1
|
Venema WJ, Hiddingh S, van Loosdregt J, Bowes J, Balliu B, de Boer JH, Ossewaarde-van Norel J, Thompson SD, Langefeld CD, de Ligt A, van der Veken LT, Krijger PHL, de Laat W, Kuiper JJW. A cis-regulatory element regulates ERAP2 expression through autoimmune disease risk SNPs. CELL GENOMICS 2024; 4:100460. [PMID: 38190099 PMCID: PMC10794781 DOI: 10.1016/j.xgen.2023.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 01/09/2024]
Abstract
Single-nucleotide polymorphisms (SNPs) near the ERAP2 gene are associated with various autoimmune conditions, as well as protection against lethal infections. Due to high linkage disequilibrium, numerous trait-associated SNPs are correlated with ERAP2 expression; however, their functional mechanisms remain unidentified. We show by reciprocal allelic replacement that ERAP2 expression is directly controlled by the splice region variant rs2248374. However, disease-associated variants in the downstream LNPEP gene promoter are independently associated with ERAP2 expression. Allele-specific conformation capture assays revealed long-range chromatin contacts between the gene promoters of LNPEP and ERAP2 and showed that interactions were stronger in patients carrying the alleles that increase susceptibility to autoimmune diseases. Replacing the SNPs in the LNPEP promoter by reference sequences lowered ERAP2 expression. These findings show that multiple SNPs act in concert to regulate ERAP2 expression and that disease-associated variants can convert a gene promoter region into a potent enhancer of a distal gene.
Collapse
Affiliation(s)
- Wouter J Venema
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sanne Hiddingh
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Brunilda Balliu
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joke H de Boer
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Susan D Thompson
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, and Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Aafke de Ligt
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lars T van der Veken
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Jonas J W Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Baert L, Rudy S, Pellisson M, Doll T, Rocchetti R, Kaiser M, Mäser P, Müller M. Induced pluripotent stem cell-derived human macrophages as an infection model for Leishmania donovani. PLoS Negl Trop Dis 2024; 18:e0011559. [PMID: 38166146 PMCID: PMC10786377 DOI: 10.1371/journal.pntd.0011559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/12/2024] [Accepted: 12/19/2023] [Indexed: 01/04/2024] Open
Abstract
The parasite Leishmania donovani is one of the species causing visceral leishmaniasis in humans, a deadly infection claiming up to 40,000 lives each year. The current drugs for leishmaniasis treatment have severe drawbacks and there is an urgent need to find new anti-leishmanial compounds. However, the search for drug candidates is complicated by the intracellular lifestyle of Leishmania. Here, we investigate the use of human induced pluripotent stem cell (iPS)-derived macrophages (iMACs) as host cells for L. donovani. iMACs obtained through embryoid body differentiation were infected with L. donovani promastigotes, and high-content imaging techniques were used to optimize the iMACs seeding density and multiplicity of infection, allowing us to reach infection rates up to 70% five days after infection. IC50 values obtained for miltefosine and amphotericin B using the infected iMACs or mouse peritoneal macrophages as host cells were comparable and in agreement with the literature, showing the potential of iMACs as an infection model for drug screening.
Collapse
Affiliation(s)
- Lore Baert
- Swiss Tropical and Public Health Institute (SwissTPH), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Serena Rudy
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Mélanie Pellisson
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Thierry Doll
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Romina Rocchetti
- Swiss Tropical and Public Health Institute (SwissTPH), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute (SwissTPH), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute (SwissTPH), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Matthias Müller
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
3
|
Liu T, Huang T, Li J, Li A, Li C, Huang X, Li D, Wang S, Liang M. Optimization of differentiation and transcriptomic profile of THP-1 cells into macrophage by PMA. PLoS One 2023; 18:e0286056. [PMID: 37459313 PMCID: PMC10351730 DOI: 10.1371/journal.pone.0286056] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/09/2023] [Indexed: 07/20/2023] Open
Abstract
THP-1 monocyte, which can be differentiated into macrophages by PMA, is widely used in researches on pathogen infection and host innate immunity, but reports on the induction methods of PMA are different and lack a unified standard, and the transcriptome characteristics of macrophage compared with THP-1 cells remains unclear. In this research, we examined the differentiation effect of three factors including induction time, cell seeding density and PMA concentration by detecting the positive rate of CD14 expression. The concentration of 80ng/ml of PMA, the induction time of 24h, and the cell seeding density of 5×105 cells/ml, could respectively facilitates a relatively higher CD14 positive rate in THP-1 cells. Under this optimized conditions, the CD14 positive rate of THP-1 cells can reach 66.52%. Transcriptome sequencing showed that after the above induction, the mRNA expression of 3113 genes which were closely related to cell communication, signal transduction, cell response to stimulus, signaling receptor binding and cytokine activity were up-regulated, and the top 10 genes were RGS1, SPP1, GDF15, IL-1B, HAVCR2, SGK1, EGR2, TRAC, IL-8 and EBI3. While the mRNA expression of 2772 genes which were associated with cell cycle process, DNA binding and replication and cell division, were down-regulated, and the top genes were SERPINB10, TRGC2, SERPINB2, TRGC1, MS4A3, MS4A4E, TRGJP1, MS4A6A, TRGJP2, MS4A4A. This research optimized the induction method on THP-1 cell differentiation from three aspects and delineated the transcriptomic profile of PMA-induced THP-1 cells, laying a foundation for the construction method of cell model and for the functional study of macrophage.
