1
|
Transmission of Mycoplasma bovis infection in bovine in vitro embryo production. Theriogenology 2023; 199:43-49. [PMID: 36689817 DOI: 10.1016/j.theriogenology.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Mycoplasma bovis (M. bovis) causes several costly diseases in cattle and has a negative effect on cattle welfare. There is no effective commercial vaccine, and antimicrobial resistance is common. Maintaining a closed herd is the best method to minimize the risk of introduction of M. bovis. Assisted reproduction is crucial in a closed herd to make genetic improvements. M. bovis has been found in commercial semen, and contaminated semen has been the source of disease in naïve dairy herds. The objective of this study was to evaluate M. bovis transmission in bovine in vitro embryo production (IVP) using several possible exposure routes. We used a wild-type M. bovis strain isolated from semen at a final concentration of 106 CFU/mL to infect cumulus-oocyte complexes, spermatozoa, and 5-day-old embryos. We also used naturally contaminated semen in fertilization. Blastocysts were collected on day 7-8 and zona pellucida (ZP)-intact embryos were either washed 12 times, including trypsin washes as recommended by the International Embryo Technology Society (IETS), or left unwashed. Washed and unwashed embryos, follicular fluids, maturation medium, cumulus cells, fertilization medium, and G1 and G2 culture media, as well as all wash media were analyzed using enrichment culture followed by real-time PCR detection of M. bovis. Altogether, 76 pools containing 363 unwashed embryos and 52 pools containing 261 IETS washed embryos were analyzed after oocytes, spermatozoa, or 5-day-old embryos were infected with M. bovis or naturally contaminated semen was used in fertilization. We could not detect M. bovis in any of the embryo pools. M. bovis was not found in any of 12 wash media from different exposure experiments. M. bovis did not affect the blastocyst rate, except when using experimentally infected semen. Contrary to an earlier study, which used a cell co-culture system, we could not demonstrate M. bovis in embryo wash media or tight adherence of M. bovis to ZP-intact embryos. Naturally infected semen did not transmit M. bovis to embryos. We conclude that by using our IVP system, the risk of M. bovis transmission via IVP embryos to recipient cows is very low.
Collapse
|
2
|
Polo C, García-Seco T, Díez-Guerrier A, Briones V, Domínguez L, Pérez-Sancho M. What about the bull? A systematic review about the role of males in bovine infectious infertility within cattle herds. Vet Anim Sci 2023; 19:100284. [PMID: 36647444 PMCID: PMC9840180 DOI: 10.1016/j.vas.2023.100284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Numerous pathogens affect cow fertility. Nevertheless, little information has been published about microorganisms associated with cattle infertility focusing on bulls. The present review offers a current analysis and highlights potential key aspects on the relevance of bulls in the emergence of infertility problems of infectious origin within herds that are still not completely determined. The present systematic review was conducted using the PubMed, Web of Science, and Scopus databases on December 9, 2022. In total, 2,224 bibliographic records were reviewed and, according to strict inclusion criteria, 38 articles were selected from 1966 to 2022, from which we ranked more than 27 different microorganisms (fungi were not identified). The most cited pathogens were BoHV (described by 26.3% of the papers), Campylobacter fetus (23.7%), Tritrichomonas foetus (18.4%), and BVDV, Ureaplasma spp., and Mycoplasma spp. (10.5% each). Despite the general trend towards an increasing number of publications about bull-infertility problems, a number of pathogens potentially transmitted through both natural breeding and seminal doses given to females and associated with infertility within herds were not ranked in the study (e.g., Chlamydia spp.). This work highlights i) the need to clearly establish the role of certain microorganisms not traditionally associated with reproductive problems in bull infertility (e.g., Staphylococcus spp. or BoHV-4) and ii) the need to perform additional studies on breeding bulls to clarify their role in infertility problems within herds. This would allow monitoring for pathogens that have gone unnoticed and those that are fastidious to diagnose and/or potentially transmitted to females.
