1
|
Setti PG, Deon GA, Zeni Dos Santos R, Goes CAG, Garnero ADV, Gunski RJ, de Oliveira EHC, Porto-Foresti F, de Freitas TRO, Silva FAO, Liehr T, Utsunomia R, Kretschmer R, de Bello Cioffi M. Evolution of bird sex chromosomes: a cytogenomic approach in Palaeognathae species. BMC Ecol Evol 2024; 24:51. [PMID: 38654159 PMCID: PMC11036779 DOI: 10.1186/s12862-024-02230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Different patterns of sex chromosome differentiation are seen in Palaeognathae birds, a lineage that includes the ratites (Struthioniformes, Rheiformes, Apterygiformes, Casuariiformes, and the sister group Tinamiformes). While some Tinamiform species have well-differentiated W chromosomes, both Z and W of all the flightless ratites are still morphologically undifferentiated. Here, we conducted a comprehensive analysis of the ZW differentiation in birds using a combination of cytogenetic, genomic, and bioinformatic approaches. The whole set of satDNAs from the emu (Dromaius novaehollandiae) was described and characterized. Furthermore, we examined the in situ locations of these satDNAs alongside several microsatellite repeats and carried out Comparative Genomic Hybridizations in two related species: the greater rhea (Rhea americana) and the tataupa tinamou (Crypturellus tataupa). RESULTS From the 24 satDNA families identified (which represent the greatest diversity of satDNAs ever uncovered in any bird species), only three of them were found to accumulate on the emu's sex chromosomes, with no discernible accumulation observed on the W chromosome. The W chromosomes of both the greater rhea and the emu did not exhibit a significant buildup of either C-positive heterochromatin or repetitive DNAs, indicating their large undifferentiation both at morphological and molecular levels. In contrast, the tataupa tinamou has a highly differentiated W chromosome that accumulates several DNA repeats. CONCLUSION The findings provide new information on the architecture of the avian genome and an inside look at the starting points of sex chromosome differentiation in birds.
Collapse
Affiliation(s)
- Príncia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| | | | | | - Analía Del Valle Garnero
- Campus São Gabriel, Universidade Federal do Pampa, 97307-020, São Gabriel, Rio Grande do Sul, Brazil
| | - Ricardo José Gunski
- Campus São Gabriel, Universidade Federal do Pampa, 97307-020, São Gabriel, Rio Grande do Sul, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, 67030-000, Ananindeua, PA, Brazil
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, 66075-110, Belém, PA, Brazil
| | - Fábio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, 17033-360, Bauru, São Paulo, Brazil
| | | | - Fábio Augusto Oliveira Silva
- Laboratório de Citogenômica e Mutagênese Ambiental, Seção de Meio Ambiente, Instituto Evandro Chagas, 67030-000, Ananindeua, PA, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, 07747, Jena, Germany.
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, 17033-360, Bauru, São Paulo, Brazil
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, 96.010-610, Pelotas, RS, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
2
|
Souza KL, Melo S, Peixoto MA, Travenzoli NM, Feio RN, Dergam JA. Repetitive DNA Mapping in Five Genera of Tree Frogs (Amphibia: Anura) from the Atlantic Forest: New Highlights on Genomic Organization in Hylidae. Cytogenet Genome Res 2024; 163:317-326. [PMID: 38368863 DOI: 10.1159/000537875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 02/14/2024] [Indexed: 02/20/2024] Open
Abstract
INTRODUCTION The tribes Cophomantini, Scinaxini, and Dendropsophini are anurans that belong to Hylidae, with wide distribution in tropical and subtropical regions around the world. The taxonomy and systematics of this family remain in a state of ongoing revision. Previous cytogenetic analyses of genera Boana, Bokermannohyla, Ololygon, Scinax, and Dendropsophus described some karyotypic characters such as conventional staining, C-banding and NORs, and FISH with specific probes. METHODS This study describes for the first time the karyotypes of four species: Bokermannohyla ibitipoca, Ololygon luizotavioi, Dendropsophus bipunctatus, and Dendropsophus ruschii. Furthermore, we map CA(15) and CAT(10) microsatellite sites for the aforementioned species and six more species from the same genera for insight into the chromosomal evolution within the subfamily Hyalinae. RESULTS B. ibitipoca and O. luizotavioi had 2n = 24 and karyotypic formulas 18m + 4sm + 2st and 8m + 12sm + 4st, while D. bipunctatus and D. ruschii showed 2n = 30 and karyotypic formulas 12m + 12sm + 4st + 2t and 10m + 10sm + 6st + 4t, respectively. The diploid numbers and karyotypic formulas revealed here follow the previously reported trend for Hylidae, except B. ibitipoca has a particularity of eight metacentric chromosomes, more than what is commonly found in species of this genus. The microsatellites probes CA(15) and CAT(10) had markings accumulated in blocks in the centromeric, pericentromeric, and terminal regions that were more specific for some species, as well as markings scattered along the chromosomes. We present a comprehensive review table of current data on cytogenetics of these genera. CONCLUSION Our findings showed that the karyotypes of the hylids studied here majority fit the postulated conserved diploid number (2n = 24) and morphological chromosome patterns, while the mapping of the microsatellites enabled us to detect differences between species that share similar chromosomal morphologies.
Collapse
Affiliation(s)
- Késsia Leite Souza
- Department of Animal Biology, Laboratory of Molecular Systematics (Beagle), Federal University of Viçosa, Vicosa, Brazil
| | - Silvana Melo
- Department of Structural and Functional Biology, Laboratory of Fish Biology and Genetics, Botucatu Institute of Biosciences, Paulista State University, Botucatu, Brazil
| | - Marco Antônio Peixoto
- Department of General Biology, Biometrics Laboratory, Federal University of Viçosa, Vicosa, Brazil
| | - Natália Martins Travenzoli
- Department of Animal Biology, Laboratory of Molecular Systematics (Beagle), Federal University of Viçosa, Vicosa, Brazil
| | - Renato Neves Feio
- Department of Animal Biology, Museum of Zoology João Moojen (MZUFV), Federal University of Viçosa, Vicosa, Brazil
| | - Jorge Abdala Dergam
- Department of Animal Biology, Laboratory of Molecular Systematics (Beagle), Federal University of Viçosa, Vicosa, Brazil
| |
Collapse
|
3
|
de Moraes RLR, de Menezes Cavalcante Sassi F, Vidal JAD, Goes CAG, dos Santos RZ, Stornioli JHF, Porto-Foresti F, Liehr T, Utsunomia R, de Bello Cioffi M. Chromosomal Rearrangements and Satellite DNAs: Extensive Chromosome Reshuffling and the Evolution of Neo-Sex Chromosomes in the Genus Pyrrhulina (Teleostei; Characiformes). Int J Mol Sci 2023; 24:13654. [PMID: 37686460 PMCID: PMC10563077 DOI: 10.3390/ijms241713654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
Chromosomal rearrangements play a significant role in the evolution of fish genomes, being important forces in the rise of multiple sex chromosomes and in speciation events. Repetitive DNAs constitute a major component of the genome and are frequently found in heterochromatic regions, where satellite DNA sequences (satDNAs) usually represent their main components. In this work, we investigated the association of satDNAs with chromosome-shuffling events, as well as their potential relevance in both sex and karyotype evolution, using the well-known Pyrrhulina fish model. Pyrrhulina species have a conserved karyotype dominated by acrocentric chromosomes present in all examined species up to date. However, two species, namely P. marilynae and P. semifasciata, stand out for exhibiting unique traits that distinguish them from others in this group. The first shows a reduced diploid number (with 2n = 32), while the latter has a well-differentiated multiple X1X2Y sex chromosome system. In addition to isolating and characterizing the full collection of satDNAs (satellitomes) of both species, we also in situ mapped these sequences in the chromosomes of both species. Moreover, the satDNAs that displayed signals on the sex chromosomes of P. semifasciata were also mapped in some phylogenetically related species to estimate their potential accumulation on proto-sex chromosomes. Thus, a large collection of satDNAs for both species, with several classes being shared between them, was characterized for the first time. In addition, the possible involvement of these satellites in the karyotype evolution of P. marilynae and P. semifasciata, especially sex-chromosome formation and karyotype reduction in P. marilynae, could be shown.
Collapse
Affiliation(s)
- Renata Luiza Rosa de Moraes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Francisco de Menezes Cavalcante Sassi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Jhon Alex Dziechciarz Vidal
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
| | - Caio Augusto Gomes Goes
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Rodrigo Zeni dos Santos
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - José Henrique Forte Stornioli
- Institute of Biological Sciences and Health, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, RJ, Brazil;
| | - Fábio Porto-Foresti
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Ricardo Utsunomia
- Faculdade de Ciências, UNESP, Bauru 17033-36, SP, Brazil; (C.A.G.G.); (R.Z.d.S.); (F.P.-F.); (R.U.)
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos 13565-905, SP, Brazil; (R.L.R.d.M.); (F.d.M.C.S.); (J.A.D.V.)