Collapse
Affiliation(s)
- Tiezhu Liu
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Huang
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiajia Li
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Aqian Li
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chuan Li
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoxia Huang
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dexin Li
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shiwen Wang
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mifang Liang
- National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
4
|
Branstrom A, Cao L, Furia B, Trotta C, Santaguida M, Graci JD, Colacino JM, Ray B, Li W, Sheedy J, Mollin A, Yeh S, Kong R, Sheridan R, Baird JD, O'Keefe K, Spiegel R, Goodwin E, Keating S, Weetall M. Emvododstat, a Potent Dihydroorotate Dehydrogenase Inhibitor, Is Effective in Preclinical Models of Acute Myeloid Leukemia. Front Oncol 2022; 12:832816. [PMID: 35223511 PMCID: PMC8864546 DOI: 10.3389/fonc.2022.832816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Blocking the pyrimidine nucleotide de novo synthesis pathway by inhibiting dihydroorotate dehydrogenase (DHODH) results in the cell cycle arrest and/or differentiation of rapidly proliferating cells including activated lymphocytes, cancer cells, or virally infected cells. Emvododstat (PTC299) is an orally bioavailable small molecule that inhibits DHODH. We evaluated the potential for emvododstat to inhibit the progression of acute myeloid leukemia (AML) using several in vitro and in vivo models of the disease. Broad potent activity was demonstrated against multiple AML cell lines, AML blasts cultured ex vivo from patient blood samples, and AML tumor models including patient-derived xenograft models. Emvododstat induced differentiation, cytotoxicity, or both in primary AML patient blasts cultured ex vivo with 8 of 10 samples showing sensitivity. AML cells with diverse driver mutations were sensitive, suggesting the potential of emvododstat for broad therapeutic application. AML cell lines that are not sensitive to emvododstat are likely to be more reliant on the salvage pathway than on de novo synthesis of pyrimidine nucleotides. Pharmacokinetic experiments in rhesus monkeys demonstrated that emvododstat levels rose rapidly after oral administration, peaking about 2 hours post-dosing. This was associated with an increase in the levels of dihydroorotate (DHO), the substrate for DHODH, within 2 hours of dosing indicating that DHODH inhibition is rapid. DHO levels declined as drug levels declined, consistent with the reversibility of DHODH inhibition by emvododstat. These preclinical findings provide a rationale for clinical evaluation of emvododstat in an ongoing Phase 1 study of patients with relapsed/refractory acute leukemias.
Collapse
Affiliation(s)
- Arthur Branstrom
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Liangxian Cao
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Bansri Furia
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | | | | | - Jason D Graci
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Joseph M Colacino
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Balmiki Ray
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Wencheng Li
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Josephine Sheedy
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Anna Mollin
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Shirley Yeh
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Ronald Kong
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | | | - John D Baird
- Clinical, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Kylie O'Keefe
- Commercial, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Robert Spiegel
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Elizabeth Goodwin
- Scientific Writing, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Suzanne Keating
- Scientific Writing, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| | - Marla Weetall
- Research, PTC Therapeutics, Inc., South Plainfield, NJ, United States
| |
Collapse
|
5
|
Iluta S, Pasca S, Gafencu G, Jurj A, Terec A, Teodorescu P, Selicean C, Jitaru C, Preda A, Cenariu D, Constantinescu C, Iordache M, Tigu B, Munteanu R, Feder R, Dima D, Zdrenghea M, Gulei D, Ciuleanu T, Tomuleasa C. Azacytidine plus olaparib for relapsed acute myeloid leukaemia, ineligible for intensive chemotherapy, diagnosed with a synchronous malignancy. J Cell Mol Med 2021; 25:6094-6102. [PMID: 34132464 PMCID: PMC8406486 DOI: 10.1111/jcmm.16513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with relapsed/refractory acute myeloid leukaemia (AML), ineligible for intensive chemotherapy and allogeneic stem cell transplantation, have a dismal prognosis. For such cases, hypomethylating agents are a viable alternative, but with limited success. Combination chemotherapy using a hypomethylating agent plus another drug would potentially bring forward new alternatives. In the present manuscript, we present the cell and molecular background for a clinical scenario of a 44-year-old patient, diagnosed with high-grade serous ovarian carcinoma, diagnosed, and treated with a synchronous AML. Once the ovarian carcinoma relapsed, maintenance treatment with olaparib was initiated. Concomitantly, the bone marrow aspirate showed 30% myeloid blasts, consistent with a relapse of the underlying haematological disease. Azacytidine 75 mg/m2 treatment was started for seven days. The patient was administered two regimens of azacytidine monotherapy, additional to the olaparib-based maintenance therapy. After the second treatment, the patient presented with leucocytosis and 94% myeloid blasts on the bone marrow smear. Later, the patient unfortunately died. Following this clinical scenario, we reproduced in vitro the combination chemotherapy of azacytidine plus olaparib, to accurately assess the basic mechanisms of leukaemia progression, and resistance to treatment. Combination chemotherapy with drugs that theoretically target both malignancies might potentially be of use. Still, further research, both pre-clinical and clinical, is needed to accurately assess such cases.
Collapse
Affiliation(s)
- Sabina Iluta
- Department of HematologyIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
- Department of HematologyIon Chiricuta Clinical Cancer Center Cluj NapocaCluj NapocaRomania
- Medfuture Research Center for Advanced MedicineIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
| | - Sergiu Pasca
- Department of HematologyIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
- Department of HematologyIon Chiricuta Clinical Cancer Center Cluj NapocaCluj NapocaRomania
- Medfuture Research Center for Advanced MedicineIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
| | - Grigore Gafencu
- Department of HematologyIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
- MRC Molecular Haematology Unit ‐ The MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational MedicineIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
| | - Andreea Terec
- Department of HematologyIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
| | - Patric Teodorescu
- Department of HematologyIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
- Department of HematologyIon Chiricuta Clinical Cancer Center Cluj NapocaCluj NapocaRomania
- Department of LeukemiaThe Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins University School of MedicineBaltimoreUS
| | - Cristina Selicean
- Department of HematologyIon Chiricuta Clinical Cancer Center Cluj NapocaCluj NapocaRomania
| | - Ciprian Jitaru
- Department of HematologyIon Chiricuta Clinical Cancer Center Cluj NapocaCluj NapocaRomania
| | - Alexandra Preda
- Department of HematologyIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
- Department of HematologyIon Chiricuta Clinical Cancer Center Cluj NapocaCluj NapocaRomania
| | - Diana Cenariu
- Medfuture Research Center for Advanced MedicineIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
| | - Catalin Constantinescu
- Department of HematologyIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
- Department of HematologyIon Chiricuta Clinical Cancer Center Cluj NapocaCluj NapocaRomania
| | - Maria Iordache
- Research Center for Functional Genomics and Translational MedicineIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
| | - Bogdan Tigu
