |
Collapse
|
14
|
M.K K, John CM, Jonnagaladda B, Kesavan A, Arockiasamy S. Attenuation of tacrolimus induced oxidative stress, mitochondrial damage, and cell cycle arrest by Boerhavia diffusa root fraction in mdck cell lines. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1087-1097. [PMID: 34804426 PMCID: PMC8591757 DOI: 10.22038/ijbms.2021.56519.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/03/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The protective effect of ethyl acetate fraction (EAF) of Boerhavia diffusa roots against Tacrolimus (TAC) induced nephrotoxicity was studied using MDCK cell lines. MATERIALS AND METHODS Ethanolic root extract of B. diffusa was fractionated using the liquid-liquid partition method. The cytotoxic effect of TAC and protective effect of EAF co-treatment were studied in MDCK cell lines by measuring ROS, LPO, and NO levels; collagen accumulation, effect on mitochondrial membrane integrity and cell cycle analysis were studied. The active component in EAF was quantified by HPLC analysis. RESULTS TAC induced toxicity, leading to apoptosis and necrosis, was significantly reduced (P<0.001) in EAF co-treatment, with reversal of cell cycle arrest and reduced cell population at sub G0/G1 phase. Further, ROS (P<0.05), LPO and NO (P<0.001), were significantly reduced with EAF co-treatment compared with TAC individually treated cells. TAC induced mitochondrial membrane integrity loss was found to be significantly reduced in co-treated cells, as measured by rhodamine123 (P<0.05) and translocation of cytochrome c (P<0.001) from nucleus to cytoplasm, and caspase 3 release (P<0.001). The same was confirmed through annexin-FITC and PI staining (P<0.05) with reduced apoptotic and necrotic death in co-treated population. Interestingly, EAF co-treatment decreased collagen accumulation (P<0.001) with significant increase in the cell survival of tubular epithelial cells. HPLC analysis showed the presence of Quercetin (87.5 mg/g) in EAF, which may be responsible for the nephroprotective role. CONCLUSION Thus, these results provide sound evidence that EAF may be an effective adjuvant therapy to prevent nephrotoxicity induced by TAC.
Collapse
Affiliation(s)
- Kalaivani M.K
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 6000116, India
| | - Cordelia Mano John
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 6000116, India
| | - Bhavana Jonnagaladda
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 6000116, India
| | - Akila Kesavan
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, 600116, India
| | - Sumathy Arockiasamy
- Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai 6000116, India
| |
Collapse
|
15
|
Li A, Yuan JF, Gong Q, Zhang N, Chen LY, Luo YY, Cui YR, Wang HL, Liu RH. Effects of Eucommia ulmoides extract against renal injury caused by long-term high purine diets in rats. Food Funct 2021; 12:5607-5620. [PMID: 34018492 DOI: 10.1039/d0fo02802a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diets of overloaded purine-rich foods for a long time are one of the important reasons to cause renal lesions. Eucommia ulmoides is one of the traditional Chinese medicine herbs, which has been used to recover functions of the kidney. However, its mechanism remains unclear. The aim of this study was to explore the effects and protective mechanism of Eucommia ulmoides extract on renal injury caused by long-term high purine diets in rats. SD rats underwent an intragastric adenine (200 mg kg-1 d-1) administration for 9 weeks and were treated for 15 weeks. The results demonstrated that Eucommia ulmoides extract significantly reduced serum Cre and BUN levels in rats. H&E and Masson's trichrome stains showed notable lowering of the infiltration of inflammatory cells, the formation of fibrous tissues and collagen fibers, and improvement in the pathological morphology of kidneys. It also suppressed the protein and mRNA expressions of TGF-β1 and α-SMA and enhanced E-cadherin expression. Meanwhile, Eucommia ulmoides extract prominently inhibited the mRNA expression of Col I, Col III, Col IV, TIMP-1, and TIMP-2 and promoted expressions of MMP-1, MMP-2 and MMP-9. Through our study, it is the first time to prove that Eucommia ulmoides extract could ameliorate renal interstitial fibrosis and may involve in the regulation of the extracellular matrix (ECM) degradation enzyme (MMPs/TIMPs) system, promotion of the expression of E-cadherin, and suppression of expressions of TGF-β1 and α-SMA. The results provide a significant implication for the utilization of Eunomia Ulmoides extract as functional foods to enhance renal functions and improve renal injury caused by high purine diets.
Collapse
Affiliation(s)
- An Li
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Perez-Carrasco V, Soriano-Lerma A, Soriano M, Gutiérrez-Fernández J, Garcia-Salcedo JA. Urinary Microbiome: Yin and Yang of the Urinary Tract. Front Cell Infect Microbiol 2021; 11:617002. [PMID: 34084752 PMCID: PMC8167034 DOI: 10.3389/fcimb.2021.617002] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
The application of next generation sequencing techniques has allowed the characterization of the urinary tract microbiome and has led to the rejection of the pre-established concept of sterility in the urinary bladder. Not only have microbial communities in the urinary tract been implicated in the maintenance of health but alterations in their composition have also been associated with different urinary pathologies, such as urinary tract infections (UTI). Therefore, the study of the urinary microbiome in healthy individuals, as well as its involvement in disease through the proliferation of opportunistic pathogens, could open a potential field of study, leading to new insights into prevention, diagnosis and treatment strategies for urinary pathologies. In this review we present an overview of the current state of knowledge about the urinary microbiome in health and disease, as well as its involvement in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Virginia Perez-Carrasco
- GENYO, Centre for Genomics and Oncological Research, Pfizer, University of Granada, Granada, Spain.,Microbiology Unit, University Hospital Virgen de las Nieves, Biosanitary Research Institute (IBS.Granada), Granada, Spain
| | - Ana Soriano-Lerma
- GENYO, Centre for Genomics and Oncological Research, Pfizer, University of Granada, Granada, Spain.,Department of Physiology, Faculty of Pharmacy, Institute of Nutrition and Food Technology "Jose' Mataix", University of Granada, Granada, Spain
| | - Miguel Soriano
- GENYO, Centre for Genomics and Oncological Research, Pfizer, University of Granada, Granada, Spain.,Center for Intensive Mediterranean Agrosystems and Agri-food Biotechnology (CIAMBITAL), University of Almeria, Almeria, Spain
| | - José Gutiérrez-Fernández
- Microbiology Unit, University Hospital Virgen de las Nieves, Biosanitary Research Institute (IBS.Granada), Granada, Spain
| | - Jose A Garcia-Salcedo
- GENYO, Centre for Genomics and Oncological Research, Pfizer, University of Granada, Granada, Spain.,Microbiology Unit, University Hospital Virgen de las Nieves, Biosanitary Research Institute (IBS.Granada), Granada, Spain
| |
Collapse
|
17
|
Elastography: a surrogate marker of renal allograft fibrosis - quantification by shear-wave technique. Pol J Radiol 2021; 86:e151-e156. [PMID: 33828625 PMCID: PMC8018265 DOI: 10.5114/pjr.2021.104582] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/06/2020] [Indexed: 11/29/2022] Open
Abstract
Purpose Renal fibrosis is the most common cause of allograft failure in kidney transplantations. Evaluation of renal abnormalities has progressed considerably over the past years. Currently, the diagnosis of intrarenal fibrosis and quantification of its development with non-invasive assessment tools is possible. This may help in early detection of renal allograft dysfunction. This study sought to assess the efficacy of 2D real-time shear-wave elastography (SWE) in the quantitative measurement of renal allograft dysfunction. Methods A total of 172 patients were included in our study. SWE was performed in all these patients just before renal allograft biopsy. The cortical elasticity was assessed and described in terms of Young’s modulus (kPa). Banff histopathological grading obtained from transplant kidney tissue biopsy was taken as the reference standard. The potential correlation between SWE scores and Banff classification was performed. Results There was a significant correlation between the Banff grade and mean SWE score, with a correlation coefficient of 0.665 (p < 0.001). The individual correlation coefficients of interstitial fibrosis and tubular atrophy with mean SWE score stood at 0.667 and 0.649 respectively (p < 0.001). The correlation of resistive indices was insignificant when compared to mean polar SWE score in respective poles and the Banff grading of fibrosis. Conclusions Renal stiffness quantified by 2D SWE showed significant correlation with histopathological renal fibrosis. Thus, the study suggests that shear-wave elastography could be used as a surrogate marker for early detection of renal fibrosis.