Collapse
Affiliation(s)
- Coral Polo
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain,MAEVA SERVET S.L., Calle de la Fragua 3, 28749 Alameda del Valle, Madrid, Spain
| | - Teresa García-Seco
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Alberto Díez-Guerrier
- MAEVA SERVET S.L., Calle de la Fragua 3, 28749 Alameda del Valle, Madrid, Spain,Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Víctor Briones
- Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain,Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain,Department of Animal Health, Veterinary Faculty, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain,Corresponding author at: VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Puerta de Hierro s/n, 28040 Madrid, Spain.
| |
Collapse
|
3
|
Exploiting 16S rRNA-based metagenomics to reveal neglected microorganisms associated with infertility in breeding bulls in Spanish extensive herds. Res Vet Sci 2022; 150:52-57. [DOI: 10.1016/j.rvsc.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/22/2022]
|
4
|
Santos-Junior MN, Neves WS, Santos RS, Almeida PP, Fernandes JM, Guimarães BCDB, Barbosa MS, da Silva LSC, Gomes CP, Sampaio BA, Rezende IDS, Correia TML, Neres NSDM, Campos GB, Bastos BL, Timenetsky J, Marques LM. Heterologous Expression, Purification, and Immunomodulatory Effects of Recombinant Lipoprotein GUDIV-103 Isolated from Ureaplasma diversum. Microorganisms 2022; 10:microorganisms10051032. [PMID: 35630474 PMCID: PMC9147684 DOI: 10.3390/microorganisms10051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Ureaplasma diversum is a bacterial pathogen that infects cattle and can cause severe inflammation of the genital and reproductive systems. Lipid-associated membrane proteins (LAMPs), including GUDIV-103, are the main virulence factors in this bacterium. In this study, we heterologously expressed recombinant GUDIV-103 (rGUDIV-103) in Escherichia coli, purified it, and evaluated its immunological reactivity and immunomodulatory effects in bovine peripheral blood mononuclear cells (PBMCs). Samples from rabbits inoculated with purified rGUDIV-103 were analysed using indirect enzyme-linked immunosorbent assay and dot blotting to confirm polyclonal antibody production and assess kinetics, respectively. The expression of this lipoprotein in field isolates was confirmed via Western blotting with anti-rGUDIV-103 serum and hydrophobic or hydrophilic proteins from 42 U. diversum strains. Moreover, the antibodies produced against the U. diversum ATCC 49783 strain recognised rGUDIV-103. The mitogenic potential of rGUDIV-103 was evaluated using a lymphoproliferation assay in 5(6)-carboxyfluorescein diacetate succinimidyl ester−labelled bovine PBMCs, where it induced lymphocyte proliferation. Quantitative polymerase chain reaction analysis revealed that the expression of interleukin-1β, toll-like receptor (TLR)-α, TLR2, TLR4, inducible nitric oxide synthase, and caspase-3−encoding genes increased more in rGUDIV-103−treated PBMCs than in untreated cells (p < 0.05). Treating PBMCs with rGUDIV-103 increased nitric oxide and hydrogen peroxide levels. The antigenic and immunogenic properties of rGUDIV-103 suggested its suitability for immunobiological application.