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| |
Collapse
|
4
|
de Oliveira MPB, Kretschmer R, Deon GA, Toma GA, Ezaz T, Goes CAG, Porto-Foresti F, Liehr T, Utsunomia R, Cioffi MDB. Following the Pathway of W Chromosome Differentiation in Triportheus (Teleostei: Characiformes). BIOLOGY 2023; 12:1114. [PMID: 37626998 PMCID: PMC10452202 DOI: 10.3390/biology12081114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
In this work, we trace the dynamics of satellite DNAs (SatDNAs) accumulation and elimination along the pathway of W chromosome differentiation using the well-known Triportheus fish model. Triportheus stands out due to a conserved ZZ/ZW sex chromosome system present in all examined species. While the Z chromosome is conserved in all species, the W chromosome is invariably smaller and exhibits differences in size and morphology. The presumed ancestral W chromosome is comparable to that of T. auritus, and contains 19 different SatDNA families. Here, by examining five additional Triportheus species, we showed that the majority of these repetitive sequences were eliminated as speciation was taking place. The W chromosomes continued degeneration, while the Z chromosomes of some species began to accumulate some TauSatDNAs. Additional species-specific SatDNAs that made up the heterochromatic region of both Z and W chromosomes were most likely amplified in each species. Therefore, the W chromosomes of the various Triportheus species have undergone significant evolutionary changes in a short period of time (15-25 Myr) after their divergence.
Collapse
Affiliation(s)
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas 96010-610, Brazil;
| | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Sao Carlos 13565-905, Brazil; (M.P.B.d.O.); (G.A.D.); (G.A.T.); (M.d.B.C.)
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Sao Carlos 13565-905, Brazil; (M.P.B.d.O.); (G.A.D.); (G.A.T.); (M.d.B.C.)
| | - Tariq Ezaz
- Faculty of Science and Technology, Centre for Conservation Ecology and Genomics, University of Canberra, Canberra 2617, Australia;
| | - Caio Augusto Gomes Goes
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, Brazil; (C.A.G.G.); (F.P.-F.); (R.U.)
| | - Fábio Porto-Foresti
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, Brazil; (C.A.G.G.); (F.P.-F.); (R.U.)
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany
| | - Ricardo Utsunomia
- Faculdade de Ciências, Universidade Estadual Paulista, Bauru 13506-900, Brazil; (C.A.G.G.); (F.P.-F.); (R.U.)
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Sao Carlos 13565-905, Brazil; (M.P.B.d.O.); (G.A.D.); (G.A.T.); (M.d.B.C.)
| |
Collapse
|
5
|
Occurrence of Sex Chromosomes in Fish of the Genus Ancistrus with a New Description of Multiple Sex Chromosomes in the Ecuadorian Endemic Ancistrus clementinae (Loricariidae). Genes (Basel) 2023; 14:genes14020306. [PMID: 36833233 PMCID: PMC9956960 DOI: 10.3390/genes14020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Ancistrus Kner, 1854, is the most diverse genus among the Ancistrini (Loricariidae) with 70 valid species showing a wide geographic distribution and great taxonomic and systematic complexity. To date, about 40 Ancistrus taxa have been karyotyped, all from Brazil and Argentina, but the statistic is uncertain because 30 of these reports deal with samples that have not yet been identified at the species level. This study provides the first cytogenetic description of the bristlenose catfish, Ancistrus clementinae Rendahl, 1937, a species endemic to Ecuador, aiming to verify whether a sex chromosome system is identifiable in the species and, if so, which, and if its differentiation is associated with the presence of repetitive sequences reported for other species of the family. We associated the karyotype analysis with the COI molecular identification of the specimens. Karyotype analysis suggested the presence of a ♂ZZ/♀ZW1W2 sex chromosome system, never detected before in Ancistrus, with both W1W2 chromosomes enriched with heterochromatic blocks and 18S rDNA, in addition to GC-rich repeats (W2). No differences were observed between males and females in the distribution of 5S rDNA or telomeric repeats. Cytogenetic data here obtained confirm the huge karyotype diversity of Ancistrus, both in chromosome number and sex-determination systems.
Collapse
|
6
|
Mustapha UF, Assan D, Huang YQ, Li GL, Jiang DN. High Polymorphism in the Dmrt2a Gene Is Incompletely Sex-Linked in Spotted Scat, Scatophagus argus. Animals (Basel) 2022; 12:ani12050613. [PMID: 35268179 PMCID: PMC8909180 DOI: 10.3390/ani12050613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Unlike mammals and birds, many fishes have young sex chromosomes, providing excellent models to study sex chromosome differentiation at early stages. Previous studies showed that spotted scat possesses an XX-XY sex determination system. The X has a complete Dmrt3 copy (termed normal) and a truncated copy of Dmrt1 (called Dmrt1b), while the Y has the opposite (normal Dmrt1, which is male-specific, and a truncated Dmrt3 called Dmrt3△-Y). Dmrt1 is the candidate sex determination gene, while the differentiation of other sex-linked genes remains unknown. The spotted scat has proven to be a good model to study the evolution of sex chromosomes in vertebrates. Herein, we sequenced a neighbor gene of this family, Dmrt2, positioned farther from Dmrt1 and closer to Dmrt3 in the spotted scat, and analyzed its sequence variation and expression profiles. The physical locations of the three genes span across an estimated size of >40 kb. The open reading frames of Dmrt2a and its paralog Dmrt2b are 1578 bp and 1311 bp, encoding peptides of 525 and 436 amino acid residues, respectively. Dmrt2a is positioned close to Dmrt3 but farther from Dmrt1 on the same chromosome, while Dmrt2b is not. Sequence analysis revealed several mutations; insertions, and deletions (indels) on Dmrt2a non-coding regions and single-nucleotide polymorphisms (SNPs) on the Dmrt2a transcript. These indels and SNPs are sex-linked and showed high male heterogeneity but do not affect gene translation. The markers designed to span the mutation sites tested on four different populations showed varied concordance with the genetic sexes. Dmrt2a is transcribed solely in the gonads and gills, while Dmrt2b exists in the gonads, hypothalamus, gills, heart, and spleen. The Dmrt2a and Dmrt2b transcripts are profoundly expressed in the male gonads. Analyses of the transcriptome data from five other fish species (Hainan medaka (Oryzias curvinotus), silver sillago (Sillago sihama), Nile tilapia (Oreochromis niloticus), Hong Kong catfish (Clarias fuscus), and spot-fin porcupine fish (Diodon hystrix)) revealed testes-biased expression of Dmrt1 in all, similar to spotted scat. Additionally, the expression of Dmrt2a is higher in the testes than the ovaries in spotted scat and Hainan medaka. The Dmrt2a transcript was not altered in the coding regions as found in Dmrt1 and Dmrt3 in spotted scat. This could be due to the functional importance of Dmrt2a in development. Another possibility is that because Dmrt2a is positioned farther from Dmrt1 and the chromosome is still young, meaning it is only a matter of time before it differentiates. This study undeniably will aid in understanding the functional divergence of the sex-linked genes in fish.
Collapse
|
7
|
de Sousa RPC, Vasconcelos CP, Rosário NFD, Oliveira-Filho ABD, de Oliveira EHC, de Bello Cioffi M, Vallinoto M, Silva-Oliveira GC. Evolutionary Dynamics of Two Classes of Repetitive DNA in the Genomes of Two Species of Elopiformes (Teleostei, Elopomorpha). Zebrafish 2022; 19:24-31. [PMID: 35171711 DOI: 10.1089/zeb.2021.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The order Elopiformes includes fish species of medium to large size with a circumglobal distribution, in both the open sea, coastal, and estuarine waters. The Elopiformes are considered an excellent model for evolutionary studies due to their ample adaptive capacity, which allow them to exploit a range of different ecological niches. In this study, we analyzed the karyotype structure and distribution of two classes of repetitive DNA (microsatellites and transposable elements) in two Elopiformes species (Elops smithi and Megalops atlanticus). The results showed that the microsatellite sequences had a very similar distribution in these species, primarily associated to heterochromatin (centromeres and telomeres), suggesting these sequences contribute to the chromosome structure. In contrast, specific signals detected throughout the euchromatic regions indicate that some of these sequences may play a role in the regulation of gene expression. By contrast, the transposable elements presented a distinct distribution in the two species, pointing to a possible interspecific difference in the function of these sequences in the genomes of the two species. Therefore, the comparative genome mapping provides new insights into the structure and organization of these repetitive sequences in the Elopiformes genome.
Collapse
Affiliation(s)
- Rodrigo Petry Corrêa de Sousa
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Laboratório de Evolução, Bragança, Brazil.,Instituto de Ciências Biológicas and Universidade Federal do Pará, Belém, Brazil
| | | | - Nayara Furtado do Rosário
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Laboratório de Evolução, Bragança, Brazil
| | | | - Edivaldo Herculano Corrêa de Oliveira
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Culturas de Células e Citogenética, Instituto Evandro Chagas, Ananindeua, Brazil
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, Departamento de Evolução e Genética, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Marcelo Vallinoto
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Laboratório de Evolução, Bragança, Brazil.,Research Center in Biodiversity and Genetic Resources, Associated Laboratory, Campus Agrário de Vairão, Universidade do Porto, Vairão, Portugal
| | | |
Collapse
|
8
|
Integrating Cytogenetics and Population Genomics: Allopatry and Neo-Sex Chromosomes May Have Shaped the Genetic Divergence in the Erythrinus erythrinus Species Complex (Teleostei, Characiformes). BIOLOGY 2022; 11:biology11020315. [PMID: 35205181 PMCID: PMC8869172 DOI: 10.3390/biology11020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Fish present astonishing diversity, comprising more species than the combined total of all other vertebrates. Here, we integrated cytogenetic and genomic data to investigate how the evolution of multiple sex chromosomes together with allopatry is linked to genetic diversity and speciation in the fish species Erythrinus erythrinus. We hypothesized that the presence of multiple sex chromosomes has contributed to the genetic differentiation of populations, which could have potentially accelerated speciation. Abstract Diversity found in Neotropical freshwater fish is remarkable. It can even hinder a proper delimitation of many species, with the wolf fish Erythrinus erythrinus (Teleostei, Characiformes) being a notable example. This nominal species shows remarkable intra-specific variation, with extensive karyotype diversity found among populations in terms of different diploid chromosome numbers (2n), karyotype compositions and sex chromosome systems. Here, we analyzed three distinct populations (one of them cytogenetically investigated for the first time) that differed in terms of their chromosomal features (termed karyomorphs) and by the presence or absence of heteromorphic sex chromosomes. We combined cytogenetics with genomic approaches to investigate how the evolution of multiple sex chromosomes together with allopatry is linked to genetic diversity and speciation. The results indicated the presence of high genetic differentiation among populations both from cytogenetic and genomic aspects, with long-distance allopatry potentially being the main agent of genetic divergence. One population showed a neo-X1X2Y sexual chromosome system and we hypothesize that this system is associated with enhanced inter-population genetic differentiation which could have potentially accelerated speciation compared to the effect of allopatry alone.