Collapse
|
18
|
Heidari SS, Nafar M, Kalantari S, Tavilani H, Karimi J, Foster L, Moon KM, Khodadadi I. Urinary epidermal growth factor is a novel biomarker for early diagnosis of antibody mediated kidney allograft rejection: A urinary proteomics analysis. J Proteomics 2021; 240:104208. [PMID: 33785428 DOI: 10.1016/j.jprot.2021.104208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/27/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022]
Abstract
Although antibody mediated rejection (AMR) accounts for 20-30% of all acute renal allograft rejections, introducing biomarkers for a timely detection of allograft rejection has been remained challenging. This study investigated novel diagnostic biomarkers of AMR by examining of urine proteome in renal transplant patients. Thirty-six patients with kidney transplantation including 22 AMR patients and 14 patients with stable renal function (control group) were enrolled in this study. Urinary samples were collected and Label free quantification (LFQ) proteomics technique was applied on urine samples and data was subjected to Random Forest (RF) algorithm to predict main candidate proteins contributing in AMR. Finally, applicability of candidate diagnostic biomarkers was evaluated in new sets of AMR subjects, stable patients and healthy volunteers. A total of 1020 proteins were detected in urine proteome. RF algorithm predicted 20 differentially expressed proteins with the highest sensitivity and specificity and combination of EGF, COL6A, and NID-1 was identified as possible panel for early diagnosis of AMR. Applicability of EGF as diagnostic biomarker was validated in urine samples of independent set of AMR subjects. This is the first urinary proteomics study in AMR patients demonstrating that urinary EGF might be used as early diagnostic biomarker for AMR. SIGNIFICANCE: Renal antibody mediated rejection (AMR) accounts for 20-30% of all acute rejections of allografted kidneys. Although several possible biomarkers have been proposed to predict AMR, ineffectiveness of current urinary biomarkers in early diagnosing of AMR patients and in distinguishing AMR subjects from patients with stable kidney function casts doubts on their applicability in clinic. Here for the first time and based on the analysis of urinary proteome we showed that uEGF and uEGF/Cr might be candidate biomarkers to predict AMR with high diagnostic power.
Collapse
Affiliation(s)
- Somaye-Sadat Heidari
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Nafar
- Chronic Kidney Disease Research Center, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shiva Kalantari
- Chronic Kidney Disease Research Center, Shahid Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Molecular Biology, Umeå University, Umeå, Sweden.
| | - Heidar Tavilani
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leonard Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
19
|
Yu YM, Wang W, Wen J, Zhang Y, Lu GM, Zhang LJ. Detection of renal allograft fibrosis with MRI: arterial spin labeling outperforms reduced field-of-view IVIM. Eur Radiol 2021; 31:6696-6707. [PMID: 33738596 DOI: 10.1007/s00330-021-07818-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To compare the value of reduced field-of-view (FOV) intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) and arterial spin labeling (ASL) for assessing renal allograft fibrosis and predicting long-term dysfunction. METHODS This prospective study included 175 renal transplant recipients undergoing reduced FOV IVIM DWI, ASL, and biopsies. Renal allograft fibrosis was categorized into ci0, ci1, ci2, and ci3 fibrosis according to biopsy results. A total of 83 participants followed for a median of 39 (IQR, 21-42) months were dichotomized into stable and impaired allograft function groups based on follow-up estimated glomerular filtration rate. Total apparent diffusion coefficient (ADCT), pure diffusion ADC, pseudo-perfusion ADC, perfusion fraction f from IVIM DWI, and renal blood flow (RBF) from ASL were calculated and compared. The area under the receiver operating characteristic curve (AUC) was calculated to assess the diagnostic and predictive performances. RESULTS RBF was different in ci0 vs ci1 (147.9 ± 46.3 vs 126.0 ± 49.4 ml/min/100 g, p = .02) and ci2 vs ci3 (92.9 ± 46.9 vs 70.8 ± 37.8 ml/min/100 g, p = .03). RBF in the stable group was higher than that in the impaired group (144.73 ± 49.33 vs 102.19 ± 47.58 ml/min/100 g, p < .001). AUCs in distinguishing renal allograft fibrosis and predicting long-term allograft dysfunction for RBF were higher than cortical ADCT (ci0 vs ci1-3, 0.76 vs 0.59, p < .001; ci0-1 vs ci2-3, 0.79 vs 0.68, p = .01; ci0-2 vs ci3, 0.79 vs 0.68, p = .01; 0.76 vs 0.60, p = .04, respectively). CONCLUSION Compared to reduced FOV IVIM DWI, ASL was a more promising technique for noninvasively distinguishing renal allograft fibrosis degree and predicting long-term allograft dysfunction. KEY POINTS • Compared to total ADC from rFOV IVIM DWI, RBF from ASL can distinguish no fibrosis (ci0) vs mild fibrosis (ci1) (p = .02) and moderate fibrosis (ci2) vs severe fibrosis (ci3) (p = .04). • RBF had superior performance than diffusion parameters in discriminating fibrosis (no fibrosis [ci0] vs fibrosis [ci1-3], mild fibrosis [ci0-1] vs moderate to severe fibrosis [ci2-3], non-severe [ci0-2] vs severe [ci3] fibrosis; AUC = 0.76 vs 0.59, p < .001; 0.79 vs 0.68, p = .01; 0.79 vs 0.68, p = .01). • Compared to reduced FOV IVIM DWI, ASL was a more promising technique for noninvasively predicting long-term allograft dysfunction (AUC = 0.76 vs 0.60, p = .04).
Collapse
Affiliation(s)
- Yuan Meng Yu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Southern Medical University, Nanjing, 210002, Jiangsu, China.,Department of MRI, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, 650032, Yunnan, China
| | - Wei Wang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing Medical University, 305 East Zhong Shan Road, Nanjing, 210002, China.,Department of Nephrology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jiqiu Wen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing Medical University, 305 East Zhong Shan Road, Nanjing, 210002, China
| | - Yong Zhang
- MR Research, GE Healthcare, Shanghai, 201203, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Southern Medical University, Nanjing, 210002, Jiangsu, China.,Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Clinical School of Southern Medical University, Nanjing, 210002, Jiangsu, China. .,Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
20
|
Clinical Relevance of Arteriolar C4d Staining in Patients With Chronic-active Antibody-mediated Rejection: A Pilot Study. Transplantation 2020; 104:1085-1094. [PMID: 31517782 DOI: 10.1097/tp.0000000000002957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND C4d staining in peritubular capillaries is a well-established feature of antibody-mediated rejection (AMR). The relevance of C4d staining outside peritubular capillaries is not well understood. We investigated the significance of arteriolar C4d staining in chronic-active AMR (c-aAMR). METHODS All for-cause renal allograft biopsies performed in 2007-2014 at the Erasmus MC and meeting the criteria for suspicious/diagnostic c-aAMR using the Banff Classification 2015 were included. For comparison, renal allograft biopsies from a matched control group and native renal biopsies were analyzed. Arteriolar C4d staining was semiquantitatively scored as negative (0), small deposits in 1 arteriole (1+), small/large deposits in >1 arterioles (2+), or at least extensive deposits in most arterioles (3+). RESULTS Thirty-four of 40 (85%) patients with c-aAMR showed arteriolar C4d staining. A significant difference in arteriolar C4d score was observed between cases and matched controls (P = 0.01) and a trend toward significance difference between cases and native renal biopsies (P = 0.05). In the cases, arteriolar C4d staining was significantly associated with severity of arteriolar hyalinosis (P = 0.004) and ≥2 arteriolar C4d staining was independently associated with better graft outcome in a multivariate Cox regression analysis (hazard ratio, 0.260; 95% CI, 0.104-0.650; P = 0.004). CONCLUSIONS This pilot study shows that arteriolar C4d staining is more common in biopsies with c-aAMR compared with those without and that it is associated with arteriolar hyalinosis and ≥2 arteriolar C4d staining is associated with superior graft outcome. However, larger studies are needed to examine these findings in more detail to asses if arteriolar C4d staining is truly related to antibody-mediated injury.