- Medfuture Research Center for Advanced MedicineIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced MedicineIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
| | - Richard Feder
- Medfuture Research Center for Advanced MedicineIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
| | - Delia Dima
- Department of HematologyIon Chiricuta Clinical Cancer Center Cluj NapocaCluj NapocaRomania
| | - Mihnea Zdrenghea
- Department of HematologyIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
- Department of HematologyIon Chiricuta Clinical Cancer Center Cluj NapocaCluj NapocaRomania
| | - Diana Gulei
- Medfuture Research Center for Advanced MedicineIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
| | - Tudor‐Eliade Ciuleanu
- Department of HematologyVictor Babes University of Medicine and PharmacyTimisoaraRomania
- Department of Medical OncologyIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
| | - Ciprian Tomuleasa
- Department of HematologyIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
- Department of HematologyIon Chiricuta Clinical Cancer Center Cluj NapocaCluj NapocaRomania
- Medfuture Research Center for Advanced MedicineIuliu Hatieganu University of Medicine and Pharmacy Cluj NapocaCluj NapocaRomania
- Department of ChemotherapyIon Chiricuta Clinical Cancer CenterCluj NapocaRomania
| |
Collapse
|
6
|
Gažová I, Lefevre L, Bush SJ, Rojo R, Hume DA, Lengeling A, Summers KM. CRISPR-Cas9 Editing of Human Histone Deubiquitinase Gene USP16 in Human Monocytic Leukemia Cell Line THP-1. Front Cell Dev Biol 2021; 9:679544. [PMID: 34136489 PMCID: PMC8203323 DOI: 10.3389/fcell.2021.679544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
USP16 is a histone deubiquitinase which facilitates G2/M transition during the cell cycle, regulates DNA damage repair and contributes to inducible gene expression. We mutated the USP16 gene in a high differentiation clone of the acute monocytic leukemia cell line THP-1 using the CRISPR-Cas9 system and generated four homozygous knockout clones. All were able to proliferate and to differentiate in response to phorbol ester (PMA) treatment. One line was highly proliferative prior to PMA treatment and shut down proliferation upon differentiation, like wild type. Three clones showed sustained expression of the progenitor cell marker MYB, indicating that differentiation had not completely blocked proliferation in these clones. Network analysis of transcriptomic differences among wild type, heterozygotes and homozygotes showed clusters of genes that were up- or down-regulated after differentiation in all cell lines. Prior to PMA treatment, the homozygous clones had lower levels than wild type of genes relating to metabolism and mitochondria, including SRPRB, encoding an interaction partner of USP16. There was also apparent loss of interferon signaling. In contrast, a number of genes were up-regulated in the homozygous cells compared to wild type at baseline, including other deubiquitinases (USP12, BAP1, and MYSM1). However, three homozygotes failed to fully induce USP3 during differentiation. Other network clusters showed effects prior to or after differentiation in the homozygous clones. Thus the removal of USP16 affected the transcriptome of the cells, although all these lines were able to survive, which suggests that the functions attributed to USP16 may be redundant. Our analysis indicates that the leukemic line can adapt to the extreme selection pressure applied by the loss of USP16, and the harsh conditions of the gene editing and selection protocol, through different compensatory pathways. Similar selection pressures occur during the evolution of a cancer in vivo, and our results can be seen as a case study in leukemic cell adaptation. USP16 has been considered a target for cancer chemotherapy, but our results suggest that treatment would select for escape mutants that are resistant to USP16 inhibitors.
Collapse
Affiliation(s)
- Iveta Gažová
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Lucas Lefevre
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Stephen J Bush
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Rocio Rojo
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - David A Hume
- Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Andreas Lengeling
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom
| | - Kim M Summers
- The Roslin Institute, University of Edinburgh, Easter Bush, United Kingdom.,Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
7
|
Baxter EW, Graham AE, Re NA, Carr IM, Robinson JI, Mackie SL, Morgan AW. Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNγ+LPS), M(IL-4) and M(IL-10) phenotypes. J Immunol Methods 2020; 478:112721. [PMID: 32033786 DOI: 10.1016/j.jim.2019.112721] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/28/2022]
Abstract
In vitro models of differing macrophage functions are useful since human monocyte-derived macrophages are short-lived, finite and vary from donor to donor. Published protocols using the promonocytic cell line THP-1 have tended to result in cells that closely resemble classically-activated macrophages, differentiated in IFNγ and LPS. However, no protocol, to date, has fully recapitulated polarization of THP-1 to the M(IL-4) or M(IL-10) macrophage phenotypes seen when human monocyte-derived macrophages are exposed to each cytokine. Here we present protocols that can be used to prepare M(IL-4) polarized THP-1 that transcribe CCL17, CCL26, CD200R and MRC1 and M(IL-10) cells which transcribe CD163, C1QA and SEPP1. We show that the inhibitory Fcγ Receptor IIb is preferentially expressed on the surface of M(IL-4) cells, altering the balance of activating to inhibitory Fcγ Receptors. Adoption of standardized experimental conditions for macrophage polarization will make it easier to compare downstream effector functions of different macrophage polarization states, where the impact of PMA exposure is minimized and rest periods and cytokine exposure have been optimized.
Collapse
Affiliation(s)
- E W Baxter
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; NIHR Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - A E Graham
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - N A Re
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - I M Carr
- Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, UK
| | - J I Robinson
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; NIHR Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - S L Mackie
- NIHR Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK; Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - A W Morgan
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; NIHR Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
8
|
Sadofsky LR, Hayman YA, Vance J, Cervantes JL, Fraser SD, Wilkinson HN, Williamson JD, Hart SP, Morice AH. Characterisation of a New Human Alveolar Macrophage-Like Cell Line (Daisy). Lung 2019; 197:687-698. [PMID: 31732808 PMCID: PMC6861369 DOI: 10.1007/s00408-019-00288-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022]
Abstract
Purpose There is currently no true macrophage cell line and in vitro experiments requiring these cells currently require mitogenic stimulation of a macrophage precursor cell line (THP-1) or ex vivo maturation of circulating primary monocytes. In this study, we characterise a human macrophage cell line, derived from THP-1 cells, and compare its phenotype to the THP-1 cells. Methods THP-1 cells with and without mitogenic stimulation were compared to the newly derived macrophage-like cell line (Daisy) using microscopy, flow cytometry, phagocytosis assays, antigen binding assays and gene microarrays. Results We show that the cell line grows predominantly in an adherent monolayer. A panel of antibodies were chosen to investigate the cell surface phenotype of these cells using flow cytometry. Daisy cells expressed more CD11c, CD80, CD163, CD169 and CD206, but less CD14 and CD11b compared with mitogen-stimulated THP-1 cells. Unlike stimulated THP-1 cells which were barely able to bind immune complexes, Daisy cells showed large amounts of immune complex binding. Finally, although not statistically significant, the phagocytic ability of Daisy cells was greater than mitogen-stimulated THP-1 cells, suggesting that the cell line is more similar to mature macrophages. Conclusions The observed phenotype suggests that Daisy cells are a good model of human macrophages with a phenotype similar to human alveolar macrophages.