Collapse
|
9
|
Kretschmer R, Goes CAG, Bertollo LAC, Ezaz T, Porto-Foresti F, Toma GA, Utsunomia R, de Bello Cioffi M. Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes). Chromosoma 2022; 131:29-45. [PMID: 35099570 DOI: 10.1007/s00412-022-00768-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
Abstract
Satellites are an abundant source of repetitive DNAs that play an essential role in the chromosomal organization and are tightly linked with the evolution of sex chromosomes. Among fishes, Triportheidae stands out as the only family where almost all species have a homeologous ZZ/ZW sex chromosomes system. While the Z chromosome is typically conserved, the W is always smaller, with variations in size and morphology between species. Here, we report an analysis of the satellitome of Triportheus auritus (TauSat) by integrating genomic and chromosomal data, with a special focus on the highly abundant and female-biased satDNAs. In addition, we investigated the evolutionary trajectories of the ZW sex chromosomes in the Triportheidae family by mapping satDNAs in selected representative species of this family. The satellitome of T. auritus comprised 53 satDNA families of which 24 were also hybridized by FISH. Most satDNAs differed significantly between sexes, with 19 out of 24 being enriched on the W chromosome of T. auritus. The number of satDNAs hybridized into the W chromosomes of T. signatus and T. albus decreased to six and four, respectively, in accordance with the size of their W chromosomes. No TauSat probes produced FISH signals on the chromosomes of Agoniates halecinus. Despite its apparent conservation, our results indicate that each species differs in the satDNA accumulation on the Z chromosome. Minimum spanning trees (MSTs), generated for three satDNA families with different patterns of FISH mapping data, revealed different homogenization rates between the Z and W chromosomes. These results were linked to different levels of recombination between them. The most abundant satDNA family (TauSat01) was exclusively hybridized in the centromeres of all 52 chromosomes of T. auritus, and its putative role in the centromere evolution was also highlighted. Our results identified a high differentiation of both ZW chromosomes regarding satellites composition, highlighting their dynamic role in the sex chromosomes evolution.
Collapse
Affiliation(s)
- Rafael Kretschmer
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| | | | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Ricardo Utsunomia
- Instituto de Ciências Biológicas e da Saúde, ICBS, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil.
| |
Collapse
|
10
|
Li SF, Lv CC, Lan LN, Jiang KL, Zhang YL, Li N, Deng CL, Gao WJ. DNA methylation is involved in sexual differentiation and sex chromosome evolution in the dioecious plant garden asparagus. HORTICULTURE RESEARCH 2021; 8:198. [PMID: 34465747 PMCID: PMC8408194 DOI: 10.1038/s41438-021-00633-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 05/04/2023]
Abstract
DNA methylation is a crucial regulatory mechanism in many biological processes. However, limited studies have dissected the contribution of DNA methylation to sexual differentiation in dioecious plants. In this study, we investigated the variances in methylation and transcriptional patterns of male and female flowers of garden asparagus. Compared with male flowers, female flowers at the same stages showed higher levels of DNA methylation. Both male and female flowers gained DNA methylation globally from the premeiotic to meiotic stages. Detailed analysis revealed that the increased DNA methylation was largely due to increased CHH methylation. Correlation analysis of differentially expressed genes and differentially methylated regions suggested that DNA methylation might not have contributed to the expression variation of the sex-determining genes SOFF and TDF1 but probably played important roles in sexual differentiation and flower development of garden asparagus. The upregulated genes AoMS1, AoLAP3, AoAMS, and AoLAP5 with varied methylated CHH regions might have been involved in sexual differentiation and flower development of garden asparagus. Plant hormone signaling genes and transcription factor genes also participated in sexual differentiation and flower development with potential epigenetic regulation. In addition, the CG and CHG methylation levels in the Y chromosome were notably higher than those in the X chromosome, implying that DNA methylation might have been involved in Y chromosome evolution. These data provide insights into the epigenetic modification of sexual differentiation and flower development and improve our understanding of sex chromosome evolution in garden asparagus.
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Can-Can Lv
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Li-Na Lan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Kai-Lu Jiang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yu-Lan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
11
|
Salgado FS, Cunha MS, Melo S, Dergam JA. Cytogenetic analysis of Hypomasticus copelandii and H. steindachneri: relevance of cytotaxonomic markers in the Anostomidae family (Characiformes). COMPARATIVE CYTOGENETICS 2021; 15:65-76. [PMID: 33777329 PMCID: PMC7969579 DOI: 10.3897/compcytogen.v15.i1.61957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Recent phylogenetic hypotheses within Anostomidae, based on morphological and molecular data, resulted in the description of new genera (Megaleporinus Ramirez, Birindelli et Galetti, 2017) and the synonymization of others, such as the reallocation of Leporinus copelandii Steindachner, 1875 and Leporinus steindachneri Eigenmann, 1907 to Hypomasticus Borodin, 1929. Despite high levels of conservatism of the chromosomal macrostructure in this family, species groups have been corroborated using banding patterns and the presence of different sex chromosome systems. Due to the absence of cytogenetic studies in H. copelandii (Steindachner, 1875) and H. steindachneri (Eigenmann, 1907), the goal of this study was to characterize their karyotypes and investigate the presence/absence of sex chromosome systems using different repetitive DNA probes. Cytogenetic techniques included: Giemsa staining, Ag-NOR banding and FISH using 18S and 5S rDNA probes, as well as microsatellite probes (CA)15 and (GA)15. Both species had 2n = 54, absence of heteromorphic sex chromosomes, one chromosome pair bearing Ag-NOR, 18S and 5S rDNA regions. The (CA)15 and (GA)15 probes marked mainly the subtelomeric regions of all chromosomes and were useful as species-specific chromosomal markers. Our results underline that chromosomal macrostructure is congruent with higher systematic arrangements in Anostomidae, while microsatellite probes are informative about autapomorphic differences between species.
Collapse
Affiliation(s)
- Filipe Schitini Salgado
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Centro, Viçosa, 36570-900, Minas Gerais, Brazil
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Centro, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Marina Souza Cunha
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Centro, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Silvana Melo
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Centro, Viçosa, 36570-900, Minas Gerais, Brazil
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Centro, Viçosa, 36570-900, Minas Gerais, Brazil
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, R. Prof. Dr. Antônio Celso Wagner Zanin, s/n, Distrito de Rubião Junior, Botucatu, 18618-689, São Paulo, Brazil
| | - Jorge Abdala Dergam
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Centro, Viçosa, 36570-900, Minas Gerais, Brazil
| |
Collapse
|
12
|
Zhang GJ, Dong R, Lan LN, Li SF, Gao WJ, Niu HX. Nuclear Integrants of Organellar DNA Contribute to Genome Structure and Evolution in Plants. Int J Mol Sci 2020; 21:ijms21030707. [PMID: 31973163 PMCID: PMC7037861 DOI: 10.3390/ijms21030707] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/16/2022] Open
Abstract
The transfer of genetic material from the mitochondria and plastid to the nucleus gives rise to nuclear integrants of mitochondrial DNA (NUMTs) and nuclear integrants of plastid DNA (NUPTs). This frequently occurring DNA transfer is ongoing and has important evolutionary implications. In this review, based on previous studies and the analysis of NUMT/NUPT insertions of more than 200 sequenced plant genomes, we analyzed and summarized the general features of NUMTs/NUPTs and highlighted the genetic consequence of organellar DNA insertions. The statistics of organellar DNA integrants among various plant genomes revealed that organellar DNA-derived sequence content is positively correlated with the nuclear genome size. After integration, the nuclear organellar DNA could undergo different fates, including elimination, mutation, rearrangement, fragmentation, and proliferation. The integrated organellar DNAs play important roles in increasing genetic diversity, promoting gene and genome evolution, and are involved in sex chromosome evolution in dioecious plants. The integrating mechanisms, involving non-homologous end joining at double-strand breaks were also discussed.
Collapse
Affiliation(s)
- Guo-Jun Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Ran Dong
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Li-Na Lan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- Correspondence: (W.-J.G.); (H.-X.N.)
| | - Hong-Xing Niu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China; (G.-J.Z.); (R.D.); (L.-N.L.); (S.-F.L.)