Collapse
|
21
|
Posadas Salas MA, Taber D, Soliman K, Nwadike E, Srinivas T. Phenotype of immunosuppression reduction after kidney transplantation. Clin Transplant 2020; 34:e14047. [PMID: 32686181 DOI: 10.1111/ctr.14047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Immunosuppressive regimens are delivered without direct measure of the net state of immunosuppression. Besides therapeutic drug monitoring, adjustments in immunosuppressive medications are largely event-driven. METHODS We studied the clinical phenotype of immunosuppression reduction (ISR) among kidney transplant recipients from 2005 to 2012. Patients were grouped into: no ISR, ISR for infection, or ISR for intolerance. Outcome measures were rejection, rejection-free survival, and IFTA-free survival. RESULTS 1114 adult kidney transplant recipients were included: 57% had no ISR, 16% had ISR for infection, and 27% had ISR for intolerance. ISR for infection was mainly on MMF, while ISR for intolerance was mainly on FK. ISR was associated with higher rates of acute rejection. The Kaplan-Meier analysis showed increased prevalence of rejection among patients with ISR due to infection (P = .003) or intolerance (P = .05). The risk of interstitial fibrosis and tubular atrophy was increased in patients with ISR due to infection (P = .001) or intolerance (P = .018). CONCLUSION Immunosuppression reduction is associated with increased prevalence of rejection. The clinical phenotype of ISR is dominated by IFTA remote from the onset of ISR. Solely focusing on acute rejection may underestimate effects of ISR on long-term graft function and survival.
Collapse
Affiliation(s)
- Maria Aurora Posadas Salas
- Division of Nephrology and Hypertension, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - David Taber
- Division of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Karim Soliman
- Division of Nephrology and Hypertension, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Emmanuel Nwadike
- Department of Medicine, Lake City Medical Center, Lake City, FL, USA
| | - Titte Srinivas
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
22
|
Kidney allograft fibrosis: what we learned from latest translational research studies. J Nephrol 2020; 33:1201-1211. [PMID: 32193834 DOI: 10.1007/s40620-020-00726-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
To add new molecular and pathogenetic insights into the biological machinery associated to kidney allograft fibrosis is a major research target in nephrology and organ transplant translational medicine. Interstitial fibrosis associated to tubular atrophy (IF/TA) is, in fact, an inevitable and progressive process that occurs in almost every type of chronic allograft injury (particularly in grafts from expanded criteria donors) characterized by profound remodeling and excessive production/deposition of fibrillar extracellular matrix (ECM) with a great clinical impact. IF/TA is detectable in more than 50% of kidney allografts at 2 years. However, although well studied, the complete cellular/biological network associated with IF/TA is only partially evaluated. In the last few years, then, thanks to the introduction of new biomolecular technologies, inflammation in scarred/fibrotic parenchyma areas (recently acknowledged by the BANFF classification) has been recognized as a pivotal element able to accelerate the onset and development of the allograft chronic damage. Therefore, in this review, we focused on some new pathogenetic elements involved in graft fibrosis (including epithelial/endothelial to mesenchymal transition, oxidative stress, activation of Wnt and Hedgehog signaling pathways, fatty acids oxidation and cellular senescence) that, in our opinion, could become in future good candidates as potential biomarkers and therapeutic targets.
Collapse
|
23
|
Nishida S, Hidaka Y, Toyoda M, Kinoshita K, Tanaka K, Kawabata C, Hamanoue S, Inadome A, Yokomizo H, Takeda A, Uekihara S, Yamanaga S. Factors related to suboptimal recovery of renal function after living donor nephrectomy: a retrospective study. BMC Nephrol 2019; 20:403. [PMID: 31703636 PMCID: PMC6842234 DOI: 10.1186/s12882-019-1588-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 10/13/2019] [Indexed: 11/23/2022] Open
Abstract
Background The renal function of the remaining kidney in living donors recovers up to 60~70% of pre-donation estimated-glomerular filtration rate (eGFR) by compensatory hypertrophy. However, the degree of this hypertrophy varies from donor to donor and the factors related to it are scarcely known. Methods We analyzed 103 living renal transplantations in our institution and divided them into two groups: compensatory hypertrophy group [optimal group, 1-year eGFR ≥60% of pre-donation, n = 63] and suboptimal compensatory hypertrophy group (suboptimal group, 1-year eGFR < 60% of pre-donation, n = 40). We retrospectively analyzed the factors related to suboptimal compensatory hypertrophy. Results Baseline eGFRs were the same in the two groups (optimal versus suboptimal: 82.0 ± 13.1 ml/min/1.73m2 versus 83.5 ± 14.8 ml/min/1.73m2, p = 0.588). Donor age (optimal versus suboptimal: 56.0 ± 10.4 years old versus 60.7 ± 8.7 years old, p = 0.018) and uric acid (optimal versus suboptimal: 4.8 ± 1.2 mg/dl versus 5.5 ± 1.3 mg/dl, p = 0.007) were significantly higher in the suboptimal group. The rate of pathological chronicity finding on 1-h biopsy (ah≧1 ∩ ct + ci≧1) was much higher in the suboptimal group (optimal versus suboptimal: 6.4% versus 25.0%, p = 0.007). After the multivariate analysis, the pathological chronicity finding [odds ratio (OR): 4.8, 95% confidence interval (CI): 1.3–17.8, p = 0.021] and uric acid (per 1.0 mg/dl, OR: 1.5, 95% CI: 1.1–2.2, p = 0.022) were found to be independent risk factors for suboptimal compensatory hypertrophy. Conclusion Chronicity findings on baseline biopsy and higher uric acid were associated with insufficient recovery of the post-donated renal function.
Collapse
Affiliation(s)
- Sho Nishida
- Department of General Surgery, Japanese Red Cross Kumamoto Hospital, 2-1-1 Nagamine-minami, Higashi-ku, Kumamoto, 861-8520, Japan.,Department of Urology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Yuji Hidaka
- Department of General Surgery, Japanese Red Cross Kumamoto Hospital, 2-1-1 Nagamine-minami, Higashi-ku, Kumamoto, 861-8520, Japan
| | - Mariko Toyoda
- Department of Internal Medicine, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Kohei Kinoshita
- Department of General Surgery, Japanese Red Cross Kumamoto Hospital, 2-1-1 Nagamine-minami, Higashi-ku, Kumamoto, 861-8520, Japan
| | - Kosuke Tanaka
- Department of General Surgery, Japanese Red Cross Kumamoto Hospital, 2-1-1 Nagamine-minami, Higashi-ku, Kumamoto, 861-8520, Japan
| | - Chiaki Kawabata
- Department of Internal Medicine, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Satoshi Hamanoue
- Department of Internal Medicine, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Akito Inadome
- Department of Urology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Hiroshi Yokomizo
- Department of General Surgery, Japanese Red Cross Kumamoto Hospital, 2-1-1 Nagamine-minami, Higashi-ku, Kumamoto, 861-8520, Japan
| | - Asami Takeda
- Department of Nephrology, Japanese Red Cross Nagoya Daini Hospital, Myoken-cho, Japan
| | - Soichi Uekihara
- Department of Internal Medicine, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Shigeyoshi Yamanaga
- Department of General Surgery, Japanese Red Cross Kumamoto Hospital, 2-1-1 Nagamine-minami, Higashi-ku, Kumamoto, 861-8520, Japan.