Collapse
Affiliation(s)
- Manoel Neres Santos-Junior
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Wanderson Souza Neves
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Ronaldo Silva Santos
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Palloma Porto Almeida
- Bioinformatics and Computational Biology Lab, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil;
| | - Janaina Marinho Fernandes
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Bruna Carolina de Brito Guimarães
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Maysa Santos Barbosa
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
| | - Lucas Santana Coelho da Silva
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Camila Pacheco Gomes
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Beatriz Almeida Sampaio
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Izadora de Souza Rezende
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
| | - Thiago Macedo Lopes Correia
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Nayara Silva de Macedo Neres
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Guilherme Barreto Campos
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Bruno Lopes Bastos
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Jorge Timenetsky
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
| | - Lucas Miranda Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
- Correspondence:
| |
Collapse
|
5
|
Deeney AS, Collins R, Ridley AM. Identification of Mycoplasma species and related organisms from ruminants in England and Wales during 2005-2019. BMC Vet Res 2021; 17:325. [PMID: 34641885 PMCID: PMC8513359 DOI: 10.1186/s12917-021-03037-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mycoplasma species have been associated with economically important diseases affecting ruminants worldwide and include contagious bovine pleuropneumonia (CBPP), contagious caprine pleuropneumonia (CCPP) and contagious agalactia, listed by the World Organisation for Animal Health (OIE). The Mycoplasma Team at the Animal and Plant Health Agency provides an identification service for Mycoplasma and Ureaplasma species of veterinary importance to the United Kingdom (UK), supporting the detection of new and emerging pathogens, as well as contributing to the surveillance of endemic, and the OIE listed diseases exotic to the UK. Mycoplasma and other Mollicutes species were identified from diagnostic samples from farmed ruminants in England and Wales using a combination of culture and 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis, submitted between 2005 and 2019. Results A total of 5578 mollicutes identifications, which include mycoplasmas and the related acholeoplasmas and ureaplasmas, were made from farmed ruminant animals during the study period. Throughout the study period, the pathogen Mycoplasma bovis was consistently the most frequently identified species, accounting for 1411 (32%) of 4447 molecular identifications in cattle, primarily detected in the lungs of pneumonic calves, followed by joints and milk of cattle showing signs of arthritis and mastitis, respectively. M. bovirhinis, M. alkalescens, M. dispar, M. arginini and Ureaplasma diversum, were also common. Mixed species, principally M. bovis with M. alkalescens, M. arginini or M. bovirhinis were also prevalent, particularly from respiratory samples. The non-cultivable blood-borne haemoplasmas Candidatus ‘Mycoplasma haemobos’ and Mycoplasma wenyonii were identified from cattle, with the latter species most often associated with milk-drop. M. ovipneumoniae was the predominant species identified from sheep and goats experiencing respiratory disease, while M. conjunctivae preponderated in ocular samples. The UK remains free of the ruminant mycoplasmas listed by OIE. Conclusions The continued high prevalence of M. bovis identifications confirms its ongoing dominance and importance as a significant pathogen of cattle in England and Wales, particularly in association with respiratory disease. M. ovipneumoniae has seen a general increase in prevalence in recent years, notably in coughing lambs and should therefore be considered as a primary differential diagnosis of respiratory disease in small ruminants.
Collapse
Affiliation(s)
- Alannah S Deeney
- Mycoplasma Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, UK.
| | - Rachael Collins
- Animal and Plant Health Agency Veterinary Investigation Centre, Starcross, Exeter, UK
| | - Anne M Ridley
- Mycoplasma Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, Surrey, UK
| |
Collapse
|
6
|
Santos Junior MN, de Macêdo Neres NS, Campos GB, Bastos BL, Timenetsky J, Marques LM. A Review of Ureaplasma diversum: A Representative of the Mollicute Class Associated With Reproductive and Respiratory Disorders in Cattle. Front Vet Sci 2021; 8:572171. [PMID: 33681318 PMCID: PMC7930009 DOI: 10.3389/fvets.2021.572171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
The Mollicutes class encompasses wall-less microbes with a reduced genome. They may infect plants, insects, humans, and animals including those on farms and in livestock. Ureaplasma diversum is a mollicute associated with decreased reproduction mainly in the conception rate in cattle, as well as weight loss and decreased quality in milk production. Therefore, U. diversum infection contributes to important economic losses, mainly in large cattle-producing countries such as the United States, China, Brazil, and India. The characteristics of Mollicutes, virulence, and pathogenic variations make it difficult to control their infections. Genomic analysis, prevalence studies, and immunomodulation assays help better understand the pathogenesis of bovine ureaplasma. Here we present the main features of transmission, virulence, immune response, and pathogenesis of U. diversum in bovines.