- Correspondence: (W.-J.G.); (H.-X.N.)
| |
Collapse
|
13
|
Wagner Werneck Félix da Costa G, de Bello Cioffi M, Liehr T, Feldberg E, Antonio Carlos Bertollo L, Franco Molina W. Extensive Chromosomal Reorganization in Apistogramma Fishes (Cichlidae, Cichlinae) Fits the Complex Evolutionary Diversification of the Genus. Int J Mol Sci 2019; 20:E4077. [PMID: 31438504 PMCID: PMC6747227 DOI: 10.3390/ijms20174077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/16/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Neotropical cichlid fishes are one of the most diversified and evolutionarily successful species assemblages. Extremely similar forms and intraspecific polychromatism present challenges for the taxonomy of some of these groups. Several species complexes have a largely unknown origin and unresolved evolutionary processes. Dwarf cichlids of the genus Apistogramma, comprising more than a hundred species, exhibit intricate taxonomic and biogeographic patterns, with both allopatric and sympatric distributions. However, karyotype evolution and the role of chromosomal changes in Apistogramma are still unknown. In the present study, nine South American Apistogramma species were analyzed using conventional cytogenetic methods and the mapping of repetitive DNA sequences [18S rDNA, 5S rDNA, and (TTAGGG)n] by fluorescence in situ hybridization (FISH). Our results showed that Apistogramma has unique cytogenetic characteristics in relation to closely related groups, such as a reduced 2n and a large number of bi-armed chromosomes. Interspecific patterns revealed a scenario of remarkable karyotypic changes, including a reduction of 2n, the occurrence of B-chromosomes and evolutionary dynamic of rDNA tandem repeats. In addition to the well-known pre-zygotic reproductive isolation, the karyotype reorganization in the genus suggests that chromosomal changes could act as postzygotic barriers in areas where Apistogramma congeners overlap.
Collapse
Affiliation(s)
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, Km. 235, C.P. 676, São Carlos 13565-905, SP, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany.
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Laboratório de Genética Animal, Av. André Araújo, 2936, Manaus 69077-000, AM, Brazil
| | - Luiz Antonio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, Km. 235, C.P. 676, São Carlos 13565-905, SP, Brazil
| | - Wagner Franco Molina
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
14
|
Kretschmer R, de Oliveira TD, de Oliveira Furo I, Oliveira Silva FA, Gunski RJ, Del Valle Garnero A, de Bello Cioffi M, de Oliveira EHC, de Freitas TRO. Repetitive DNAs and shrink genomes: A chromosomal analysis in nine Columbidae species (Aves, Columbiformes). Genet Mol Biol 2018; 41:98-106. [PMID: 29473932 PMCID: PMC5901494 DOI: 10.1590/1678-4685-gmb-2017-0048] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/16/2017] [Indexed: 12/02/2022] Open
Abstract
An extensive karyotype variation is found among species belonging to the
Columbidae family of birds (Columbiformes), both in diploid number and
chromosomal morphology. Although clusters of repetitive DNA sequences play an
important role in chromosomal instability, and therefore in chromosomal
rearrangements, little is known about their distribution and amount in avian
genomes. The aim of this study was to analyze the distribution of 11 distinct
microsatellite sequences, as well as clusters of 18S rDNA, in nine different
Columbidae species, correlating their distribution with the occurrence of
chromosomal rearrangements. We found 2n values ranging from 76 to 86 and nine
out of 11 microsatellite sequences showed distinct hybridization signals among
the analyzed species. The accumulation of microsatellite repeats was found
preferentially in the centromeric region of macro and microchromosomes, and in
the W chromosome. Additionally, pair 2 showed the accumulation of several
microsatellites in different combinations and locations in the distinct species,
suggesting the occurrence of intrachromosomal rearrangements, as well as a
possible fission of this pair in Geotrygon species. Therefore,
although birds have a smaller amount of repetitive sequences when compared to
other Tetrapoda, these seem to play an important role in the karyotype evolution
of these species.
Collapse
Affiliation(s)
- Rafael Kretschmer
- Programa de Pós-Graduação em Genética e Biologia Molecular, PPGBM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, RS, Brazil
| | - Thays Duarte de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas, PPGCB, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, RS, Brazil
| | - Ivanete de Oliveira Furo
- Programa de Pós-Graduação em Genética e Biologia Molecular, PPGBM, Universidade Federal do Pará, Belém, PA, Brazil
| | | | - Ricardo José Gunski
- Programa de Pós-Graduação em Ciências Biológicas, PPGCB, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, RS, Brazil
| | - Analía Del Valle Garnero
- Programa de Pós-Graduação em Ciências Biológicas, PPGCB, Universidade Federal do Pampa, São Gabriel, Rio Grande do Sul, RS, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Edivaldo Herculano Corrêa de Oliveira
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, Brazil.,Laboratório de Cultura de Tecidos e Citogenética, SAMAM, Instituto Evandro Chagas, Ananindeua, PA, Brazil
| | - Thales Renato Ochotorena de Freitas
- Programa de Pós-Graduação em Genética e Biologia Molecular, PPGBM, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, RS, Brazil
| |
Collapse
|
15
|
Insights into teleost sex determination from the Seriola dorsalis genome assembly. BMC Genomics 2018; 19:31. [PMID: 29310588 PMCID: PMC5759298 DOI: 10.1186/s12864-017-4403-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Background The assembly and annotation of a genome is a valuable resource for a species, with applications ranging from conservation genomics to gene discovery. Genomic resource development is especially important for species in culture, such as the California Yellowtail (Seriola dorsalis), the likely candidate for the establishment of commercial offshore aquaculture production in southern California. Genomic resource development for this species will improve the understanding of sex and other phenotypic traits, and allow for rapid increases in genetic improvement for and economic gain in culture production. Results We describe the assembly and annotation of the S. dorsalis genome, and present resequencing data from 45 male and 45 female wild-caught S. dorsalis used to identify a sex-determining region and marker in this species. The genome assembly captured approximately 93% of the total 685 MB genome with an average coverage depth of 180×. Using the assembled genome, resequencing data from the 90 fish were aligned to place boundaries on the sex-determining region. Sex-specific markers were developed based on a female-specific, 61 nucleotide deletion identified in that region. We hypothesize that Estradiol 17-beta-dehydrogenase is the putative sex-determining gene and propose a plausible genetic mechanism for ZW sex determination in S. dorsalis involving a female-specific deletion of a transcription factor binding motif that may be targeted by Sox3. Conclusions Understanding the mechanism of sex determination and development of assays to determine sex is critical both for management of wild fisheries and for development of efficient and sustainable aquaculture practices. In addition, this genome assembly for S. dorsalis will be a substantial resource for a variety of future research applications. Electronic supplementary material The online version of this article (10.1186/s12864-017-4403-1) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Conde-Saldaña CC, Barreto CAV, Villa-Navarro FA, Dergam JA. An Unusual Accumulation of Ribosomal Multigene Families and Microsatellite DNAs in the XX/XY Sex Chromosome System in the Trans-Andean Catfish Pimelodella cf. chagresi (Siluriformes:Heptapteridae). Zebrafish 2017; 15:55-62. [PMID: 29090985 DOI: 10.1089/zeb.2017.1469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This work constitutes the first cytogenetic characterization of a trans-Andean species of Heptapteridae. The catfish Pimelodella cf. chagresi from the Upper Rio Magdalena was studied, applying standard cytogenetic techniques (Giemsa, C-banding, and argyrophilic nucleolar organizer region [Ag-NOR]) and fluorescence in situ hybridization techniques using repetitive DNA probes: microsatellites (CA15 and GA15) and ribosomal RNA (rRNA) multigene families (18S and 5S recombinant DNA [rDNA] probes). The species showed a unique diploid chromosome number 2n = 50 (32m [metacentrics] +14sm [submetacentrics] +4st [subtelocentrics]) and a XX/XY sex chromosomal system, where the heteromorphic Y-chromosome revealed a conspicuous accumulation of all the assayed domains of repetitive DNA. P. cf. chagresi karyotype shares common features with other Heptapteridae, such as the predominance of metacentric and submetacentric chromosomes, and one pair of subtelomeric nucleolar organizer regions (NORs). These results reflect an independent karyological identity of a trans-Andean species and the relevance of repetitive DNA sequences in the process of sex chromosome differentiation in fish; it is the first case of syntenic accumulation of rRNA multigene families (18S and 5S rDNA) and microsatellite sequences (CA15 and GA15) in a differentiated sex chromosome in Neotropical fish.
Collapse
Affiliation(s)
- Cristhian Camilo Conde-Saldaña
- 1 Departamento de Biologia Animal, Universidade Federal de Viçosa , Viçosa, Brazil .,2 Grupo de Investigación en Zoología, Facultad de Ciencias, Universidad del Tolima , Ibagué, Colombia
| | | | | | - Jorge Abdala Dergam
- 1 Departamento de Biologia Animal, Universidade Federal de Viçosa , Viçosa, Brazil
| |
Collapse
|
17
|
Chromosomal Evolution in Lower Vertebrates: Sex Chromosomes in Neotropical Fishes. Genes (Basel) 2017; 8:genes8100258. [PMID: 28981468 PMCID: PMC5664108 DOI: 10.3390/genes8100258] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 11/17/2022] Open
Abstract
Fishes exhibit the greatest diversity of species among vertebrates, offering a number of relevant models for genetic and evolutionary studies. The investigation of sex chromosome differentiation is a very active and striking research area of fish cytogenetics, as fishes represent one of the most vital model groups. Neotropical fish species show an amazing variety of sex chromosome systems, where different stages of differentiation can be found, ranging from homomorphic to highly differentiated sex chromosomes. Here, we draw attention on the impact of recent developments in molecular cytogenetic analyses that helped to elucidate many unknown questions about fish sex chromosome evolution, using excellent characiform models occurring in the Neotropical region, namely the Erythrinidae family and the Triportheus genus. While in Erythrinidae distinct XY and/or multiple XY-derived sex chromosome systems have independently evolved at least four different times, representatives of Triportheus show an opposite scenario, i.e., highly conserved ZZ/ZW system with a monophyletic origin. In both cases, recent molecular approaches, such as mapping of repetitive DNA classes, comparative genomic hybridization (CGH), and whole chromosome painting (WCP), allowed us to unmask several new features linked to the molecular composition and differentiation processes of sex chromosomes in fishes.