| |
Collapse
|
24
|
Lee YJ, Lee JH, Jung CW, Gwon JG, Ko SY, Lee J, Jo SK, Cho WY, Kim MG. Combination of Glomerular C4d and Morphologic Glomerular Lesions as a Possible Indicator in the Diagnosis of Acute or Chronic Active Antibody-Mediated Rejection. Transplant Proc 2019; 51:2660-2666. [DOI: 10.1016/j.transproceed.2019.03.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022]
|
25
|
Li S, Ghoshal S, Sojoodi M, Arora G, Masia R, Erstad DJ, Ferriera DS, Li Y, Wang G, Lanuti M, Caravan P, Or YS, Jiang LJ, Tanabe KK, Fuchs BC. The farnesoid X receptor agonist EDP-305 reduces interstitial renal fibrosis in a mouse model of unilateral ureteral obstruction. FASEB J 2019; 33:7103-7112. [PMID: 30884252 PMCID: PMC8793835 DOI: 10.1096/fj.201801699r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/14/2019] [Indexed: 08/15/2023]
Abstract
Farnesoid X receptor (FXR) is a nuclear receptor that has emerged as a key regulator in the maintenance of hepatic steatosis, inflammation, and fibrosis. However, the role of FXR in renal fibrosis remains to be established. Here, we investigate the effects of the FXR agonist EDP-305 in a mouse model of tubulointerstitial fibrosis via unilateral ureteral obstruction (UUO). Male C57Bl/6 mice received a UUO on their left kidney. On postoperative d 4, mice received daily treatment by oral gavage with either vehicle control (0.5% methylcellulose) or 10 or 30 mg/kg EDP-305. All animals were euthanized on postoperative d 12. EDP-305 dose-dependently decreased macrophage infiltration as measured by the F4/80 staining area and proinflammatory cytokine gene expression. EDP-305 also dose-dependently reduced interstitial fibrosis as assessed by morphometric quantification of the collagen proportional area and kidney hydroxyproline levels. Finally, yes-associated protein (YAP) activation, a major driver of fibrosis, increased after UUO injury and was diminished by EDP-305 treatment. Consistently, EDP-305 decreased TGF-β1-induced YAP nuclear localization in human kidney 2 cells by increasing inhibitory YAP phosphorylation. YAP inhibition may be a novel antifibrotic mechanism of FXR agonism, and EDP-305 could be used to treat renal fibrosis.-Li, S., Ghoshal, S., Sojoodi, M., Arora, G., Masia, R., Erstad, D. J., Ferriera, D. S., Li, Y., Wang, G., Lanuti, M., Caravan, P., Or, Y. S., Jiang, L.-J., Tanabe, K. K., Fuchs, B. C. The farnesoid X receptor agonist EDP-305 reduces interstitial renal fibrosis in a mouse model of unilateral ureteral obstruction.
Collapse
Affiliation(s)
- Shen Li
- Division of Surgical OncologyMassachusetts General Hospital Cancer CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Sarani Ghoshal
- Division of Surgical OncologyMassachusetts General Hospital Cancer CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Mozhdeh Sojoodi
- Division of Surgical OncologyMassachusetts General Hospital Cancer CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Gunisha Arora
- Division of Surgical OncologyMassachusetts General Hospital Cancer CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Ricard Masia
- Department of PathologyMassachusetts General Hospital Cancer CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Derek J. Erstad
- Division of Surgical OncologyMassachusetts General Hospital Cancer CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Diego S. Ferriera
- Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Yang Li
- Enanta PharmaceuticalsWatertownMassachusettsUSA
| | | | - Michael Lanuti
- Division of Surgical OncologyMassachusetts General Hospital Cancer CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Peter Caravan
- Institute for Innovation in ImagingMassachusetts General Hospital Cancer CenterHarvard Medical SchoolBostonMassachusettsUSA
- Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Yat Sun Or
- Enanta PharmaceuticalsWatertownMassachusettsUSA
| | | | - Kenneth K. Tanabe
- Division of Surgical OncologyMassachusetts General Hospital Cancer CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Bryan C. Fuchs
- Division of Surgical OncologyMassachusetts General Hospital Cancer CenterHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
26
|
Cockfield SM, Wilson S, Campbell PM, Cantarovich M, Gangji A, Houde I, Jevnikar AM, Keough‐Ryan TM, Monroy‐Cuadros F, Nickerson PW, Pâquet MR, Ramesh Prasad GV, Senécal L, Shoker A, Wolff J, Howell J, Schwartz JJ, Rush DN. Comparison of the effects of standard vs low-dose prolonged-release tacrolimus with or without ACEi/ARB on the histology and function of renal allografts. Am J Transplant 2019; 19:1730-1744. [PMID: 30582281 PMCID: PMC6590452 DOI: 10.1111/ajt.15225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 01/25/2023]
Abstract
Targeting the renin-angiotensin system and optimizing tacrolimus exposure are both postulated to improve outcomes in renal transplant recipients (RTRs) by preventing interstitial fibrosis/tubular atrophy (IF/TA). In this multicenter, prospective, open-label controlled trial, adult de novo RTRs were randomized in a 2 × 2 design to low- vs standard-dose (LOW vs STD) prolonged-release tacrolimus and to angiotensin-converting enzyme inhibitors/angiotensin II receptor 1 blockers (ACEi/ARBs) vs other antihypertensive therapy (OAHT). There were 2 coprimary endpoints: the prevalence of IF/TA at month 6 and at month 24. IF/TA prevalence was similar for LOW vs STD tacrolimus at month 6 (36.8% vs 39.5%; P = .80) and ACEi/ARBs vs OAHT at month 24 (54.8% vs 58.2%; P = .33). IF/TA progression decreased significantly with LOW vs STD tacrolimus at month 24 (mean [SD] change, +0.42 [1.477] vs +1.10 [1.577]; P = .0039). Across the 4 treatment groups, LOW + ACEi/ARB patients exhibited the lowest mean IF/TA change and, compared with LOW + OAHT patients, experienced significantly delayed time to first T cell-mediated rejection. Renal function was stable from month 1 to month 24 in all treatment groups. No unexpected safety findings were detected. Coupled with LOW tacrolimus dosing, ACEi/ARBs appear to reduce IF/TA progression and delay rejection relative to reduced tacrolimus exposure without renin-angiotensin system blockade. ClinicalTrials.gov identifier: NCT00933231.
Collapse
Affiliation(s)
| | - Sam Wilson
- Astellas Pharma Global DevelopmentNorthbrookIllinois
| | | | | | - Azim Gangji
- St. Joseph's Healthcare HamiltonHamiltonOntarioCanada
| | | | | | | | | | | | | | | | | | | | | | - John Howell
- Astellas Pharma Global Development, Inc.MarkhamOntarioCanada
| | | | | |
Collapse
|
27
|
Campeiro JD, Dam W, Monte GG, Porta LC, Oliveira LCGD, Nering MB, Viana GM, Carapeto FC, Oliveira EB, van den Born J, Hayashi MAF. Long term safety of targeted internalization of cell penetrating peptide crotamine into renal proximal tubular epithelial cells in vivo. Sci Rep 2019; 9:3312. [PMID: 30824773 PMCID: PMC6397221 DOI: 10.1038/s41598-019-39842-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Activated proximal tubular epithelial cells (PTECs) play a crucial role in progressive tubulo-interstitial fibrosis in native and transplanted kidneys. Targeting PTECs by non-viral delivery vectors might be useful to influence the expression of important genes and/or proteins in order to slow down renal function loss. However, no clinical therapies that specifically target PTECs are available at present. We earlier showed that a cationic cell penetrating peptide isolated from South American rattlesnake venom, named crotamine, recognizes cell surface heparan sulfate proteoglycans and accumulates in cells. In healthy mice, crotamine accumulates mainly in kidneys after intraperitoneal (ip) injection. Herein we demonstrate for the first time, the overall safety of acute or long-term treatment with daily ip administrated crotamine for kidneys functions. Accumulation of ip injected crotamine in the kidney brush border zone of PTECs, and its presence inside these cells were observed. In addition, significant lower in vitro crotamine binding, uptake and reporter gene transport and expression could be observed in syndecan-1 deficient HK-2 PTECs compared to wild-type cells, indicating that the absence of syndecan-1 impairs crotamine uptake into PTECs. Taken together, our present data show the safety of in vivo long-term treatment with crotamine, and its preferential uptake into PTECs, which are especially rich in HSPGs such as syndecan-1. In addition to the demonstrated in vitro gene delivery mediated by crotamine in HK-2 cells, the potential applicability of crotamine as prototypic non-viral (gene) delivery nanocarrier to modulate PTEC gene and/or protein expression was confirmed.