Collapse
Affiliation(s)
- Manoel Neres Santos Junior
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Nayara Silva de Macêdo Neres
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Guilherme Barreto Campos
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Bruno Lopes Bastos
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Jorge Timenetsky
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lucas Miranda Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Ito K, Akai K, Nishiumi F, Nakura Y, Ning Wu H, Kurata T, Onodera A, Kawai Y, Kajiyama S, Yanagihara I. Ability of Ureaplasma parvum to invade mouse sperm, fertilize eggs through infected sperm, and impair mouse sperm function and embryo development. F&S SCIENCE 2021; 2:13-23. [PMID: 35559760 DOI: 10.1016/j.xfss.2020.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To examine the effect of Ureaplasma parvum (U. parvum) infection on mouse sperm motility, structure, and fertilizing ability and on embryo development. DESIGN In vitro model of the effects of U. parvum serovar 3 infection on mouse sperm. SETTING Basic research laboratory. INTERVENTION(S) None. ANIMALS Mice. MAIN OUTCOME MEASURE(S) Mouse sperm motility was examined using the swim-up method, and their motility parameters were analyzed using the sperm motility analysis system. Localization and invasion of U. parvum were observed with fluorescence, confocal, and scanning electron microscopy. After in vitro fertilization with U. parvum-infected sperm, the quality of the fertilized egg and embryo development were assessed. RESULT(S) U. parvum was attached and internalized into mouse sperms and localized mainly at the sperm head and midpiece. U. parvum-infected mouse sperms exhibited decreased motility in a dose- and duration-dependent manner. Electron micrographs revealed that U. parvum infection induced the aggregation and morphological destruction of mouse sperm. Infected mouse sperm transported U. parvum into the fertilized egg with reduced fertilization rates, and infected embryo development was impaired. CONCLUSION(S) U. parvum infection caused deterioration of the mouse sperm quality and its functions, which affected the fertilization rate and embryo development.
Collapse
Affiliation(s)
- Kazutoshi Ito
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Kazuki Akai
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumiko Nishiumi
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Yukiko Nakura
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Heng Ning Wu
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Teru Kurata
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan; Division of Biotechnological Science, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Akira Onodera
- Department of Pharmaceutical Sciences, Kobe Gakuin University, Hyogo, Japan
| | - Yuichi Kawai
- Department of Pharmaceutical Sciences, Kobe Gakuin University, Hyogo, Japan
| | - Shinichiro Kajiyama
- Division of Biotechnological Science, Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Osaka, Japan.
| |
Collapse
|
8
|
Santos Junior MN, Santos RS, Neves WS, Fernandes JM, de Brito Guimarães BC, Barbosa MS, Silva LSC, Gomes CP, Rezende IS, Oliveira CNT, de Macêdo Neres NS, Campos GB, Bastos BL, Timenetsky J, Marques LM. Immunoinformatics and analysis of antigen distribution of Ureaplasma diversum strains isolated from different Brazilian states. BMC Vet Res 2020; 16:379. [PMID: 33028315 PMCID: PMC7542862 DOI: 10.1186/s12917-020-02602-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/30/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Ureaplasma diversum has numerous virulence factors that contribute to pathogenesis in cattle, including Lipid-associated membrane proteins (LAMPs). Therefore, the objectives of this study were to evaluate in silico important characteristics for immunobiological applications and for heterologous expression of 36 LAMPs of U. diversum (UdLAMPs) and, also, to verify by conventional PCR the distribution of these antigens in strains of Brazilian states (Bahia, Minas Gerais, São Paulo, and Mato Grosso do Sul). The Manatee database was used to obtain the gene and peptide sequences of the antigens. Similarity and identity studies were performed using BLASTp and direct antigenicity was evaluated by the VaxiJen v2.0 server. Epitope prediction for B lymphocytes was performed on the BepiPred v2.0 and CBTOPE v1.0 servers. NetBoLApan v1.0 was used to predict CD8+ T lymphocyte epitopes. Subcellular location and presence of transmembrane regions were verified by the software PSORTb v3.0.2 and TMHMM v2.2 respectively. SignalP v5.0, SecretomeP v2.0, and DOLOP servers were used to predict the extracellular excretion signal. Physico-chemical properties were evaluated by the web-software ProtParam, Solpro, and Protein-sol. RESULTS In silico analysis revealed that many UdLAMPs have desirable properties for immunobiological applications and heterologous expression. The proteins gudiv_61, gudiv_103, gudiv_517, and gudiv_681 were most promising. Strains from the 4 states were PCR positive for antigens predicted with immunogenic and/or with good characteristics for expression in a heterologous system. CONCLUSION These works contribute to a better understanding of the immunobiological properties of the UdLAMPs and provide a profile of the distribution of these antigens in different Brazilian states.