Collapse
|
18
|
Ferreira M, Garcia C, Matoso DA, de Jesus IS, Cioffi MDB, Bertollo LAC, Zuanon J, Feldberg E. The Bunocephalus coracoideus Species Complex (Siluriformes, Aspredinidae). Signs of a Speciation Process through Chromosomal, Genetic and Ecological Diversity. Front Genet 2017; 8:120. [PMID: 28983316 PMCID: PMC5613337 DOI: 10.3389/fgene.2017.00120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/29/2017] [Indexed: 02/04/2023] Open
Abstract
Bunocephalus is the most species-rich Aspredinidae genus, corresponding to a monophyletic clade with 13 valid species. However, many species have their classification put in question. Here, we analyzed individuals from four Amazonian populations of Bunocephalus coracoideus by cytogenetic and molecular procedures. The geographic distribution, genetic distances and karyotype data indicate that each population represents an Evolutionary Significant Unit (ESU). Cytogenetic markers showed distinct 2n and karyotype formulas, as well as different numbers and locations of the rDNA sites among ESUs. One of such populations (ESU-D) highlighted an extensive polymorphic condition, with several cytotypes probably due to chromosomal rearrangements and meiotic non-disjunctions. This resulted in several aneuploid karyotypes, which was also supported by the mapping of telomeric sequences. Phylograms based on Maximum Likelihood (ML) and Neighbor Joining (NJ) analyses grouped each ESU on particular highly supported clades, with the estimation of evolutionary divergence indicating values being higher than 3.8–12.3% among them. Our study reveals a huge degree of chromosomal and genetic diversity in B. coracoideus and highly points to the existence of four ESUs in allopatric and sympatric speciation processes. In fact, the high divergences found among the ESUs allowed us to delimitate lineages with taxonomic uncertainties in this nominal species.
Collapse
Affiliation(s)
- Milena Ferreira
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da AmazôniaManaus, Brazil
| | - Caroline Garcia
- Laboratório de Citogenética, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da BahiaJequié, Brazil
| | - Daniele A Matoso
- Laboratório de Citogenômica Animal, Instituto de Ciências Biológicas, Departamento de Genética, Universidade Federal do AmazonasManaus, Brazil
| | - Isac S de Jesus
- Laboratório de Fisiologia Comportamental e Evolução, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da AmazôniaManaus, Brazil
| | - Marcelo de B Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São CarlosSão Carlos, Brazil
| | - Luiz A C Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São CarlosSão Carlos, Brazil
| | - Jansen Zuanon
- Laboratório de Sistemática e Ecologia de Peixes, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da AmazôniaManaus, Brazil
| | - Eliana Feldberg
- Laboratório de Genética Animal, Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da AmazôniaManaus, Brazil
| |
Collapse
|
19
|
Yano CF, Bertollo LAC, Rebordinos L, Merlo MA, Liehr T, Portela-Bens S, Cioffi MDB. Evolutionary Dynamics of rDNAs and U2 Small Nuclear DNAs in Triportheus (Characiformes, Triportheidae): High Variability and Particular Syntenic Organization. Zebrafish 2017; 14:146-154. [PMID: 28051362 DOI: 10.1089/zeb.2016.1351] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multigene families correspond to a group of genes tandemly repeated, showing enormous diversity in both number of units and genomic organization. In fishes, unlike rDNAs that have been well explored in cytogenetic studies, U2 small nuclear RNA (snRNA) genes are poorly investigated concerning their chromosomal localization. All Triportheus species (Characiformes, Triportheidae) studied so far carry a ZZ/ZW sex chromosomes system, where the W chromosome contains a huge 18S rDNA cistron. In some species the syntenic organization of rDNAs on autosomes was also verified. To explore this particular organization, we performed three-color-fluorescence in situ hybridization using 5S, 18S rDNA, and U2 snRNA genes as probes in eight Triportheus species. This work represents the first one analyzing the chromosomal distribution of U2 snRNA genes in genomes of Triportheidae. The variability in number of rDNA clusters, and the divergent syntenies for these three multigene families, put in evidence their evolutionary dynamism, revealing a much more complex organization of these genes than previously supposed for closely related species. Our study also provides additional data on the accumulation of repetitive sequences in the sex-specific chromosome. Besides, the chromosomal organization of U2 snDNAs among fish species is also reviewed.
Collapse
Affiliation(s)
- Cassia Fernanda Yano
- 1 Departamento de Genética e Evolução, Universidade Federal de São Carlos , São Carlos, Brazil
| | | | - Laureana Rebordinos
- 2 Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Cádiz, Spain
| | - Manuel Alejandro Merlo
- 2 Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Cádiz, Spain
| | - Thomas Liehr
- 3 Jena University Hospital, Friedrich Schiller University , Institute of Human Genetics, Jena, Germany
| | - Silvia Portela-Bens
- 2 Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz , Cádiz, Spain
| | - Marcelo de Bello Cioffi
- 1 Departamento de Genética e Evolução, Universidade Federal de São Carlos , São Carlos, Brazil
| |
Collapse
|
20
|
Peixoto MAA, Oliveira MPC, Feio RN, Dergam JA. Karyological study of Ololygon tripui (Lourenço, Nascimento and Pires, 2009), (Anura, Hylidae) with comments on chromosomal traits among populations. COMPARATIVE CYTOGENETICS 2016; 10:505-516. [PMID: 28123674 PMCID: PMC5240505 DOI: 10.3897/compcytogen.v10i4.9176] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
To increase the number of cytogenetic characters used in Ololygon tripui systematics, we applied some cytogenetic techniques such as Giemsa, C- and NOR-banding, and fluorescence in situ hybridization (FISH) with 18S rDNA and repetitive microsatellite DNA probes to the study of four populations from Minas Gerais State (southeastern Brazil). All populations showed 2n = 24 and FN = 48, and chromosomal formula 8m + 10sm + 6st. Nucleolar organizing regions (NORs) were located on chromosome pair 6 in all populations, although in the Tripuí locality additional markings were observed on one homologue of chromosome pair 3. These patterns were partially congruent with results obtained using the 18S rDNA FISH probe. The microsatellites repetitive DNA (GA)15 and (CAT)10 probes accumulated predominantly in the terminal region of all chromosomes. Chromosome morphology and Ag-NOR were conserved among populations, a conserved pattern in Ololygon Fitzinger, 1843. Repetitive DNA FISH probes patterns were similar among populations, but they revealed species-specific differences when compared with other species of the genus Ololygon, suggesting that molecular cytogenetics are potentially more informative in karyologically conservative taxa.
Collapse
Affiliation(s)
- Marco Antônio A. Peixoto
- Laboratório de Sistemática Molecular - Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, Minas Gerais State, Brazil
- Museu de Zoologia João Moojen - MZUFV, Departamento de Biologia Animal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, Minas Gerais State, Brazil
| | - Marina P. C. Oliveira
- Laboratório de Sistemática Molecular - Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, Minas Gerais State, Brazil
| | - Renato N. Feio
- Museu de Zoologia João Moojen - MZUFV, Departamento de Biologia Animal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, Minas Gerais State, Brazil
| | - Jorge A. Dergam
- Laboratório de Sistemática Molecular - Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, Minas Gerais State, Brazil
| |
Collapse
|
21
|
Abstract
Structurally and functionally diverged sex chromosomes have evolved in many animals as well as in some plants. Sex chromosomes represent a specific genomic region(s) with locally suppressed recombination. As a consequence, repetitive sequences involving transposable elements, tandem repeats (satellites and microsatellites), and organellar DNA accumulate on the Y (W) chromosomes. In this paper, we review the main types of repetitive elements, their gathering on the Y chromosome, and discuss new findings showing that not only accumulation of various repeats in non-recombining regions but also opposite processes form Y chromosome. The aim of this review is also to discuss the mechanisms of repetitive DNA spread involving (retro) transposition, DNA polymerase slippage or unequal crossing-over, as well as modes of repeat removal by ectopic recombination. The intensity of these processes differs in non-recombining region(s) of sex chromosomes when compared to the recombining parts of genome. We also speculate about the relationship between heterochromatinization and the formation of heteromorphic sex chromosomes.