Collapse
Affiliation(s)
- Joana Darc Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Wendy Dam
- Department Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gabriela Guilherme Monte
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Lucas Carvalho Porta
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Marcela Bego Nering
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Gustavo Monteiro Viana
- Departamento de Bioquímica, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Fernando Cintra Carapeto
- Departamento de Patologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Eduardo Brandt Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-FMRP), Ribeirão Preto, Brazil
| | - Jacob van den Born
- Department Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
28
|
Fenofibrate Improved Interstitial Fibrosis of Renal Allograft through Inhibited Epithelial-Mesenchymal Transition Induced by Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8936856. [PMID: 30911353 PMCID: PMC6397988 DOI: 10.1155/2019/8936856] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/30/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
The best treatment for end-stage renal disease is renal transplantation. However, it is often difficult to maintain a renal allograft healthy for a long time following transplantation. Interstitial fibrosis and tubular atrophy (IF/TA) are significant histopathologic characteristics of a compromised renal allograft. There is no effective therapy to improve renal allograft function once IF/TA sets in. Although there are many underlying factors that can induce IF/TA, the pathogenesis of IF/TA has not been fully elucidated. It has been found that epithelial-mesenchymal transition (EMT) significantly contributes to the development of IF/TA. Oxidative stress is one of the main causes that induce EMT in renal allografts. In this study, we have used H2O2 to induce oxidative stress in renal tubular epithelial cells (NRK-52e) of rats. We also pretreated NRK-52e cells with an antioxidant (N-acetyl L-cysteine (NAC)) 1 h prior to the treatment with H2O2. Furthermore, we used fenofibrate (a peroxisome proliferator-activated receptor α agonist) to treat NRK-52e cells and a renal transplant rat model. Our results reveal that oxidative stress induces EMT in NRK-52e cells, and pretreatment with NAC can suppress EMT in these cells. Moreover, fenofibrate suppresses fibrosis by ameliorating oxidative stress-induced EMT in a rat model. Thus, fenofibrate may effectively prevent the development of fibrosis in renal allograft and improve the outcome.
Collapse
|
29
|
Unveiling the Role of DNA Methylation in Kidney Transplantation: Novel Perspectives toward Biomarker Identification. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1602539. [PMID: 30766879 PMCID: PMC6350635 DOI: 10.1155/2019/1602539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/30/2018] [Indexed: 12/13/2022]
Abstract
The burden of chronic kidney disease is dramatically rising, making it a major public health concern worldwide. Kidney transplantation is now the best treatment for patients with end-stage renal disease. Although kidney transplantation may improve survival and quality of life, its long-term results are hampered by immune- and/or non-immune-mediated complications. Thus, the identification of transplanted patients with a higher risk of posttransplant complications has become a big challenge for public health. However, current biomarkers of posttransplant complications have a poor predictive value, rising the need to explore novel approaches for the management of transplant patient. In this review we summarize the emerging literature about DNA methylation in kidney transplant complications, in order to highlight its perspectives toward biomarker identification. In the forthcoming future the monitoring of DNA methylation in kidney transplant patients could become a plausible strategy toward the prevention and/or treatment of kidney transplant complications.
Collapse
|
30
|
Nakamura K, Oshima S, Maeda M, Morio H, Fukahori H, Nakanishi T, Tsujimoto S, Hirose J, Noto T, Hamakawa N, Inami M, Morokata T. Replacement of mycophenolate mofetil with a JAK inhibitor, AS2553627, in combination with low-dose tacrolimus, for renal allograft rejection in non-human primates. Int Immunopharmacol 2018; 64:201-207. [PMID: 30195818 DOI: 10.1016/j.intimp.2018.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/09/2023]
Abstract
In renal transplant patients, using mycophenolate mofetil (MMF) with calcineurin inhibitors (CNIs; cyclosporine and tacrolimus [TAC]) has led to a significant improvement in graft survival. However, reducing or withholding MMF due to its gastrointestinal adverse events increases rejection risk. CNI-sparing strategies are important to avoid CNI-related nephrotoxicity in clinical settings. Here, we investigated AS2553627, a JAK inhibitor replacing MMF in combination with a sub-therapeutic dose of TAC to treat allograft rejection in a monkey model. AS2553627 inhibited proliferation of IL-2 stimulated T cells with little species difference between monkeys and humans. In MMF monotherapy, oral administration of 20 or 40 mg/kg/day prolonged graft survival with median survival times (MSTs) of 16.5 days and 33 days, respectively, whereas untreated animals showed MST of 6 days. In MMF/TAC (1 mg/kg/day, p.o.) combination therapy, pharmacokinetic analysis indicated that MMF 20 mg/kg/day achieved the clinical target AUC0-24h and prolonged renal allograft survival, with MST of 24 days. Oral administration of AS2553627 0.24 mg/kg/day in combination with TAC significantly prolonged renal allograft survival to MST of >90 days with low plasma creatinine levels. Histopathological analysis revealed that acute T cell-mediated rejection events such as vasculitis and interstitial mononuclear cell infiltration were significantly inhibited in AS2553627/TAC-treated allografts compared with MMF/TAC-treated allografts. All AS2553627/TAC-treated monkeys surviving >90 days exhibited less interstitial fibrosis/tubular atrophy than monkeys in the MMF/TAC group. These results suggest that AS2553627 replacing MMF is an attractive CNI-sparing strategy to prevent renal allograft rejection.
Collapse
Affiliation(s)
- Koji Nakamura
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | - Shinsuke Oshima
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Masashi Maeda
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Hiroki Morio
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Hidehiko Fukahori
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Tomonori Nakanishi
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Susumu Tsujimoto
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Jun Hirose
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Takahisa Noto
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Nozomu Hamakawa
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Masamichi Inami
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | - Tatsuaki Morokata
- Drug Discovery Research, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| |
Collapse
|
31
|
Efficacy and Safety of a Tofacitinib-based Immunosuppressive Regimen After Kidney Transplantation: Results From a Long-term Extension Trial. Transplant Direct 2018; 4:e380. [PMID: 30234149 PMCID: PMC6133407 DOI: 10.1097/txd.0000000000000819] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/21/2018] [Indexed: 01/07/2023] Open
Abstract
Background Tofacitinib is an oral Janus kinase inhibitor. This open-label, long-term extension (LTE) study (NCT00658359) evaluated long-term tofacitinib treatment in stable kidney transplant recipients (n = 178) posttransplant. Methods Patients who completed 12 months of cyclosporine (CsA) or tofacitinib treatment in the phase IIb parent study (NCT00483756) were enrolled into this LTE study, evaluating long-term tofacitinib treatment over months 12 to 72 posttransplant. Patients were analyzed by tofacitinib less-intensive (LI) or more-intensive (MI) regimens received in the parent study. For both groups, tofacitinib dose was reduced from 10 to 5 mg twice daily by 6 months into the LTE. Patients were followed up through month 72 posttransplant, with a focus on month 36 results. Results Tofacitinib demonstrated similar 36-month patient and graft survival rates to CsA. Biopsy-proven acute rejection rates at month 36 were 11.2% for CsA, versus 10.0% and 7.4% (both P > 0.05) for tofacitinib LI and MI, respectively. Least squares mean estimated glomerular filtration rates were 9 to 15 mL/min per 1.73 m2 higher for tofacitinib versus CsA at month 36. The proportions of patients with grade 2/3 interstitial fibrosis and tubular atrophy in month 36 protocol biopsies were 20.0% for LI and 18.2% for MI (both P > 0.05) versus 33.3% for CsA. Kaplan-Meier cumulative serious infection rates at month 36 were numerically higher for tofacitinib LI (43.9%; P = 0.45) and significantly higher for MI (55.9%; P < 0.05) versus CsA (37.1%). Conclusions Long-term tofacitinib continued to be effective in preventing renal allograft acute rejection and preserving renal function. However, long-term tofacitinib and mycophenolic acid product combination was associated with persistent serious infection risk.