Collapse
Affiliation(s)
- Manoel Neres Santos Junior
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Quadra 17 - Lote 58, Bairro Candeias - CEP: 45.029-094, Vitória da Conquista, BA, Brazil.,Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Ronaldo Silva Santos
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Quadra 17 - Lote 58, Bairro Candeias - CEP: 45.029-094, Vitória da Conquista, BA, Brazil
| | - Wanderson Souza Neves
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Quadra 17 - Lote 58, Bairro Candeias - CEP: 45.029-094, Vitória da Conquista, BA, Brazil
| | - Janaina Marinho Fernandes
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Quadra 17 - Lote 58, Bairro Candeias - CEP: 45.029-094, Vitória da Conquista, BA, Brazil
| | | | - Maysa Santos Barbosa
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | - Camila Pacheco Gomes
- Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Izadora Souza Rezende
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caline Novaes Teixeira Oliveira
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Quadra 17 - Lote 58, Bairro Candeias - CEP: 45.029-094, Vitória da Conquista, BA, Brazil.,Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Nayara Silva de Macêdo Neres
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Quadra 17 - Lote 58, Bairro Candeias - CEP: 45.029-094, Vitória da Conquista, BA, Brazil
| | - Guilherme Barreto Campos
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Quadra 17 - Lote 58, Bairro Candeias - CEP: 45.029-094, Vitória da Conquista, BA, Brazil
| | - Bruno Lopes Bastos
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Quadra 17 - Lote 58, Bairro Candeias - CEP: 45.029-094, Vitória da Conquista, BA, Brazil
| | - Jorge Timenetsky
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lucas Miranda Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Rua Hormindo Barros, 58 - Quadra 17 - Lote 58, Bairro Candeias - CEP: 45.029-094, Vitória da Conquista, BA, Brazil. .,Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil. .,Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Andrade YMFS, Santos-Junior MN, Rezende IS, Barbosa MS, Amorim AT, Silva ÍBS, Queiroz EC, Bastos BL, Campos GB, Timenetsky J, Marques LM. Multilocus sequence typing characterizes diversity of Ureaplasma diversum strains, and intra-species variability induces different immune response profiles. BMC Vet Res 2020; 16:163. [PMID: 32456681 PMCID: PMC7249313 DOI: 10.1186/s12917-020-02380-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/14/2020] [Indexed: 12/29/2022] Open
Abstract
Background Ureaplasma diversum is a pathogen found in the genital tract of cattle and associated with genital disorders such as infertility, placentitis, abortion, birth of weak calves, low sperm motility, seminal vesiculitis and epididymitis. There are few studies evaluating the genetic diversity of U. diversum strains and their influence on the immune response in cattle. Therefore, to better understand genetic relationships of the pathogenicity of U. diversum, a multilocus sequence typing (MLST) scheme was performed to characterize the ATCC 49782 strain and another 40 isolates recovered from different Brazilian states. Results Primers were designed for housekeeping genes ftsH, polC, rpL22, rpoB, valS and ureA and for virulence genes, phospholipase D (pld), triacylglycerol lipase (tgl), hemolysin (hlyA), MIB-MIP system (mib,mip), MBA (mba), VsA (VsA) and ribose transporter (tABC). PCRs were performed and the targeted gene products were purified and sequenced. Sequence types (STs), and clonal complexes (CCs) were assigned and the phylogenetic relationship was also evaluated. Thus, a total of 19 STs and 4 CCs were studied. Following the molecular analysis, six isolates of U. diversum were selected, inoculated into bovine monocyte/macrophage culture and evaluated for gene expression of the cytokines TNF-α, IL-1, IL-6, IL-10 and IL-17. Differences were detected in the induction of cytokines, especially between isolates 198 and BA78, promoted inflammatory and anti-inflammatory profiles, respectively, and they also differed in virulence factors. Conclusion It was observed that intra-species variability between isolates of U. diversum can induce variations of virulent determinants and, consequently, modulate the expression of the triggered immune response.