Collapse
|
22
|
Chalopin D, Volff JN, Galiana D, Anderson JL, Schartl M. Transposable elements and early evolution of sex chromosomes in fish. Chromosome Res 2016; 23:545-60. [PMID: 26429387 DOI: 10.1007/s10577-015-9490-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In many organisms, the sex chromosome pair can be recognized due to heteromorphy; the Y and W chromosomes have often lost many genes due to the absence of recombination during meiosis and are frequently heterochromatic. Repetitive sequences are found at a high proportion on such heterochromatic sex chromosomes and the evolution and emergence of sex chromosomes has been connected to the dynamics of repeats and transposable elements. With an amazing plasticity of sex determination mechanisms and numerous instances of independent emergence of novel sex chromosomes, fish represent an excellent lineage to investigate the early stages of sex chromosome differentiation, where sex chromosomes often are homomorphic and not heterochromatic. We have analyzed the composition, distribution, and relative age of TEs from available sex chromosome sequences of seven teleost fish. We observed recent bursts of TEs and simple repeat accumulations around young sex determination loci. More strikingly, we detected transposable element (TE) amplifications not only on the sex determination regions of the Y and W sex chromosomes, but also on the corresponding regions of the X and Z chromosomes. In one species, we also clearly demonstrated that the observed TE-rich sex determination locus originated from a TE-poor genomic region, strengthening the link between TE accumulation and emergence of the sex determination locus. Altogether, our results highlight the role of TEs in the initial steps of differentiation and evolution of sex chromosomes.
Collapse
Affiliation(s)
- Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, GA, USA
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jennifer L Anderson
- INRA, Fish Physiology and Genomics (UR1037), Campus de Beaulieu, Rennes, France.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Manfred Schartl
- Department Physiological Chemistry, Biozentrum, University of Wuerzburg, and Comprehensive Cancer Center Mainfranken, University Clinic Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
23
|
Rodrigues ADS, Medrado AS, Diniz D, Oliveira C, Affonso PRADM. ZZ/ZW sex chromosome system in the endangered fish Lignobrycon myersi Miranda-Ribeiro, 1956 (Teleostei, Characiformes, Triportheidae). COMPARATIVE CYTOGENETICS 2016; 10:245-254. [PMID: 27551346 PMCID: PMC4977800 DOI: 10.3897/compcytogen.v10i2.8435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/08/2016] [Indexed: 06/06/2023]
Abstract
Lignobrycon myersi is an endemic fish species from a few coastal rivers in northeastern Brazil. Based on molecular evidence, Lignobrycon myersi and genera Triportheus Cope, 1872, Agoniates Müller & Troschel, 1845, Clupeacharax Pearson, 1924 and Engraulisoma Castro, 1981 were placed in the family Triportheidae. In the present work, we report the first cytogenetic data for Lignobrycon myersi to test the hypothesis that Lignobrycon and Triportheus are closely related. Studied specimens presented 2n=52 with 28 metacentric (m), 18 submetacentric (sm) and six subtelocentric (st) chromosomes for males and 27 m, 19 sm and 6 st for females, characterizing a ZZ/ZW sex chromosome system. The Z chromosome corresponds to the largest chromosome in karyotype while the W is about 50% smaller than the Z and largely heterochromatic. Terminal nucleolus organizer regions, GC-rich sites and 18S rDNA signals were detected on pair 14. However, additional 18S rDNA sites were observed in the W chromosome. The 5S rDNA was mainly detected on long arms of pair 7. The apparent synapomorphic chromosomal traits of Triportheus and Lignobrycon myersi reinforce their close phylogenetic relationship, suggesting that the ZZ/ZW chromosome system in both genera has arisen before cladogenic events.
Collapse
Affiliation(s)
- Alexandre dos Santos Rodrigues
- Universidade Estadual do Sudoeste da Bahia (UESB), Dep. Ciências Biológicas, Av. José Moreira Sobrinho, s/n, 45206-190 Jequié, BA, Brazil
| | - Aline Souza Medrado
- Universidade Estadual de Santa Cruz (UESC), Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, 45662-900 Ilhéus, BA, Brazil
| | - Débora Diniz
- Universidade Estadual do Sudoeste da Bahia (UESB), Dep. Ciências Biológicas, Av. José Moreira Sobrinho, s/n, 45206-190 Jequié, BA, Brazil
| | - Claudio Oliveira
- Universidade Estadual Paulista, Instituto de Biociências, Dep. Morfologia, 18618-000 Botucatu, SP, Brazil
| | | |
Collapse
|
24
|
Li SF, Zhang GJ, Yuan JH, Deng CL, Gao WJ. Repetitive sequences and epigenetic modification: inseparable partners play important roles in the evolution of plant sex chromosomes. PLANTA 2016; 243:1083-95. [PMID: 26919983 DOI: 10.1007/s00425-016-2485-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/07/2016] [Indexed: 05/03/2023]
Abstract
The present review discusses the roles of repetitive sequences played in plant sex chromosome evolution, and highlights epigenetic modification as potential mechanism of repetitive sequences involved in sex chromosome evolution. Sex determination in plants is mostly based on sex chromosomes. Classic theory proposes that sex chromosomes evolve from a specific pair of autosomes with emergence of a sex-determining gene(s). Subsequently, the newly formed sex chromosomes stop recombination in a small region around the sex-determining locus, and over time, the non-recombining region expands to almost all parts of the sex chromosomes. Accumulation of repetitive sequences, mostly transposable elements and tandem repeats, is a conspicuous feature of the non-recombining region of the Y chromosome, even in primitive one. Repetitive sequences may play multiple roles in sex chromosome evolution, such as triggering heterochromatization and causing recombination suppression, leading to structural and morphological differentiation of sex chromosomes, and promoting Y chromosome degeneration and X chromosome dosage compensation. In this article, we review the current status of this field, and based on preliminary evidence, we posit that repetitive sequences are involved in sex chromosome evolution probably via epigenetic modification, such as DNA and histone methylation, with small interfering RNAs as the mediator.
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Guo-Jun Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jin-Hong Yuan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
25
|
The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci Rep 2016; 6:24501. [PMID: 27089831 PMCID: PMC4835728 DOI: 10.1038/srep24501] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/30/2016] [Indexed: 11/09/2022] Open
Abstract
The Asian arowana (Scleropages formosus), one of the world's most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas.
Collapse
|
26
|
Yano CF, Bertollo LAC, Liehr T, Troy WP, Cioffi MDB. W Chromosome Dynamics in Triportheus Species (Characiformes, Triportheidae): An Ongoing Process Narrated by Repetitive Sequences. J Hered 2016; 107:342-8. [PMID: 27036509 DOI: 10.1093/jhered/esw021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/26/2016] [Indexed: 11/13/2022] Open
Abstract
Characterizing the abundance and genomic distribution of repetitive DNAs provides information on genome evolution, especially regarding the origin and differentiation of sex chromosomes. Triportheus fishes offer a useful model to explore the evolution of sex chromosomes, since they represent a monophyletic group in which all species share a ZZ/ZW sex chromosome system. In this study, we analyzed the distribution of 13 classes of repetitive DNA sequences by FISH, including microsatellites, rDNAs, and transposable elements in 6 Triportheus species, in order to investigate the fate of the sex-specific chromosome among them. These findings show the dynamic differentiation process of the W chromosome concerning changes in the repetitive DNA fraction of the heterochromatin. The differential accumulation of the same class of repeats on this chromosome, in both nearby and distant species, reflects the inherent dynamism of the microsatellites, as well as the plasticity that shapes the evolutionary history of the sex chromosomes, even among closely related species sharing a same sex chromosome system.
Collapse
Affiliation(s)
- Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Yano and Cioffi); Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany (Liehr); Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Tangará da Serra, Brazil (Troy); Departamento de Genetica e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Bertollo); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil (Yano)
| | - Luiz Antônio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Yano and Cioffi); Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany (Liehr); Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Tangará da Serra, Brazil (Troy); Departamento de Genetica e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Bertollo); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil (Yano)
| | - Thomas Liehr
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Yano and Cioffi); Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany (Liehr); Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Tangará da Serra, Brazil (Troy); Departamento de Genetica e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Bertollo); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil (Yano)
| | - Waldo Pinheiro Troy
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Yano and Cioffi); Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany (Liehr); Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Tangará da Serra, Brazil (Troy); Departamento de Genetica e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Bertollo); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil (Yano)
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Yano and Cioffi); Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany (Liehr); Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Tangará da Serra, Brazil (Troy); Departamento de Genetica e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil (Bertollo); CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil (Yano).
| |
Collapse
|
27
|
Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles. Chromosoma 2016; 126:105-113. [DOI: 10.1007/s00412-016-0576-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 11/27/2022]
|
28
|
Peixoto MAA, Lacerda JVA, Coelho-Augusto C, Feio RN, Dergam JA. The karyotypes of five species of the Scinax perpusillus group (Amphibia, Anura, Hylidae) of southeastern Brazil show high levels of chromosomal stabilization in this taxon. Genetica 2015; 143:729-39. [PMID: 26497874 DOI: 10.1007/s10709-015-9870-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/17/2015] [Indexed: 11/29/2022]
Abstract
Based on morphological, bioacoustics, and morphological traits, the genus Scinax has been subdivided into two major clades: S. catharinae and S. ruber. The first clade includes S. catharinae and S. perpusillus groups, whereas the second clade includes S. rostratus and S. uruguayus groups. Chromosome morphology, NOR and C-banding patterns of variation support these clades. This study aims the cytogenetic characterization of five species currently included in the S. perpusillus group: Scinax sp. (gr. perpusillus), S. arduous, S. belloni, S. cosenzai, and S. v-signatus, including standard cytogenetic techniques and repetitive DNA FISH probes. All species had 2n = 24 chromosomes. Nucleolar organizing regions occurred in chromosome pair 6 in all species, but differed in their locations among some species, suggesting a putative synaponomastic character for the clade. In S. belloni, the first chromosome pair was a metacentric, contrasting with the submetacentric first pair reported in all other species of the genus. Scinax sp. (gr. perpusillus) and S. v-signatus had similar karyotypic formulae, suggesting they are related species. Scinax cosenzai had a divergent C-banding pattern. Repetitive DNA probes hybridized more frequently in chromosomal subtelomeric regions in all species indicating recent cladogenesis in these species. Karyotypic evidence indicates unreported high levels of stabilization within S. perpusillus and in S. catharinae clade, resulting in a wealth of characters potentially informative for higher phylogenetic analyses.