Collapse
|
32
|
Juillerat-Jeanneret L, Aubert JD, Mikulic J, Golshayan D. Fibrogenic Disorders in Human Diseases: From Inflammation to Organ Dysfunction. J Med Chem 2018; 61:9811-9840. [DOI: 10.1021/acs.jmedchem.8b00294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - John-David Aubert
- Pneumology Division and Transplantation Center, Centre Hospitalier Universitaire Vaudois (CHUV), CH1011 Lausanne, Switzerland
| | - Josip Mikulic
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
33
|
Li Y, Wang X, Zhang L, Yuan X, Hao J, Ni J, Hao L. Upregulation of allograft inflammatory factor‑1 expression and secretion by macrophages stimulated with aldosterone promotes renal fibroblasts to a profibrotic phenotype. Int J Mol Med 2018; 42:861-872. [PMID: 29749461 PMCID: PMC6034929 DOI: 10.3892/ijmm.2018.3667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/04/2018] [Indexed: 02/07/2023] Open
Abstract
Macrophages have been identified as a key cell type in the pathogenesis of renal interstitial fibrosis (RIF). However, the mechanism through which macrophages drive fibrosis remains unclear. The current study focuses on the effects and possible underlying mechanism of allograft inflammatory factor-1 (AIF-1), an inflammation-responsive scaffold protein expressed and secreted by macrophages, in promoting fibroblasts to a profibrotic phenotype. In vivo experiments indicated that AIF-1, CD68 and α-smooth muscle actin (α-SMA) were upregulated in kidney tissues of mice subjected to unilateral ureteric obstruction, while their expressions were inhibited by an aldosterone receptor antagonist, spironolactone. Double immunofluorescence staining revealed that AIF-1 expression co-localized with CD68-positive macrophages in the renal interstitium, indicating that AIF-1 expression in macrophages was increased in the RIF animal model. Furthermore, to identify the role of AIF-1 in promoting fibrosis, its expression and secretion by the RAW264.7 macrophage cell line were detected in vitro. The expression levels of α-SMA, phosphorylated p38 (p-p38) and fibronectin (FN) in fibroblasts were examined subsequent to co-culture with macrophages. The increase in AIF-1 expression and secretion was confirmed in RAW264.7 cells in response to aldosterone. After 72 h of co-culture between fibroblasts and macrophages stimulated with aldosterone, the α-SMA expression was induced in fibroblasts, with significantly increased expression levels of FN and p-p38 observed. In addition, AIF-1 expression was reduced by stable transfection of RAW264.7 cells with AIF-1 small interfering RNA, resulting in significantly reduced expression levels of α-SMA, p-p38 and FN in fibroblasts co-cultured with macrophages as compared with normal macrophages. These findings indicate that the expression of AIF-1 in macrophages is critical for the activation of renal fibroblasts to a profibrotic phenotype. AIF-1 expression was upregulated in macrophages, and may be a novel mechanism linking macrophages to the promotion of RIF via the p38 signaling pathway.
Collapse
Affiliation(s)
- Yushu Li
- Department of Nephropathy, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xingzhi Wang
- Department of Nephropathy, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lei Zhang
- Department of Nephropathy, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xueying Yuan
- Department of Nephropathy, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jianbing Hao
- Department of Nephropathy, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jie Ni
- Department of Nephropathy, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lirong Hao
- Department of Nephropathy, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
34
|
Predicting Fibrosis Progression in Renal Transplant Recipients Using Laser-Based Infrared Spectroscopic Imaging. Sci Rep 2018; 8:686. [PMID: 29330374 PMCID: PMC5766495 DOI: 10.1038/s41598-017-19006-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022] Open
Abstract
Renal transplants have not seen a significant improvement in their 10-year graft life. Chronic damage accumulation often leads to interstitial fibrosis and tubular atrophy (IF/TA) and thus graft function loss over time. For this reason, IF/TA has been the chief suspect for a potential prognostic marker for long term outcomes. In this study, we have used infrared spectroscopic (IR) imaging to interrogate the biochemistry of regions of fibrosis from renal transplant biopsies to identify a biochemical signature that can predict rapid progression of fibrosis. IR imaging represents an approach that permits label-free biochemical imaging of human tissues towards identifying novel biomarkers for disease diagnosis or prognosis. Two cohorts were identified as progressors (n = 5, > 50% fibrosis increase between time points) and non-progressors (n = 5, < 5% increase between time points). Each patient had an early time point and late time point biopsy. Collagen associated carbohydrate moieties (ν(C–O), 1035 cm−1 and ν(C–O–C),1079 cm−1) spectral ratios demonstrated good separation between the two cohorts (p = 0.001). This was true for late and early time point biopsies suggesting the regions of fibrosis are biochemically altered in cases undergoing progressive fibrosis. Thus, IR imaging can potentially predict rapid progression of fibrosis using histologically normal early time point biopsies.
Collapse
|
35
|
Abstract
INTRODUCTION Fibrogenesis markers, such as alpha-actin (AA), CD163 (macrophages), and E-cadherin, have been studied as chronic kidney allograft injury (CAI) predictors, a major cause of allograft failure. OBJECTIVE Investigate the value of these markers in predicting CAI and initiation of dialysis. MATERIALS AND METHODS Retrospective analysis of 26 kidney allograft biopsies (from 22 patients with CAI) during 2 years, evaluating intensity and percentage of marked cells on glomeruli and tubulointerstitial compartment. At the time of the biopsy, patients were 45.5 ± 15.8 years and 4.2 years after transplant, and they had a mean glomerular filtration rate (GFR) of 25.8 ± 9.9 mL/min. From an average of 8.5 glomeruli per biopsy, there was ≤25% sclerosis in 17 cases, 26% to 50% in 5, and >50% in 4. Interstitial fibrosis or tubular atrophy affected ≤25% of cortical area in 14 cases, 26% to 50% in 8, and >50% in 2. Twelve patients started dialysis 5.8 ± 4.7 years after transplant, with an average GFR 20.9 mL/min at the time of the biopsy. RESULTS There was a higher intensity and percentage of CD163-marked cells in the tubulointerstitial compartment in advanced interstitial fibrosis. We found an association between intensity of AA in the tubulointerstitial compartment and initiation of dialysis (P = .003) and a negative correlation between intensity of E-cadherin loss and GFR (r = -0.56, P = .012). CONCLUSIONS In our study, intensity of tubulointerstitial AA was shown to be a predictor of initiation of dialysis, and E-cadherin loss intensity was associated to CAI progression. However, prospective and larger studies are needed to evaluate the predictive value of these markers.
Collapse
|
36
|
Prevention of chronic renal allograft rejection by AS2553627, a novel JAK inhibitor, in a rat transplantation model. Transpl Immunol 2017; 46:14-20. [PMID: 28988984 DOI: 10.1016/j.trim.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Janus kinase (JAK) inhibitors are thought to be promising candidates to aid renal transplantation. However, the effectiveness of JAK inhibitors against features of chronic rejection, including interstitial fibrosis/tubular atrophy (IF/TA) and glomerulosclerosis, has not been elucidated. Here, we investigated the effect of AS2553627, a novel JAK inhibitor, on the development of chronic rejection in rat renal transplantation. METHODS Lewis (LEW) to Brown Norway (BN) rat renal transplantation was performed. Tacrolimus (TAC) at 0.1mg/kg was administered intramuscularly once a day for 10 consecutive days starting on the day of transplantation (days 0 to 9) to prevent initial acute rejection. After discontinuation of TAC treatment from days 10 to 28, AS2553627 (1 and 10mg/kg) was orally administered with TAC. At 13weeks after renal transplantation, grafts were harvested for histopathological and mRNA analysis. Creatinine and donor-specific antibodies were measured from plasma samples. Urinary protein and kidney injury markers were also evaluated. RESULTS AS2553627 in combination with TAC exhibited low plasma creatinine and a marked decrease in urinary protein and kidney injury markers, such as tissue inhibitor of metalloproteinase-1 and kidney injury molecule-1. At 13weeks, histopathological analysis revealed that AS2553627 treatment inhibited glomerulosclerosis and IF/TA. In addition, upregulation of cell surface markers, fibrosis/epithelial-mesenchymal transition and inflammation-related genes were reduced by the combination of AS2553672 and TAC, particularly CD8 and IL-6 mRNAs, indicating that AS2553627 prevented cell infiltration and inflammation in renal allografts. CONCLUSIONS These results indicate the therapeutic potential of JAK inhibitors in chronic rejection progression, and suggest that AS2553627 is a promising agent to improve long-term graft survival after renal transplantation.