Collapse
Affiliation(s)
- Yasmin M F S Andrade
- Universidade Estadual de Santa Cruz, Brazil, Jorge Amado Highway, Km 16, Salobrinho, Ilheus, Bahia, 45662-900, Brazil.,Instituto Gonçalo Muniz, Fundação Oswaldo Cruz, Salvador, Brazil, Waldemar Falcao Street, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
| | - Manoel N Santos-Junior
- Universidade Estadual de Santa Cruz, Brazil, Jorge Amado Highway, Km 16, Salobrinho, Ilheus, Bahia, 45662-900, Brazil
| | - Izadora S Rezende
- Instituto de Ciências Biomedicas, Universidade de Sao Paulo, Brazil, Professor Lineu Prestes Avenue, 2415, Butantã, São Paulo, 05508-900, Brazil
| | - Maysa S Barbosa
- Instituto de Ciências Biomedicas, Universidade de Sao Paulo, Brazil, Professor Lineu Prestes Avenue, 2415, Butantã, São Paulo, 05508-900, Brazil
| | - Aline T Amorim
- Instituto de Ciências Biomedicas, Universidade de Sao Paulo, Brazil, Professor Lineu Prestes Avenue, 2415, Butantã, São Paulo, 05508-900, Brazil
| | - Ícaro B S Silva
- Instituto Gonçalo Muniz, Fundação Oswaldo Cruz, Salvador, Brazil, Waldemar Falcao Street, 121, Candeal, Salvador, Bahia, 40296-710, Brazil
| | - Ellunny C Queiroz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Brazil, Hormindo Barros Street, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Bruno L Bastos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Brazil, Hormindo Barros Street, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Guilherme B Campos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Brazil, Hormindo Barros Street, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil
| | - Jorge Timenetsky
- Instituto de Ciências Biomedicas, Universidade de Sao Paulo, Brazil, Professor Lineu Prestes Avenue, 2415, Butantã, São Paulo, 05508-900, Brazil
| | - Lucas M Marques
- Universidade Estadual de Santa Cruz, Brazil, Jorge Amado Highway, Km 16, Salobrinho, Ilheus, Bahia, 45662-900, Brazil. .,Instituto de Ciências Biomedicas, Universidade de Sao Paulo, Brazil, Professor Lineu Prestes Avenue, 2415, Butantã, São Paulo, 05508-900, Brazil. .,Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Brazil, Hormindo Barros Street, 58, Candeias, Vitória da Conquista, Bahia, 45029-094, Brazil.
| |
Collapse
|
10
|
Tantengco OAG, Yanagihara I. Current understanding and treatment of intra-amniotic infection with Ureaplasma spp. J Obstet Gynaecol Res 2019; 45:1796-1808. [PMID: 31313469 DOI: 10.1111/jog.14052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/23/2019] [Indexed: 12/12/2022]
Abstract
Considerable evidence has shown that intra-amniotic infection with Ureaplasma spp. increases the risk of chorioamnionitis and preterm labor. Ureaplasma spp. are among the smallest organisms, and their isolation is uncommon in routine clinical practice because of their size and high auxotrophy. Although Ureaplasma spp. have been reported as causative agents of preterm birth, they also have a high incidence in vaginal swabs collected from healthy reproductive-age women; this has led to questions on the virulence of Ureaplasma spp. and to them being considered as harmless commensal bacteria. Therefore, many efforts have been made to clarify the pathogenicity of Ureaplasma spp. at the molecular level. Ureaplasma spp. are surrounded by lipoproteins, including multiple-banded antigen. Both multiple-banded antigen and its derivative, that is, the synthetic lipopeptide, UPM-1, induce an inflammatory response in a preterm mice model, which was adequate to cause preterm birth or stillbirth. In this review, we present an overview of the virulence mechanisms of Ureaplasma spp. and treatment of ureaplasma infection during pregnancy to prevent possible serious sequelae in infants. In addition, relevant mechanisms underlying antibiotic resistance in Ureaplasma spp. are discussed. Ureaplasma spp. are naturally resistant against β-lactam antibiotics because of the lack of a cell wall. Azithromycin is one of the effective agents that can control intrauterine ureaplasma infection. In fact, macrolide- and fluoroquinolone-resistant isolates of Ureaplasma spp. have already been observed in perinatal practice in Japan.