Collapse
Affiliation(s)
- Laura R Sadofsky
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road Hull, Hull, HU6 7RX, UK.
| | - Yvette A Hayman
- Respiratory Research Group, Hull York Medical School, University of Hull, Cottingham Road Hull, Hull, HU6 7RX, UK
| | - Jesse Vance
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Jorge L Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Simon D Fraser
- Respiratory Research Group, Hull York Medical School, University of Hull, Cottingham Road Hull, Hull, HU6 7RX, UK
| | - Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road Hull, Hull, HU6 7RX, UK
| | - James D Williamson
- Respiratory Research Group, Hull York Medical School, University of Hull, Cottingham Road Hull, Hull, HU6 7RX, UK
| | - Simon P Hart
- Respiratory Research Group, Hull York Medical School, University of Hull, Cottingham Road Hull, Hull, HU6 7RX, UK
| | - Alyn H Morice
- Respiratory Research Group, Hull York Medical School, University of Hull, Cottingham Road Hull, Hull, HU6 7RX, UK
| |
Collapse
|
9
|
Hamid A, Petreaca B, Petreaca R. Frequent homozygous deletions of the CDKN2A locus in somatic cancer tissues. Mutat Res 2019; 815:30-40. [PMID: 31096160 DOI: 10.1016/j.mrfmmm.2019.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023]
Abstract
Here we present and describe data on homozygous deletions (HD) of human CDKN2 A and neighboring regions on the p arm of Chromosome 9 from cancer genome sequences deposited on the online Catalogue of Somatic Mutations in Cancer (COSMIC) database. Although CDKN2 A HDs have been previously described in many cancers, this is a pan-cancer report of these aberrations with the aim to map the distribution of the breakpoints. We find that HDs of this locus have a median range of 1,255,650bps. When the deletion breakpoints were mapped on both the telomere and centromere proximal sides of CDKN2A, most of the telomere proximal breakpoints concentrate to a narrow region of the chromosome which includes the gene MTAP.. The centromere proximal breakpoints of the deletions are distributed over a wider chromosomal region. Furthermore, gene expression analysis shows that the deletions that include the CDKN2A region also include the MTAP region and this observation is tissue independent. We propose a model that may explain the origin of the telomere proximal CDKN2A breakpoints Finally, we find that HD distributions for at least three other loci, RB1, SMAD4 and PTEN are also not random.
Collapse
Affiliation(s)
- Abdulaziz Hamid
- The Ohio State University, MSE110A, 1464 Mount Vernon Ave, Marion, OH 43302, United States
| | - Beniamin Petreaca
- The Ohio State University, MSE110A, 1464 Mount Vernon Ave, Marion, OH 43302, United States
| | - Ruben Petreaca
- The Ohio State University, MSE110A, 1464 Mount Vernon Ave, Marion, OH 43302, United States.
| |
Collapse
|
10
|
Guzova JA, Primiano MJ, Jiao A, Stock J, Lee C, Winkler AR, Hall JP. Optimized protocols for studying the NLRP3 inflammasome and assessment of potential targets of CP-453,773 in undifferentiated THP1 cells. J Immunol Methods 2019; 467:19-28. [DOI: 10.1016/j.jim.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/07/2023]
|
11
|
Lin D, Hong P, Zhang S, Xu W, Jamal M, Yan K, Lei Y, Li L, Ruan Y, Fu ZF, Li G, Cao G. Digestion-ligation-only Hi-C is an efficient and cost-effective method for chromosome conformation capture. Nat Genet 2018; 50:754-763. [DOI: 10.1038/s41588-018-0111-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/08/2018] [Indexed: 01/06/2023]
|
12
|
Cyclin-dependent kinase activity is required for type I interferon production. Proc Natl Acad Sci U S A 2018; 115:E2950-E2959. [PMID: 29507205 DOI: 10.1073/pnas.1720431115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recognition of nucleic acids results in the production of type I IFNs, which activate the JAK/STAT pathway and promote the expression of IFN-stimulated genes. In a search for modulators of this pathway, we discovered an unexpected requirement for cyclin-dependent kinases (CDK) in the production of type I IFN following nucleic acid sensing and virus infection. Inhibition of CDK activity or knockdown of CDK levels leads to a striking block in STAT activation and IFN-stimulated gene expression. CDKs are not required for the initial nucleic acid sensing leading to IFN-β mRNA induction, nor for the response to exogenous IFN-α/β, but are critical for IFN-β release into culture supernatants, suggesting a posttranscriptional role for CDKs in type I IFN production. In the absence of CDK activity, we demonstrate a translational block specific for IFN-β, in which IFN-β mRNA is removed from the actively translating polysomes, while the distribution of other cellular mRNAs or global translation rates are unaffected. Our findings reveal a critical role for CDKs in the translation of IFN-β.
Collapse
|
13
|
Hong D, Ding J, Li O, He Q, Ke M, Zhu M, Liu L, Ou WB, He Y, Wu Y. Human-induced pluripotent stem cell-derived macrophages and their immunological function in response to tuberculosis infection. Stem Cell Res Ther 2018; 9:49. [PMID: 29482598 PMCID: PMC5828072 DOI: 10.1186/s13287-018-0800-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/30/2018] [Accepted: 02/07/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPS) represent an innovative source for the standardized in vitro generation of macrophages (Mφ). Mφ show great promise in disease pathogenesis, particularly tuberculosis. However, there is no information about human iPS-derived (hiPS) macrophages (hiPS-Mφ) in response to tuberculosis infection. METHODS In the present study, macrophages derived from hiPS were established via embryoid body (EB) formation by using feeder-free culture conditions, and the human monocyte cell line THP-1 (THP-1-Mφ) was used as control. iPS-Mφ were characterized by using morphology, Giemsa staining, nonspecific esterase staining (α-NAE), phagocytosis, and surface phenotype. Additionally, after treatment with Bacillus Calmette-Guérin (BCG) for 24 h, cell apoptosis was detected by using an Annexin V-FITC Apoptosis Detection assay. The production of nitric oxide (NO), expression of tumor necrosis factor alpha (TNF-α), activity of apoptosis-related protein cysteine-3 (Caspase-3) and expression of B-cell lymphoma-2 (Bcl-2) were analyzed. RESULTS With respect to morphology, surface phenotype, and function, the iPS-Mφ closely resembled their counterparts generated in vitro from a human monocyte cell line. iPS-Mφ exhibited the typically morphological characteristics of macrophages, such as round, oval, fusiform and irregular characteristics. The cells were Giemsa-stained-positive, α-NAE-positive, and possessed phagocytic ability. iPS-Mφ express high levels of CD14, CD11b, CD40, CD68, and major histocompatibility complex II (MHC-II). Moreover, with regard to the apoptotic rate, the production of NO, expression of TNF-α, and activity of Caspase-3 and Bcl-2, iPS-Mφ closely resemble that of their counterparts generated in vitro from human monocyte cell line in response to BCG infection. The rate of apoptosis of BCG-treated iPS-Mφ was 37.77 ± 7.94% compared to that of the untreated group at 4.97 ± 1.60% (P < 0.01) by using Annexin V-FITC Apoptosis Detection. Additionally, the rate of apoptosis of BCG-treated THP-1-Mφ was 37.1 ± 2.84% compared to that of the untreated group at 6.19 ± 1.68% (P < 0.001). The expression of TNF-α and the production of NO were significantly increased (P < 0.001), and the activity of Caspase-3 was increased. However, the expression of Bcl-2 was inhibited (P < 0.001). CONCLUSIONS Our results demonstrate that Mφ derived from hiPS perform the immunological function in response to Bacillus Calmette-Guérin infection by undergoing apoptosis, increasing the production of NO and expression of TNF-α. Thus, our study may help to overcome the limitations of research into certain rare diseases due to the lack of adequate supply of disease-specific primary cells.