Collapse
Affiliation(s)
- Marco Antônio Amorim Peixoto
- Museu de Zoologia João Moojen, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, CEP 36570-000, Brazil. .,Laboratório de Sistemática Molecular - Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, CEP 36570-000, Brazil.
| | - João Victor Andrade Lacerda
- Museu de Zoologia João Moojen, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, CEP 36570-000, Brazil.,Laboratório de Herpetologia, Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627 Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Carolina Coelho-Augusto
- Museu de Zoologia João Moojen, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, CEP 36570-000, Brazil.,Laboratório de Sistemática Molecular - Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, CEP 36570-000, Brazil
| | - Renato Neves Feio
- Museu de Zoologia João Moojen, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, CEP 36570-000, Brazil
| | - Jorge Abdala Dergam
- Laboratório de Sistemática Molecular - Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, MG, CEP 36570-000, Brazil
| |
Collapse
|
29
|
Travenzoli NM, Silva PC, Santos U, Zanuncio JC, Oliveira C, Dergam JA. Cytogenetic and Molecular Data Demonstrate that the Bryconinae (Ostariophysi, Bryconidae) Species from Southeastern Brazil Form a Phylogenetic and Phylogeographic Unit. PLoS One 2015; 10:e0137843. [PMID: 26372558 PMCID: PMC4570709 DOI: 10.1371/journal.pone.0137843] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/24/2015] [Indexed: 11/29/2022] Open
Abstract
Brycon spp. occur in Neotropical watersheds to the west and east of the Andes, and as they are sensitive to anthropogenic changes, many these species are endangered in southeastern Brazil. Coastal rivers in southeastern Brazil are characterized by the presence of relatively few freshwater fish species and high endemism of this fauna. The objective of this study was to examine whether Brycon spp. occurring in the coastal basins of southeastern Brazil are monophyletic, using cytogenetic data, mitochondrial, and nuclear molecular markers. All the species showed a diploid number of 50 chromosomes, a conserved number within the subfamily Bryconinae. However, the karyotypic formulas were unique to most species, including Brycon devillei (26m+22sm+2st), Brycon ferox (26m+12sm+12st), Brycon insignis (22m+20sm+8st), Brycon opalinus, and Brycon vermelha (24m+20sm+6st), indicating the prevalence of pericentric and paracentric inversions in the chromosomal evolution of these species. All of them had nucleolar organizer regions in the first pair of subtelocentric chromosomes and no equilocal distribution of heterochromatin in the first pair of chromosomes of the karyotype. These two features, not seen in any other Brycon spp. examined to date, indicate that Bryconinae species from the Brazilian southeastern coastal basins, including the monotypic genus Henochilus, are monophyletic. Also, this is the first study that reports NOR location and C-banding patterns as synapomorphies for a Neotropical fish species group. The monophyly was also supported by a phylogenetic analysis of 16S rDNA (16S), cytochrome oxidase subunit I (COI), alpha-myosin (MYH6) genes and S72 intron molecular data. Our results partially corroborate the “Brycon acuminatus” group proposed by Howes in 1982: our proposed clade keeps B. devillei, B. ferox, and B. insignis; but it also includes B. opalinus, B. vermelha, and H. weatlandii whereas it excludes B. nattereri. The phylogeographic unit formed by Bryconinae species in southeastern Brazil reflects the long and isolated paleohydrological history of these coastal basins relative to the continental watersheds.
Collapse
Affiliation(s)
- Natália Martins Travenzoli
- Laboratório de Sistemática Molecular-Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, CEP 36570–000, Viçosa, Minas Gerais, Brazil
| | - Priscilla Caroline Silva
- Laboratório de Sistemática Molecular-Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, CEP 36570–000, Viçosa, Minas Gerais, Brazil
| | - Udson Santos
- Laboratório de Sistemática Molecular-Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, CEP 36570–000, Viçosa, Minas Gerais, Brazil
| | - José Cola Zanuncio
- Laboratório de Sistemática Molecular-Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, CEP 36570–000, Viçosa, Minas Gerais, Brazil
| | - Claudio Oliveira
- Instituto de Biociências, Departamento de Morfologia, Universidade Estadual Paulista (UNESP), CEP 18618–970, Botucatu, São Paulo, Brazil
| | - Jorge Abdala Dergam
- Laboratório de Sistemática Molecular-Beagle, Departamento de Biologia Animal, Universidade Federal de Viçosa, CEP 36570–000, Viçosa, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
30
|
Lima-Filho PA, Amorim KDJ, Cioffi MB, Bertollo LAC, Molina WF. Chromosomal mapping of repetitive DNAs in Gobionellus oceanicus and G. stomatus (Gobiidae; Perciformes): A shared XX/XY system and an unusual distribution of 5S rDNA sites on the Y chromosome. Cytogenet Genome Res 2015; 144:333-40. [PMID: 25720317 DOI: 10.1159/000373909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 11/19/2022] Open
Abstract
With nearly 2,000 species, Gobiidae is the most specious family of the vertebrates. This high level of speciation is accompanied by conspicuous karyotypic modifications, where the role of repetitive sequences remains largely unknown. This study analyzed the karyotype of 2 species of the genus Gobionellus and mapped 18S and 5S ribosomal RNA genes and (CA)15 microsatellite sequences onto their chromosomes. G. oceanicus (2n = 56; ♂ 12 metacentrics (m) + 4 submetacentrics (sm) + 1 subtelocentric (st) + 39 acrocentrics (a); ♀ 12m + 4sm + 2st + 38a) and G. stomatus (2n = 56; ♂ 20m + 14sm + 1st + 21a; ♀ 20m + 14sm + 2st + 20a) possess the highest diploid chromosome number among the Gobiidae and have different karyotypes. Both species share an XX/XY sex chromosome system with a large subtelocentric X and a small acrocentric Y chromosome which is rich in (CA)15 sequences and bears 5S rRNA sites. Although coding and noncoding repetitive DNA sequences may be involved in the genesis or differentiation of the sex chromosomes, the exclusive presence of 5S rDNA sites on the Y, but not on the X chromosome of both species, represents a novelty in fishes. In summary, the karyotypic differences, as well as new data on the sex chromosome systems in these 2 Gobiidae species, confirm the high chromosomal dynamism observed in this family.
Collapse
Affiliation(s)
- Paulo A Lima-Filho
- Department of Cellular Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | |
Collapse
|
31
|
Gamble T, Geneva AJ, Glor RE, Zarkower D. Anolis sex chromosomes are derived from a single ancestral pair. Evolution 2014; 68:1027-41. [PMID: 24279795 PMCID: PMC3975651 DOI: 10.1111/evo.12328] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022]
Abstract
To explain the frequency and distribution of heteromorphic sex chromosomes in the lizard genus Anolis, we compared the relative roles of sex chromosome conservation versus turnover of sex-determining mechanisms. We used model-based comparative methods to reconstruct karyotype evolution and the presence of heteromorphic sex chromosomes onto a newly generated Anolis phylogeny. We found that heteromorphic sex chromosomes evolved multiple times in the genus. Fluorescent in situ hybridization (FISH) of repetitive DNA showed variable rates of Y chromosome degeneration among Anolis species and identified previously undetected, homomorphic sex chromosomes in two species. We confirmed homology of sex chromosomes in the genus by performing FISH of an X-linked bacterial artificial chromosome (BAC) and quantitative PCR of X-linked genes in multiple Anolis species sampled across the phylogeny. Taken together, these results are consistent with long-term conservation of sex chromosomes in the group. Our results pave the way to address additional questions related to Anolis sex chromosome evolution and describe a conceptual framework that can be used to evaluate the origins and evolution of heteromorphic sex chromosomes in other clades.
Collapse
Affiliation(s)
- Tony Gamble
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 321 Church St. SE, Minneapolis, Minnesota, 55455; Bell Museum of Natural History, University of Minnesota, 10 Church St. SE, Minneapolis, Minnesota, 55455.
| | | | | | | |
Collapse
|
32
|
Yano CF, Poltronieri J, Bertollo LAC, Artoni RF, Liehr T, de Bello Cioffi M. Chromosomal mapping of repetitive DNAs in Triportheus trifurcatus (Characidae, Characiformes): insights into the differentiation of the Z and W chromosomes. PLoS One 2014; 9:e90946. [PMID: 24632562 PMCID: PMC3954618 DOI: 10.1371/journal.pone.0090946] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/05/2014] [Indexed: 11/19/2022] Open
Abstract
Repetitive DNA sequences play an important role in the structural and functional organization of chromosomes, especially in sex chromosome differentiation. The genus Triportheus represents an interesting model for such studies because all of its species analyzed so far contain a ZZ/ZW sex chromosome system. A close relationship has been found between the differentiation of the W chromosome and heterochromatinization, with the involvement of different types of repetitive DNA in this process. This study investigated several aspects of this association in the W chromosome of Triportheus trifurcatus (2 n = 52 chromosomes), including the cytogenetic mapping of repetitive DNAs such as telomeric sequences (TTAGGG)n, microsatellites and retrotransposons. A remarkable heterochromatic segment on the W chromosome was observed with a preferential accumulation of (CAC)10, (CAG)10, (CGG)10, (GAA)10 and (TA)15. The retrotransposons Rex1 and Rex3 showed a general distribution pattern in the chromosomes, and Rex6 showed a different distribution on the W chromosome. The telomeric repeat (TTAGGG)n was highly evident in both telomeres of all chromosomes without the occurrence of ITS. Thus, the differentiation of the W chromosome of T. trifurcatus is clearly associated with the formation of heterochromatin and different types of repetitive DNA, suggesting that these elements had a prominent role in this evolutionary process.