Collapse
Affiliation(s)
- Ourlad Alzeus G Tantengco
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi, Japan.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi, Japan
| |
Collapse
|
11
|
Silwedel C, Fehrholz M, Speer CP, Ruf KC, Manig S, Glaser K. Differential modulation of pulmonary caspases: Is this the key to Ureaplasma-driven chronic inflammation? PLoS One 2019; 14:e0216569. [PMID: 31067276 PMCID: PMC6506144 DOI: 10.1371/journal.pone.0216569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022] Open
Abstract
Although accepted agents in chorioamnionitis and preterm birth, the role of Ureaplasma species (spp.) in inflammation-driven morbidities of prematurity, including the development of bronchopulmonary dysplasia, remains controversial. To add to scarce in vitro data addressing the pro-inflammatory capacity of Ureaplasma spp., pulmonary epithelial-like A549 cells and human pulmonary microvascular endothelial cells (HPMEC) were incubated with Ureaplasma (U.) urealyticum, U. parvum, and Escherichia coli lipopolysaccharide (LPS). Ureaplasma isolates down-regulated caspase mRNA levels in A549 cells (caspase 8: p<0.001, 9: p<0.001, vs. broth), while increasing caspase protein expression, enzyme activity, and cell death in HPMEC (active caspase 3: p<0.05, caspase 8: p<0.05, active caspase 9: p<0.05, viability: p<0.05). LPS, contrarily, induced caspase mRNA expression in HPMEC (caspase 3: p<0.01, 4: p<0.001, 5: p<0.001, 8: p<0.001, vs. control), but not in A549 cells, and did not affect enzyme activity or protein levels in either cell line. LPS, but neither Ureaplasma isolate, enhanced mRNA expression of pro-inflammatory interleukin (IL)-6 in both A549 (p<0.05, vs. control) and HPMEC (p<0.001) as well as tumor necrosis factor-α (p<0.01), IL-1β (p<0.001), and IL-8 (p<0.05) in HPMEC. We are therefore the first to demonstrate a differential modulation of pulmonary caspases by Ureaplasma spp. in vitro. Ureaplasma-driven enhanced protein expression and activity of caspases in pulmonary endothelial cells result in cell death and may cause structural damage. Down-regulated caspase mRNA in pulmonary epithelial cells, contrarily, may indicate Ureaplasma-induced inhibition of apoptosis and prevent effective immune responses. Both may ultimately contribute to chronic Ureaplasma colonization and long-term pulmonary inflammation.
Collapse
Affiliation(s)
- Christine Silwedel
- University Children´s Hospital, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| | - Markus Fehrholz
- University Children´s Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Christian P. Speer
- University Children´s Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Katharina C. Ruf
- University Children´s Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Steffi Manig
- Institute of Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - Kirsten Glaser
- University Children´s Hospital, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
12
|
Baud D, Vulliemoz N, Ammerdorffer A, Gyger J, Greub G, Castella V, Stojanov M. Waddlia chondrophila, a Chlamydia-related bacterium, has a negative impact on human spermatozoa. Hum Reprod 2019; 33:3-10. [PMID: 29145645 DOI: 10.1093/humrep/dex342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/24/2017] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION What is the impact of Waddlia chondrophila, an emerging Chlamydia-related bacterium associated with miscarriage, on human spermatozoa? SUMMARY ANSWER W. chondrophila had a negative impact on human spermatozoa (decrease in viability and mitochondrial membrane potential) and was not entirely removed from infected samples by density gradient centrifugation. WHAT IS KNOWN ALREADY Bacterial infection or colonization might have a deleterious effect on male fertility. Waddlia chondrophila was previously associated with miscarriage, but its impact on male reproductive function has never been studied. STUDY DESIGN SIZE, DURATION An in vitro model of human spermatozoa infection was used to assess the effects of W. chondrophila infection. Controls included Chlamydia trachomatis serovar D and latex beads with similar size to bacteria. PARTICIPANTS/MATERIALS, SETTING, METHODS Purified motile spermatozoa were infected with W. chondrophila (multiplicity of infection of 1). Immunohistochemistry combined with confocal microscopy was used to evaluate how bacteria interact with spermatozoa. The impact on physiology was assessed by monitoring cell viability, mitochondrial membrane