Collapse
Affiliation(s)
- Danping Hong
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Jiongyan Ding
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Ouyang Li
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Quan He
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Minxia Ke
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Mengyi Zhu
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Lili Liu
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Wen-Bin Ou
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China
| | - Yulong He
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China.
| | - Yuehong Wu
- College of Life Science, Zhejiang Sci-tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018, China.
| |
Collapse
|
14
|
Mukherjee C, Hale C, Mukhopadhyay S. A Simple Multistep Protocol for Differentiating Human Induced Pluripotent Stem Cells into Functional Macrophages. Methods Mol Biol 2018; 1784:13-28. [PMID: 29761384 DOI: 10.1007/978-1-4939-7837-3_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Macrophages differentiated from human induced pluripotent stem cells (hiPSCs) provide an alternative new tool overcoming some of the limitations of existing models for human macrophages, such as human macrophage-like cell lines and primary monocyte-derived macrophages. A combination of different cytokines and growth factors can differentiate hiPSCs toward myeloid lineage. Here we describe a simple multistep protocol for differentiating hiPSCs into functional macrophages. This includes derivation of three germ-line containing embryoid bodies (EBs) from iPSCs, generation of myeloid precursors from EBs, and finally maturation of myeloid precursors into functional macrophages. Technical procedure and specific culture conditions associated with each of these steps are discussed in detail.
Collapse
Affiliation(s)
- Chandrayana Mukherjee
- Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.,The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge, UK
| | - Christine Hale
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge, UK
| | - Subhankar Mukhopadhyay
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge, Hinxton, UK.
| |
Collapse
|
15
|
Salman H, Shuai X, Nguyen-Lefebvre AT, Giri B, Ren M, Rauchman M, Robbins L, Hou W, Korkaya H, Ma Y. SALL1 expression in acute myeloid leukemia. Oncotarget 2017; 9:7442-7452. [PMID: 29484122 PMCID: PMC5800914 DOI: 10.18632/oncotarget.23448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/25/2017] [Indexed: 02/05/2023] Open
Abstract
Similar signaling pathways could operate in both normal hematopoietic stem and progenitor cells (HSPCs) and leukemia stem cells (LSCs). Thus, targeting LSCs signaling without substantial toxicities to normal HSPCs remains challenging. SALL1, is a member of the transcriptional network that regulates stem cell pluripotency, and lacks significant expression in most adult tissues, including normal bone marrow (NBM). We examined the expression and functional characterization of SALL1 in NBM and in acute myeloid leukemia (AML) using in vitro and in vivo assays. We showed that SALL1 is expressed preferentially in LSCs- enriched CD34+CD38- cell subpopulation but not in NBM. SALL1 inhibition resulted in decreased cellular proliferation and in inferior AML engraftment in NSG mice and it was also associated with upregulation of PTEN and downregulation of m-TOR, β-catenin, and NF-қB expression. These findings suggest that SALL1 inhibition interrupts leukemogenesis. Further studies to validate SALL1 as a potential biomarker for minimal residual disease (MRD) and to determine SALL1's role in prognostication are ongoing. Additionally, pre-clinical evaluation of SALL1 as a therapeutic target in AML is warranted.
Collapse
Affiliation(s)
- Huda Salman
- Georgia Regent University Cancer Center, Augusta, GA, USA.,Present address: Stony Brook University Cancer Center, Stony Brook, NY, USA
| | - Xiao Shuai
- Present address: Stony Brook University Cancer Center, Stony Brook, NY, USA.,Department of Hematology, West China hospital of Sichuan University, Chengdu, P.R. China
| | | | | | - Mingqiang Ren
- Georgia Regent University Cancer Center, Augusta, GA, USA
| | - Michael Rauchman
- Department of Nephrology, Saint Louis University, St Louis, MO, USA
| | - Lynn Robbins
- Department of Nephrology, Saint Louis University, St Louis, MO, USA
| | - Wei Hou
- Present address: Stony Brook University Cancer Center, Stony Brook, NY, USA
| | - Hasan Korkaya
- Georgia Regent University Cancer Center, Augusta, GA, USA
| | - Yupo Ma
- Present address: Stony Brook University Cancer Center, Stony Brook, NY, USA
| |
Collapse
|
16
|
Herzner AM, Wolter S, Zillinger T, Schmitz S, Barchet W, Hartmann G, Bartok E, Schlee M. G-rich DNA-induced stress response blocks type-I-IFN but not CXCL10 secretion in monocytes. Sci Rep 2016; 6:38405. [PMID: 27941826 PMCID: PMC5150577 DOI: 10.1038/srep38405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/03/2016] [Indexed: 12/17/2022] Open
Abstract
Excessive inflammation can cause damage to host cells and tissues. Thus, the secretion of inflammatory cytokines is tightly regulated at transcriptional, post-transcriptional and post-translational levels and influenced by cellular stress responses, such as endoplasmic reticulum (ER) stress or apoptosis. Here, we describe a novel type of post-transcriptional regulation of the type-I-IFN response that was induced in monocytes by cytosolic transfection of a short immunomodulatory DNA (imDNA), a G-tetrad forming CpG-free derivative of the TLR9 agonist ODN2216. When co-transfected with cytosolic nucleic acid stimuli (DNA or 3P-dsRNA), imDNA induced caspase-3 activation, translational shutdown and upregulation of stress-induced genes. This stress response inhibited the type-I-IFN induction at the translational level. By contrast, the induction of most type-I-IFN-associated chemokines, including Chemokine (C-X-C Motif) Ligand (CXCL)10 was not affected, suggesting a differential translational regulation of chemokines and type-I-IFN. Pan-caspase inhibitors could restore IFN-β secretion, yet, strikingly, caspase inhibition did not restore global translation but instead induced a compensatory increase in the transcription of IFN-β but not CXCL10. Altogether, our data provide evidence for a differential regulation of cytokine release at both transcriptional and post-transcriptional levels which suppresses type-I-IFN induction yet allows for CXCL10 secretion during imDNA-induced cellular stress.