Collapse
Affiliation(s)
- Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Juliana Poltronieri
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | - Roberto Ferreira Artoni
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Thüringen, Germany
| | - Thomas Liehr
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
- * E-mail:
| |
Collapse
|
33
|
Yano CF, Bertollo LAC, Molina WF, Liehr T, Cioffi MDB. Genomic organization of repetitive DNAs and its implications for male karyotype and the neo-Y chromosome differentiation in Erythrinus erythrinus (Characiformes, Erythrinidae). COMPARATIVE CYTOGENETICS 2014; 8:139-51. [PMID: 25147625 PMCID: PMC4137284 DOI: 10.3897/compcytogen.v8i2.7597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/29/2014] [Indexed: 05/19/2023]
Abstract
Studies have demonstrated the effective participation of repetitive DNA sequences in the origin and differentiation of the sex chromosomes in some biological groups. In this study several microsatellites and retrotranposable sequences were cytogenetically mapped in the Erythrinus erythrinus (Bloch & Schneider, 1801) male genome (karyomorph C), focusing on the distribution of these sequences in the sex chromosomes and in the evolutionary processes related to their differentiation. Males of E. erythrinus - karyomorph C - present 2n = 51 chromosomes (7m + 2sm + 6st + 36a), including the X1X2Y sex chromosomes. The C-positive heterochromatin has a predominant localization on the centromeric region of most chromosome pairs, but also in some telomeric regions. The 5S rDNA sites are located in the centromeric region of 27 chromosomes, including 26 acrocentric ones and the metacentric Y chromosome. The retrotransposons Rex 1 and Rex 6 show a dispersed pattern in the karyotype, contrasting with the Rex 3 distribution which is clearly co-localized with all the 27 5S rDNA sites. The microsatellite sequences show a differential distribution, some of them restricted to telomeric and/or interstitial regions and others with a scattered distribution on the chromosomes. However, no preferential accumulation of these elements were observed in the neo-Y chromosome, in contrast to what usually occurs in simple sex chromosome systems.
Collapse
Affiliation(s)
- Cassia Fernanda Yano
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís (SP 310) Km 235, São Carlos, SP, Brazil
| | - Luiz Antonio Carlos Bertollo
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís (SP 310) Km 235, São Carlos, SP, Brazil
- Professor Sênior at Universidade Federal de São Carlos
| | - Wagner Franco Molina
- Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, D-07743 Jena, Germany
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rodovia Washington Luís (SP 310) Km 235, São Carlos, SP, Brazil
| |
Collapse
|
34
|
Poltronieri J, Marquioni V, Bertollo L, Kejnovsky E, Molina W, Liehr T, Cioffi M. Comparative Chromosomal Mapping of Microsatellites inLeporinusSpecies (Characiformes, Anostomidae): Unequal Accumulation on the W Chromosomes. Cytogenet Genome Res 2014; 142:40-5. [DOI: 10.1159/000355908] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2013] [Indexed: 11/19/2022] Open
|
35
|
Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: A review of research. Cytogenet Genome Res 2013; 141:90-102. [PMID: 24080951 DOI: 10.1159/000354832] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Molecular cytogenetic data on the number and position of 45S ribosomal RNA genes (rDNA; located in nucleolus organizing regions, NORs) detected by FISH in 330 species of 77 families and 22 orders of bony fishes (Teleostei) and, additionally, 11 species of basal ray-finned fishes are compiled and analyzed. The portion of species with single rDNA sites in the sample amounts to 72%. The percentage of species with multiple NORs decreases with increasing numbers of rDNA loci per genome, i.e. scarcely 3% of species carry 4 or more rDNA-bearing chromosome pairs. 43% of all rDNA sites analyzed occur terminally on the short arms of chromosomes or constitute them. In general, terminal rDNA sites account for 87% of all examined cases. Interspecific variation in the location of single rDNA sites among related taxa, polymorphisms of multiple NORs in some groups of teleosts and analytical outcomes on the subject are reviewed.
Collapse
Affiliation(s)
- E Gornung
- 'Charles Darwin' Department of Biology and Biotechnologies, University of Rome 'La Sapienza', Rome, Italy
| |
Collapse
|
36
|
da Silva EL, de Borba RS, Parise-Maltempi PP. Chromosome mapping of repetitive sequences in Anostomidae species: implications for genomic and sex chromosome evolution. Mol Cytogenet 2012; 5:45. [PMID: 23228116 PMCID: PMC3541136 DOI: 10.1186/1755-8166-5-45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/31/2012] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED BACKGROUND Members of the Anostomidae family provide an interesting model system for the study of the influence of repetitive elements on genome composition, mainly because they possess numerous heterochromatic segments and a peculiar system of female heterogamety that is restricted to a few species of the Leporinus genus. The aim of this study was to isolate and identify important new repetitive DNA elements in Anostomidae through restriction enzyme digestion, followed by cloning, characterisation and chromosome mapping of this fragment. To identify repetitive elements in other Leporinus species and expand on studies of repetitive elements in Anostomidae, hybridisation experiments were also performed using previously described probes of LeSpeI repetitive elements. RESULTS The 628-base pair (bp) LeSpeII fragment was hybridised to metaphase cells of L. elongatus individuals as well as those of L. macrocephalus, L. obtusidens, L. striatus, L. lacustris, L. friderici, Schizodon borellii and S. isognathus. In L. elongatus, both male and female cells contained small clusters of LeSpeII repetitive elements dispersed on all of the chromosomes, with enrichment near most of the terminal portions of the chromosomes. In the female sex chromosomes of L. elongatus (Z2,Z2/W1W2), however, this repeated element was absent. In the remaining species, a dispersed pattern of hybridisation was observed on all chromosomes irrespective of whether or not they were sex chromosomes. The repetitive element LeSpeI produced positive hybridisations signals only in L. elongatus, L. macrocephalus and L. obtusidens, i.e., species with differentiated sex chromosomes. In the remaining species, the LeSpeI element did not produce hybridisation signals. CONCLUSIONS Results are discussed in terms of the effects of repetitive sequences on the differentiation of the Anostomidae genome, especially with respect to sex chromosome evolution. LeSpeII showed hybridisation patterns typical of Long Interspersed Elements (LINEs). The differential distribution of this element may be linked to sex chromosome differentiation in L. elongatus species. The relationship between sex chromosome specificity and the LeSpeI element is confirmed in the species L. elongatus, L. macrocephalus and L. obtusidens.
Collapse
Affiliation(s)
- Edson Lourenço da Silva
- Departamento de Biologia, Laboratório de Citogenética, Instituto de Biociências, Universidade Estadual Paulista “Julio de Mesquita Filho” - UNESP, Av. 24A, 1515, Rio Claro, SP, CEP 13506-900, Brazil
| | - Rafael Splendore de Borba
- Departamento de Biologia, Laboratório de Citogenética, Instituto de Biociências, Universidade Estadual Paulista “Julio de Mesquita Filho” - UNESP, Av. 24A, 1515, Rio Claro, SP, CEP 13506-900, Brazil
| | - Patrícia Pasquali Parise-Maltempi
- Departamento de Biologia, Laboratório de Citogenética, Instituto de Biociências, Universidade Estadual Paulista “Julio de Mesquita Filho” - UNESP, Av. 24A, 1515, Rio Claro, SP, CEP 13506-900, Brazil
| |
Collapse
|
37
|
Marquioni V, Bertollo LAC, Diniz D, Cioffi MDB. Comparative chromosomal mapping in Triportheus fish species. Analysis of synteny between ribosomal genes. Micron 2012; 45:129-35. [PMID: 23273577 DOI: 10.1016/j.micron.2012.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/25/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
Abstract
All Triportheus species show the conserved diploid number of 52 chromosomes and a ZZ/ZW sex chromosome system. Previous studies conducted on Triportheus nematurus reported a syntenical location of 18S and 5S sites on this species, in addition to some indications that this condition could be shared by other Triportheus species, possibly constituting a synapomorphy for this genus. In the present study, fluorescence in situ hybridization (FISH) experiments were performed in seven Triportheus species in view of a comparative analysis of the distribution of the 18S and 5S ribosomal DNAs on the chromosomes. The double-FISH experiments have showed that the synteny of the 18S and 5S rDNA genes is not a synapomorphy for the genus, since it is not present in all the species investigated, although it is present in most of them. The findings suggest that the syntenical location of the ribosomal genes is an ancestral trait in Triportheus, which was changed during the course of evolution of this group.
Collapse
Affiliation(s)
- Vinicius Marquioni
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
38
|
Cioffi MDB, Kejnovský E, Marquioni V, Poltronieri J, Molina WF, Diniz D, Bertollo LAC. Correction: The key role of repeated DNAs in sex chromosome evolution in two fish species with ZW sex chromosome system. Mol Cytogenet 2012. [PMID: 23181536 PMCID: PMC3541095 DOI: 10.1186/1755-8166-5-42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|