Collapse
|
37
|
Alterations in SCAI Expression during Cell Plasticity, Fibrosis and Cancer. Pathol Oncol Res 2017; 24:641-651. [PMID: 28815470 DOI: 10.1007/s12253-017-0293-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/09/2017] [Indexed: 02/01/2023]
Abstract
Suppressor of cancer cell invasion (SCAI) has been originally characterized as a tumor suppressor inhibiting metastasis in different human cancer cells, and it has been suggested that SCAI expression declines in tumors. The expression patterns and role of SCAI during physiological and pathophysiological processes is still poorly understood. Earlier we demonstrated that SCAI is regulating the epithelial-mesenchymal transition of proximal tubular epithelial cells, it is downregulated during renal fibrosis and it is overexpressed in Wilms' tumors. Here we bring further evidence for the involvement of SCAI during cell plasticity and we examine the prognostic value and expression patterns of SCAI in various tumors. SCAI prevented the activation of the SMA promoter induced by angiotensin II. SCAI expression decreased in a model of endothelial-mesenchymal transition and increased during iPS reprogramming of fibroblasts. During renal fibrosis SCAI expression declined, as evidenced in a rat model of renal transplant rejection and in TGF-β1 overexpressing transgenic mice. High expression of SCAI correlated with better survival in patients with breast and lung cancers. Intriguingly, in the case of other cancers (gastric, prostate, colorectal) high SCAI expression correlated with poor survival of patients. Finally, we bring evidence for SCAI overexpression in colorectal cancer patients, irrespective of stage or metastatic status of the disease, suggesting a diverse role of SCAI in various diseases and cancer.
Collapse
|
38
|
Wang HK, Lai YC, Lin YH, Chiou HJ, Chou YH. Acoustic Radiation Force Impulse Imaging of the Transplant Kidney: Correlation Between Cortical Stiffness and Arterial Resistance in Early Post-transplant Period. Transplant Proc 2017; 49:1001-1004. [DOI: 10.1016/j.transproceed.2017.03.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Li L, Greene I, Readhead B, Menon MC, Kidd BA, Uzilov AV, Wei C, Philippe N, Schroppel B, He JC, Chen R, Dudley JT, Murphy B. Novel Therapeutics Identification for Fibrosis in Renal Allograft Using Integrative Informatics Approach. Sci Rep 2017; 7:39487. [PMID: 28051114 PMCID: PMC5209709 DOI: 10.1038/srep39487] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022] Open
Abstract
Chronic allograft damage, defined by interstitial fibrosis and tubular atrophy (IF/TA), is a leading cause of allograft failure. Few effective therapeutic options are available to prevent the progression of IF/TA. We applied a meta-analysis approach on IF/TA molecular datasets in Gene Expression Omnibus to identify a robust 85-gene signature, which was used for computational drug repurposing analysis. Among the top ranked compounds predicted to be therapeutic for IF/TA were azathioprine, a drug to prevent acute rejection in renal transplantation, and kaempferol and esculetin, two drugs not previously described to have efficacy for IF/TA. We experimentally validated the anti-fibrosis effects of kaempferol and esculetin using renal tubular cells in vitro and in vivo in a mouse Unilateral Ureteric Obstruction (UUO) model. Kaempferol significantly attenuated TGF-β1-mediated profibrotic pathways in vitro and in vivo, while esculetin significantly inhibited Wnt/β-catenin pathway in vitro and in vivo. Histology confirmed significantly abrogated fibrosis by kaempferol and esculetin in vivo. We developed an integrative computational framework to identify kaempferol and esculetin as putatively novel therapies for IF/TA and provided experimental evidence for their therapeutic activities in vitro and in vivo using preclinical models. The findings suggest that both drugs might serve as therapeutic options for IF/TA.
Collapse
Affiliation(s)
- Li Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 770 exington Ave., New York, NY 10065, USA.,Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai
| | - Ilana Greene
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Benjamin Readhead
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 770 exington Ave., New York, NY 10065, USA.,Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai
| | - Madhav C Menon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Brian A Kidd
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 770 exington Ave., New York, NY 10065, USA.,Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai
| | - Andrew V Uzilov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1255 5th Avenue, New York, NY 10029, USA
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nimrod Philippe
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Bernd Schroppel
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.,Section of Nephrology, University of Ulm, Albert-Einstein-Allee 23, Ulm, 89081 Germany
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Rong Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1255 5th Avenue, New York, NY 10029, USA
| | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 770 exington Ave., New York, NY 10065, USA.,Department of Health Policy and Research, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA.,Institute for Next Generation Healthcare, Icahn School of Medicine at Mount Sinai
| | - Barbara Murphy
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
40
|
Affiliation(s)
- James A Hutchinson
- Department of Surgery, University Hospital Regensburg, Regensburg 93053, Germany.
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg 93053, Germany
| |
Collapse
|
41
|
Friedli I, Crowe LA, Berchtold L, Moll S, Hadaya K, de Perrot T, Vesin C, Martin PY, de Seigneux S, Vallée JP. New Magnetic Resonance Imaging Index for Renal Fibrosis Assessment: A Comparison between Diffusion-Weighted Imaging and T1 Mapping with Histological Validation. Sci Rep 2016; 6:30088. [PMID: 27439482 PMCID: PMC4954968 DOI: 10.1038/srep30088] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022] Open
Abstract
A need exists to noninvasively assess renal interstitial fibrosis, a common process
to all kidney diseases and predictive of renal prognosis. In this translational
study, Magnetic Resonance Imaging (MRI) T1 mapping and a new segmented
Diffusion-Weighted Imaging (DWI) technique, for Apparent Diffusion Coefficient
(ADC), were first compared to renal fibrosis in two well-controlled animal models to
assess detection limits. Validation against biopsy was then performed in 33 kidney
allograft recipients (KARs). Predictive MRI indices, ΔT1 and
ΔADC (defined as the cortico-medullary differences), were compared to
histology. In rats, both T1 and ADC correlated well with fibrosis and inflammation
showing a difference between normal and diseased kidneys. In KARs, MRI indices were
not sensitive to interstitial inflammation. By contrast, ΔADC
outperformed ΔT1 with a stronger negative correlation to fibrosis
(R2 = 0.64 against
R2 = 0.29
p < 0.001). ΔADC tends to negative values
in KARs harboring cortical fibrosis of more than 40%. Using a discriminant analysis
method, the ΔADC, as a marker to detect such level of fibrosis or
higher, led to a specificity and sensitivity of 100% and 71%, respectively. This new
index has potential for noninvasive assessment of fibrosis in the clinical
setting.
Collapse
Affiliation(s)
- I Friedli
- Division of Radiology, Department of Radiology and Medical Informatics Geneva University Hospitals and Faculty of Medicine of the University of Geneva, Switzerland
| | - L A Crowe
- Division of Radiology, Department of Radiology and Medical Informatics Geneva University Hospitals and Faculty of Medicine of the University of Geneva, Switzerland
| | - L Berchtold
- Service of Nephrology, Department of Internal Medicine Specialties, Geneva University Hospitals, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - S Moll
- Division of Pathology, Geneva University Hospitals and Faculty of Medicine of the University of Geneva, Switzerland
| | - K Hadaya
- Divisions of Nephrology and Transplantation, Geneva University Hospitals and Faculty of Medicine of the University of Geneva, Switzerland
| | - T de Perrot
- Division of Radiology, Department of Radiology and Medical Informatics Geneva University Hospitals and Faculty of Medicine of the University of Geneva, Switzerland
| | - C Vesin
- Division of Cell Physiology and Metabolism, Geneva University Hospitals and Faculty of Medicine of the University of Geneva, Switzerland
| | - P-Y Martin
- Service of Nephrology, Department of Internal Medicine Specialties, Geneva University Hospitals, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - S de Seigneux
- Service of Nephrology, Department of Internal Medicine Specialties, Geneva University Hospitals, University of Geneva, Faculty of Medicine, Geneva, Switzerland
| | - J-P Vallée
- Division of Radiology, Department of Radiology and Medical Informatics Geneva University Hospitals and Faculty of Medicine of the University of Geneva, Switzerland
| |
Collapse
|
42
|
Sosa Peña MDP, Lopez-Soler R, Melendez JA. Senescence in chronic allograft nephropathy. Am J Physiol Renal Physiol 2016; 315:F880-F889. [PMID: 27306980 DOI: 10.1152/ajprenal.00195.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite increasing numbers of patients on dialysis, the numbers of renal transplants performed yearly have remained relatively static. During the last 50 years, there have been many advances in the pharmacology of prevention of organ rejection. However, most patients will suffer from a slow but steady decline in renal function leading to graft loss. The most common cause of long-term graft loss is chronic allograft nephropathy (CAN). Therefore, elucidating and understanding the mechanisms involved in CAN is crucial for achieving better posttransplant outcomes. It is thought that the development of epithelial to mesenchymal transition (EMT) in proximal tubules is one of the first steps towards CAN, and has been shown to be a result of cellular senescence. Cells undergoing senescence acquire a senescence associated secretory phenotype (SASP) leading to the production of interleukin-1 alpha (IL-1α), which has been implicated in several degenerative and inflammatory processes including renal disease. A central mediator in SASP activation is the production of reactive oxygen species (ROS), which are produced in response to numerous physiological and pathological stimuli. This review explores the connection between SASP and the development of EMT/CAN in an effort to suggest future directions for research leading to improved long-term graft outcomes.