Collapse
Affiliation(s)
- Anna-Maria Herzner
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Steven Wolter
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Cologne-Bonn, Germany
| | - Saskia Schmitz
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Winfried Barchet
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Cologne-Bonn, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Eva Bartok
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
17
|
Westphal A, Cheng W, Yu J, Grassl G, Krautkrämer M, Holst O, Föger N, Lee KH. Lysosomal trafficking regulator Lyst links membrane trafficking to toll-like receptor-mediated inflammatory responses. J Exp Med 2016; 214:227-244. [PMID: 27881733 PMCID: PMC5206490 DOI: 10.1084/jem.20141461] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 04/11/2016] [Accepted: 11/01/2016] [Indexed: 01/28/2023] Open
Abstract
Westphal et al. demonstrate a role of lysosomal trafficking regulator Lyst that couples the regulation of endolysosomal trafficking to inflammatory responses by the control of toll-like receptor–mediated endosomal TRIF signaling pathways. Subcellular compartmentalization of receptor signaling is an emerging principle in innate immunity. However, the functional integration of receptor signaling pathways into membrane trafficking routes and its physiological relevance for immune responses is still largely unclear. In this study, using Lyst-mutant beige mice, we show that lysosomal trafficking regulator Lyst links endolysosomal organization to the selective control of toll-like receptor 3 (TLR3)– and TLR4-mediated proinflammatory responses. Consequently, Lyst-mutant mice showed increased susceptibility to bacterial infection and were largely resistant to endotoxin-induced septic shock. Mechanistic analysis revealed that Lyst specifically controls TLR3- and TLR4-induced endosomal TRIF (TIR domain–containing adapter-inducing interferon β) signaling pathways. Loss of functional Lyst leads to dysregulated phagosomal maturation, resulting in a failure to form an activation-induced Rab7+ endosomal/phagosomal compartment. This specific Rab7+ compartment was further demonstrated to serve as a major site for active TRIF signaling events, thus linking phagosomal maturation to specific TLR signaling pathways. The immunoregulatory role of Lyst on TLR signaling pathways was confirmed in human cells by CRISPR/Cas9-mediated gene inactivation. As mutations in LYST cause human Chédiak-Higashi syndrome, a severe immunodeficiency, our findings also contribute to a better understanding of human disease mechanisms.
Collapse
Affiliation(s)
- Andreas Westphal
- Institute of Clinical Chemistry, Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany
| | - Weijia Cheng
- Institute of Clinical Chemistry, Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany
| | - Jinbo Yu
- Institute of Clinical Chemistry, Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany
| | - Guntram Grassl
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany
| | - Martina Krautkrämer
- Institute of Clinical Chemistry, Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany
| | - Otto Holst
- Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, 23845 Borstel, Germany
| | - Niko Föger
- Institute of Clinical Chemistry, Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany
| | - Kyeong-Hee Lee
- Institute of Clinical Chemistry, Inflammation Research Group, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
18
|
Alasoo K, Martinez FO, Hale C, Gordon S, Powrie F, Dougan G, Mukhopadhyay S, Gaffney DJ. Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription. Sci Rep 2015; 5:12524. [PMID: 26224331 PMCID: PMC4519778 DOI: 10.1038/srep12524] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/29/2015] [Indexed: 12/22/2022] Open
Abstract
Macrophages differentiated from human induced pluripotent stem cells (IPSDMs) are a potentially valuable new tool for linking genotype to phenotype in functional studies. However, at a genome-wide level these cells have remained largely uncharacterised. Here, we compared the transcriptomes of naïve and lipopolysaccharide (LPS) stimulated monocyte-derived macrophages (MDMs) and IPSDMs using RNA-Seq. The IPSDM and MDM transcriptomes were broadly similar and exhibited a highly conserved response to LPS. However, there were also significant differences in the expression of genes associated with antigen presentation and tissue remodelling. Furthermore, genes coding for multiple chemokines involved in neutrophil recruitment were more highly expressed in IPSDMs upon LPS stimulation. Additionally, analysing individual transcript expression identified hundreds of genes undergoing alternative promoter and 3' untranslated region usage following LPS treatment representing a previously under-appreciated level of regulation in the LPS response.
Collapse
Affiliation(s)
- Kaur Alasoo
- Wellcome Trust Sanger Institute, Hinxton, UK
| | | | | | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Subhankar Mukhopadhyay
- Wellcome Trust Sanger Institute, Hinxton, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | |
Collapse
|
19
|
Alasoo K, Martinez FO, Hale C, Gordon S, Powrie F, Dougan G, Mukhopadhyay S, Gaffney DJ. Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription. Sci Rep 2015. [PMID: 26224331 DOI: 10.1038/srep12524)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages differentiated from human induced pluripotent stem cells (IPSDMs) are a potentially valuable new tool for linking genotype to phenotype in functional studies. However, at a genome-wide level these cells have remained largely uncharacterised. Here, we compared the transcriptomes of naïve and lipopolysaccharide (LPS) stimulated monocyte-derived macrophages (MDMs) and IPSDMs using RNA-Seq. The IPSDM and MDM transcriptomes were broadly similar and exhibited a highly conserved response to LPS. However, there were also significant differences in the expression of genes associated with antigen presentation and tissue remodelling. Furthermore, genes coding for multiple chemokines involved in neutrophil recruitment were more highly expressed in IPSDMs upon LPS stimulation. Additionally, analysing individual transcript expression identified hundreds of genes undergoing alternative promoter and 3' untranslated region usage following LPS treatment representing a previously under-appreciated level of regulation in the LPS response.
Collapse
Affiliation(s)
- Kaur Alasoo
- Wellcome Trust Sanger Institute, Hinxton, UK
| | | | | | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | | - Subhankar Mukhopadhyay
- 1] Wellcome Trust Sanger Institute, Hinxton, UK [2] Sir William Dunn School of Pathology, University of Oxford, Oxford, UK [3] Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | | |
Collapse
|
20
|
Fried I, Artl M, Cota C, Müller H, Bartolo E, Boi S, Chiarelli C, Vale E, Schmuth M, Wiesner T, Speicher MR, Cerroni L. Clinicopathologic and molecular features in cutaneous extranodal natural killer-/T-cell lymphoma, nasal type, with aggressive and indolent course. J Am Acad Dermatol 2014; 70:716-723. [PMID: 24433873 DOI: 10.1016/j.jaad.2013.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/17/2013] [Accepted: 11/20/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND Extranodal natural killer-/T-cell lymphoma, nasal type (ENKTCL-NT) is a highly aggressive lymphoma and prognosis is usually poor. The genetic background of primary cutaneous cases is poorly understood. OBJECTIVE We sought to evaluate the clinicopathologic features of cutaneous ENKTCL-NT, and the prognostic significance of genomic copy number alterations. METHODS Eight cases of cutaneous ENKTCL-NT (5 primary, 2 secondary, 1 no staging performed), including 2 patients with an unusually prolonged course of 5 and 23 years, were investigated using array comparative genomic hybridization. RESULTS All patients presented with typical clinicopathologic features. Epstein-Barr virus was found in neoplastic cells in all specimens. Copy number alterations were detected in all 8 cases with losses on 6q (37.5% of cases) and 7p (37.5% of cases), and gains on 7q (37.5% of cases) being the most frequent. Complexity of array comparative genomic hybridization profile did not correlate with the course of the disease. However, an increase of copy number alterations was detected in sequential biopsy specimens of 1 long-term survivor. LIMITATIONS This was a small case series retrospective study. CONCLUSION Clinicopathologic features of cutaneous ENKTCL-NT are distinctive. Lower number of copy number alterations cannot be used as predictor for prolonged survival in cutaneous ENKTCL-NT.
Collapse
Affiliation(s)
- Isabella Fried
- Research Unit Dermatopathology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Monika Artl
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Carlo Cota
- Dermatopathology Unit, San Gallicano Dermatological Institute, Rome, Italy
| | - Hansgeorg Müller
- Department of Dermatology, Innsbruck Medical University, Innsbruck, Austria
| | - Elvira Bartolo
- Dermatology Department, Hospital Garcia de Orta, Almada, Portugal
| | - Sebastiana Boi
- Department of Pathology, Santa Chiara Hospital, Trento, Italy
| | | | - Esmeralda Vale
- Departments of Dermatology and Pathology, Hospital da Luz, Lisbon, Portugal
| | - Matthias Schmuth
- Department of Dermatology, Innsbruck Medical University, Innsbruck, Austria
| | - Thomas Wiesner
- Research Unit Dermatopathology, Department of Dermatology, Medical University of Graz, Graz, Austria
| | | | - Lorenzo Cerroni
- Research Unit Dermatopathology, Department of Dermatology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
21
|
Zhao L, Ye P, Gonda TJ. The MYB proto-oncogene suppresses monocytic differentiation of acute myeloid leukemia cells via transcriptional activation of its target gene GFI1. Oncogene 2013; 33:4442-9. [PMID: 24121275 DOI: 10.1038/onc.2013.419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/14/2013] [Accepted: 09/02/2013] [Indexed: 12/20/2022]
Abstract
The MYB gene is a master regulator of hematopoiesis and contributes to leukemogenesis in several species including humans. Although it is clear that MYB can promote proliferation, suppress apoptosis and block differentiation, the identities of the MYB target genes that mediate these effects have only been partially elucidated. Several studies, including our own, have collectively identified substantial numbers of MYB target genes, including candidates for each of these activities; however, functional validation, particularly in the case of differentiation suppression, has lagged well behind. Here we show that GFI1, which encodes an important regulator of hematopoietic stem cell (HSC) function and granulocytic differentiation, is a direct target of MYB in myeloid leukemia cells. Chromatin immunoprecipitation and reporter studies identified a functional MYB-binding site in the promoter region of GFI, whereas ectopic expression and small hairpin RNA-mediated knockdown of MYB resulted in concomitant increases and decreases, respectively, in GFI1 expression. We also demonstrate that GFI1, like MYB, can block the induced monocytic differentiation of a human acute myeloid leukemia cell line, and most importantly, that GFI1 is essential for MYB's ability to block monocytic differentiation. Thus, we have identified a target of MYB that is a likely mediator of its myeloid differentiation-blocking activity, and which may also be involved in MYB's activities in regulating normal HSC function and myeloid differentiation.
Collapse
Affiliation(s)
- L Zhao
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - P Ye
- 1] The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia [2] School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, Queensland, Australia
| | - T J Gonda
- 1] The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia [2] School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Zhao Y, Li Y, Lu H, Chen J, Zhang Z, Zhu ZZ. Association of copy number loss of CDKN2B and PTCH1 with poor overall survival in patients with pulmonary squamous cell carcinoma. Clin Lung Cancer 2012; 12:328-34. [PMID: 21889114 DOI: 10.1016/j.cllc.2011.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/13/2011] [Accepted: 02/22/2011] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND PURPOSE Although lung cancer is the leading cause of cancer deaths worldwide, reliable markers allowing prediction of patient survival at the time of initial diagnosis are still lacking. Copy number alterations (CNAs) in tumor tissue DNA have been associated with tumorigenesis and malignant progression. We aimed at identification of gene-level CNAs with prognostic value for survival in pulmonary squamous cell carcinoma (SCC). METHODS The CNA status of a panel of 44 genes was analyzed by high-resolution array comparative genomic hybridization (CGH) in 49 SCC samples. Overall survival information (median follow-up, 40 months) for the patients was collected and used to assess outcome correlations with gene CNAs. RESULTS Survival analysis showed that both CDKN2B loss and PTCH1 loss were associated with poor survival (both P < .001, log-rank test). Multivariate Cox analysis, including CDKN2B loss and PTCH1 loss as well as age, sex, cigarette smoking status, tumor size, tumor differentiation, and TNM stage showed that CDKN2B loss (hazard ratio [HR], 17.88; 95% confidence interval [CI], 4.40-72.67; P < .001) and PTCH1 loss (HR, 10.81; 95% CI, 1.92-60.98; P = .007) were independent prognostic factors for poor survival. In addition the PTCH1 loss was more frequently found in moderately or poorly differentiated tumors than in well-differentiated tumors (P = .007). CONCLUSION These findings suggest that 2 genes of loss, CDKN2B and PTCH1, are associated with poor overall survival in patients with SCC of the lung and may be useful as prognostic markers.