Collapse
Affiliation(s)
| | - Reynold Lopez-Soler
- Albany Medical Center, Department of Surgery, Division of Transplantation, Albany, New York
| | - J Andrés Melendez
- SUNY Polytechnic Institute, Colleges of Nanoscale Science and Engineering, Albany, New York
| |
Collapse
|
43
|
Epigenetics in Kidney Transplantation: Current Evidence, Predictions, and Future Research Directions. Transplantation 2016; 100:23-38. [PMID: 26356174 DOI: 10.1097/tp.0000000000000878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications are changes to the genome that occur without any alteration in DNA sequence. These changes include cytosine methylation of DNA at cytosine-phosphate diester-guanine dinucleotides, histone modifications, microRNA interactions, and chromatin remodeling complexes. Epigenetic modifications may exert their effect independently or complementary to genetic variants and have the potential to modify gene expression. These modifications are dynamic, potentially heritable, and can be induced by environmental stimuli or drugs. There is emerging evidence that epigenetics play an important role in health and disease. However, the impact of epigenetic modifications on the outcomes of kidney transplantation is currently poorly understood and deserves further exploration. Kidney transplantation is the best treatment option for end-stage renal disease, but allograft loss remains a significant challenge that leads to increased morbidity and return to dialysis. Epigenetic modifications may influence the activation, proliferation, and differentiation of the immune cells, and therefore may have a critical role in the host immune response to the allograft and its outcome. The epigenome of the donor may also impact kidney graft survival, especially those epigenetic modifications associated with early transplant stressors (e.g., cold ischemia time) and donor aging. In the present review, we discuss evidence supporting the role of epigenetic modifications in ischemia-reperfusion injury, host immune response to the graft, and graft response to injury as potential new tools for the diagnosis and prediction of graft function, and new therapeutic targets for improving outcomes of kidney transplantation.
Collapse
|
44
|
Tan X, Xu X, Zeisberg EM, Zeisberg M. High inorganic phosphate causes DNMT1 phosphorylation and subsequent fibrotic fibroblast activation. Biochem Biophys Res Commun 2016; 472:459-64. [DOI: 10.1016/j.bbrc.2016.01.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022]
|
45
|
Hara S, Ishimura T, Fujisawa M, Nishi S, Itoh T. Granular swollen epithelial cells in the kidney allograft: A clinicopathological study with special emphasis on possible marker for kidney allograft aging. Nephrology (Carlton) 2016; 21 Suppl 1:14-9. [PMID: 26969019 DOI: 10.1111/nep.12764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2016] [Indexed: 11/29/2022]
Abstract
AIM To elucidate the clinicopathological significance of granular swollen epithelial cells (GSECs), which provides histological evidence in the diagnosis of mitochondrial nephropathy, but incidentally observed in renal allografts, we evaluated GSECs as a surrogate histological marker for kidney allograft aging, as previously reported for p16, p21, and β-galactosidase. METHODS We retrospectively reviewed 426 kidney allograft biopsy specimens diagnosed at our university from January 2009 to April 2015. The prevalence and density of GSECs were compared with an age-matched control group of 508 native kidney biopsies. GSECs were defined as swollen (>2 times larger than normal renal tubular cells) epithelial cells best observed using Masson trichrome staining. Morphometric analyses were performed using digital microscopy software. RESULTS The prevalence of GSECs was 7.7% in allograft kidneys and 8.1% in native kidneys. GSECs in kidney allografts were predominantly detected in medullary renal tubules, but not in the Bowman's capsular epithelium or podocytes. GSECs were observed in the following cases; no remarkable changes, n = 11; interstitial fibrosis and tubular atrophy, n = 7; chronic calcineurin inhibitor toxicity, n = 5; antibody-mediated rejection, n = 3; T cell-mediated rejection grade IA, n = 1; and others, n = 6. Compared with control specimens, medullary density of GSECs in kidney allografts was significantly increased. The prevalence of GSECs slightly increased with post-transplant duration; however, this trend was not statistically significant. CONCLUSIONS The present study does not provide pathological significance of GSEC in kidney allografts in terms of allograft aging, and warrant the further research with molecular approach.
Collapse
Affiliation(s)
- Shigeo Hara
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takeshi Ishimura
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinichi Nishi
- Department of Nephrology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoo Itoh
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
46
|
Zeisberg M, Zeisberg EM. Precision renal medicine: a roadmap towards targeted kidney fibrosis therapies. FIBROGENESIS & TISSUE REPAIR 2015; 8:16. [PMID: 26330891 PMCID: PMC4556008 DOI: 10.1186/s13069-015-0033-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022]
Abstract
Based on extensive pre-clinical achievements over the past decades, it appears to be due time for a successful clinical translation in the renal fibrosis field-but what is the quickest road to get there? In light of the recent launch of the Precision Medicine Initiative and success of molecularly informed drugs in oncology, we here discuss what it may take to bring molecularly targeted anti-fibrotic to clinical use in chronic progressive kidney disease.
Collapse
Affiliation(s)
- Michael Zeisberg
- />Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg August University, Robert Koch Str. 40, 37075 Göttingen, Germany
| | - Elisabeth M. Zeisberg
- />Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
- />German Center for Cardiovascular Research (DZHK), Robert Koch Street 40, Göttingen, Germany
| |
Collapse
|
47
|
Lee J, Oh YT, Joo DJ, Ma BG, Lee AL, Lee JG, Song SH, Kim SU, Jung DC, Chung YE, Kim YS. Acoustic Radiation Force Impulse Measurement in Renal Transplantation: A Prospective, Longitudinal Study With Protocol Biopsies. Medicine (Baltimore) 2015; 94:e1590. [PMID: 26426636 PMCID: PMC4616853 DOI: 10.1097/md.0000000000001590] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Interstitial fibrosis and tubular atrophy (IF/TA) is a common cause of kidney allograft loss. Several noninvasive techniques developed to assess tissue fibrosis are widely used to examine the liver. However, relatively few studies have investigated the use of elastographic methods to assess transplanted kidneys. The aim of this study was to explore the clinical implications of the acoustic radiation force impulse (ARFI) technique in renal transplant patients. A total of 91 patients who underwent living donor renal transplantation between September 2010 and January 2013 were included in this prospective study. Shear wave velocity (SWV) was measured by ARFI at baseline and predetermined time points (1 week and 6 and 12 months after transplantation). Protocol biopsies were performed at 12 months. Instead of reflecting IF/TA, SWVs were found to be related to time elapsed after transplantation. Mean SWV increased continuously during the first postoperative year (P < 0.001). In addition, mixed model analysis showed no correlation existed between SWV and serum creatinine (r = -0.2426, P = 0.0771). There was also no evidence of a relationship between IF/TA and serum creatinine (odds ratio [OR] = 1.220, P = 0.7648). Furthermore, SWV temporal patterns were dependent on the kidney weight to body weight ratio (KW/BW). In patients with a KW/BW < 3.5 g/kg, mean SWV continuously increased for 12 months, whereas it decreased after 6 months in those with a KW/BW ≥ 3.5 g/kg.No significant correlation was observed between SWV and IF/TA or renal dysfunction. However, SWV was found to be related to the time after transplantation. Renal hemodynamics influenced by KW/BW might impact SWV values.
Collapse
Affiliation(s)
- Juhan Lee
- From the Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System (JL, DJJ, AL, JGL, SHS, YSK); The Research Institute for Transplantation, Yonsei University College of Medicine (DJJ, YSK); Department of Radiology, Severance Hospital, Yonsei University Health System (YTO, DCJ, YEC); Biostatistics Collaboration Unit, Yonsei University College of Medicine (BGM); and Department of Internal Medicine, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea (SUK)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|