Collapse
Affiliation(s)
- Yushi Zhao
- Department of Cardiovascular Surgery, the Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, P.R. China
| | | | | | | | | | | |
Collapse
|
23
|
Hoeksema KA, Jayanthan A, Cooper T, Gore L, Trippett T, Boklan J, Arceci RJ, Narendran A. Systematic in-vitro evaluation of the NCI/NIH Developmental Therapeutics Program Approved Oncology Drug Set for the identification of a candidate drug repertoire for MLL-rearranged leukemia. Onco Targets Ther 2011; 4:149-68. [PMID: 21949608 PMCID: PMC3176174 DOI: 10.2147/ott.s21553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite significant progress made in the overall cure rate, the prognosis for relapsed and refractory malignancies in children remains extremely poor. Hence, there is an urgent need for studies that enable the timely selection of appropriate agents for Phase I clinical studies. The Pediatric Oncology Experimental Therapeutics Investigators’ Consortium (POETIC) is systematically evaluating libraries of known and novel compounds for activity against subsets of high-risk pediatric malignancies with defined molecular aberrations for future clinical development. In this report, we describe the in-vitro activity of a diverse panel of approved oncology drugs against MLL-rearranged pediatric leukemia cell lines. Agents in the Approved Oncology Drug Set II (National Cancer Institute/National Institutes of Health Developmental Therapeutics Program) were evaluated by in-vitro cytotoxicity assays in pediatric acute lymphoblastic leukemia and acute myeloid leukemia cell lines with MLL gene rearrangements. Validation studies were carried out with patient leukemia cells in culture. Comparative analysis for toxicity against nonmalignant cells was evaluated in normal bone marrow stromal cells and normal human lymphocytes. Results from this study show that 42 of the 89 agents tested have measurable cytotoxicity against leukemia cells, and among these, 12 were effective against all five MLL-rearranged cell lines (IC50 [half maximal inhibitory concentration] < 1 μM). These 12 agents include cladribine, dactinomycin, daunorubicin, docetaxel, etoposide, gemcitabine, mitomycin C, mitoxantrone, teniposide, topotecan, triethylenemelamine, and vinblastine. We show that the Approved Oncology Drug Set II contains a number of agents with potent antileukemic activity in the tested cell lines. As approved drugs, these agents have been used in clinical settings for many years for other malignancies, thus their toxicity profile, pharmacokinetics, and other properties are readily available. Further evaluation of their use in future clinical trials for pediatric leukemia with MLL abnormalities should be considered.
Collapse
Affiliation(s)
- Kimberley A Hoeksema
- Division of Pediatric Oncology, Alberta Children's Hospital, Calgary, AB, Canada
| | | | | | | | | | | | | | | |
Collapse
|
24
|
The relationship between EGFR gain and VHL loss in lung adenocarcinoma and poor patient survival. Int J Clin Oncol 2011; 16:679-85. [DOI: 10.1007/s10147-011-0248-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
|
25
|
A small-molecule inhibitor of D-cyclin transactivation displays preclinical efficacy in myeloma and leukemia via phosphoinositide 3-kinase pathway. Blood 2010; 117:1986-97. [PMID: 21135258 DOI: 10.1182/blood-2010-05-284810] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
D-cyclins are universally dysregulated in multiple myeloma and frequently overexpressed in leukemia. To better understand the role and impact of dysregulated D-cyclins in hematologic malignancies, we conducted a high-throughput screen for inhibitors of cyclin D2 transactivation and identified 8-ethoxy-2-(4-fluorophenyl)-3-nitro-2H-chromene (S14161), which inhibited the expression of cyclins D1, D2, and D3 and arrested cells at the G(0)/G(1) phase. After D-cyclin suppression, S14161 induced apoptosis in myeloma and leukemia cell lines and primary patient samples preferentially over normal hematopoietic cells. In mouse models of leukemia, S14161 inhibited tumor growth without evidence of weight loss or gross organ toxicity. Mechanistically, S14161 inhibited the activity of phosphoinositide 3-kinase in intact cells and the activity of the phosphoinositide 3-kinases α, β, δ, and γ in a cell-free enzymatic assay. In contrast, it did not inhibit the enzymatic activities of other related kinases, including the mammalian target of rapamycin, the DNA-dependent protein kinase catalytic subunit, and phosphoinositide-dependent kinase-1. Thus, we identified a novel chemical compound that inhibits D-cyclin transactivation via the phosphoinositide 3-kinase/protein kinase B signaling pathway. Given its potent antileukemia and antimyeloma activity and minimal toxicity, S14161 could be developed as a novel agent for blood cancer therapy.
Collapse
|
26
|
Kawaji H, Severin J, Lizio M, Forrest ARR, van Nimwegen E, Rehli M, Schroder K, Irvine K, Suzuki H, Carninci P, Hayashizaki Y, Daub CO. Update of the FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Nucleic Acids Res 2010; 39:D856-60. [PMID: 21075797 PMCID: PMC3013704 DOI: 10.1093/nar/gkq1112] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The international Functional Annotation Of the Mammalian Genomes 4 (FANTOM4) research collaboration set out to better understand the transcriptional network that regulates macrophage differentiation and to uncover novel components of the transcriptome employing a series of high-throughput experiments. The primary and unique technique is cap analysis of gene expression (CAGE), sequencing mRNA 5′-ends with a second-generation sequencer to quantify promoter activities even in the absence of gene annotation. Additional genome-wide experiments complement the setup including short RNA sequencing, microarray gene expression profiling on large-scale perturbation experiments and ChIP–chip for epigenetic marks and transcription factors. All the experiments are performed in a differentiation time course of the THP-1 human leukemic cell line. Furthermore, we performed a large-scale mammalian two-hybrid (M2H) assay between transcription factors and monitored their expression profile across human and mouse tissues with qRT-PCR to address combinatorial effects of regulation by transcription factors. These interdependent data have been analyzed individually and in combination with each other and are published in related but distinct papers. We provide all data together with systematic annotation in an integrated view as resource for the scientific community (http://fantom.gsc.riken.jp/4/). Additionally, we assembled a rich set of derived analysis results including published predicted and validated regulatory interactions. Here we introduce the resource and its update after the initial release.
Collapse
Affiliation(s)
- Hideya Kawaji
- RIKEN Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|