potential and DNA fragmentation. MAIN RESULTS AND THE ROLE OF CHANCE Using super-resolution confocal microscopy, bacteria were localized on spermatozoa surface, as well as inside the cytoplasm. Compared to controls, W. chondrophila caused a 20% increase in mortality over 72 h of incubation (P < 0.05). Moreover, higher bacterial loads significantly reduced mitochondrial membrane potential. Bacteria present on spermatozoa surface were able to further infect a cell-monolayer, indicating that sperm might vector bacteria during sexual intercourse. LIMITATIONS REASONS FOR CAUTION The main limitation of the study is the use of an in vitro model of infection, which might be too simplistic compared to an actual infection. An animal model of infection should be developed to better evaluate the in vivo impact of W. chondrophila. WIDER IMPLICATIONS OF THE FINDINGS Intracellular bacteria, including C. trachomatis, Mycoplasma spp. and Ureaplasma spp., are associated with male infertility. Waddlia chondrophila might represent yet another member of this group, highlighting the need for more rigorous microbiological analysis during investigations for male infertility. STUDY FUNDING/COMPETING INTEREST(S) This work has been funded by the Department of Obstetrics and Gynecology, Lausanne University Hospital, Switzerland, and by the Swiss National Science Foundation (Grant nos. 310030-156169/1, 320030-169853/1 and 320030-169853/2 attributed to D.B.). D.B. is also supported by the 'Fondation Leenaards' through the 'Bourse pour la relève académique', by the 'Fondation Divesa' and by the 'Loterie Romande'. No conflicts of interest to declare.
Collapse
Affiliation(s)
- D Baud
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Avenue Pierre-Decker 2, 1011 Lausanne, Switzerland
| | - N Vulliemoz
- Reproductive Medicine Unit, Department Woman-Mother-Child, Lausanne University Hospital, Switzerland
| | - A Ammerdorffer
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Avenue Pierre-Decker 2, 1011 Lausanne, Switzerland
| | - J Gyger
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Avenue Pierre-Decker 2, 1011 Lausanne, Switzerland
| | - G Greub
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - V Castella
- Forensic Genetics Unit, University Center of Legal Medicine, Lausanne, Geneva, Switzerland
| | - M Stojanov
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, Lausanne University Hospital, Avenue Pierre-Decker 2, 1011 Lausanne, Switzerland
| |
Collapse
|
13
|
Reichel MP, Wahl LC, Hill FI. Review of Diagnostic Procedures and Approaches to Infectious Causes of Reproductive Failures of Cattle in Australia and New Zealand. Front Vet Sci 2018; 5:222. [PMID: 30333984 PMCID: PMC6176146 DOI: 10.3389/fvets.2018.00222] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/28/2018] [Indexed: 12/13/2022] Open
Abstract
Infectious causes of reproductive failure in cattle are important in Australia and New Zealand, where strict biosecurity protocols are in place to prevent the introduction and spread of new diseases. Neospora caninum ranks highly as an important cause of reproductive wastage along with fungal and bacterial infections. Brucella, a leading cause of abortion elsewhere in the world, is foreign, following successful programs to control and eradicate the disease. Leptospirosis in cattle is largely controlled by vaccination, while Campylobacter and Tritrichomonas infections occur at low rates. In both countries, Bovine Viral Diarrhea virus (BVDV) infection rates as the second most economically important disease of cattle and one that also has an effect on reproduction. Effective disease control strategies require rapid diagnoses at diagnostic laboratories. To facilitate this process, this review will discuss the infectious causes of reproductive losses present in both countries, their clinical presentation and an effective pathway to a diagnosis.
Collapse
Affiliation(s)
- Michael P Reichel
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong
| | - Lloyd C Wahl
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong
| | - Fraser I Hill
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
14
|
Santos-Junior MN, Rezende IS, Souza CLS, Barbosa MS, Campos GB, Brito LF, Queiroz ÉC, Barbosa EN, Teixeira MM, Da Silva LO, Silva LSC, Nascimento FS, Da Silva TL, Martens AA, Siqueira AFP, Assumpção MEOD, Machado-Santelli GM, Bastos BL, Guimarães AMS, Timenetsky J, Marques LM. Ureaplasma diversum and Its Membrane-Associated Lipoproteins Activate Inflammatory Genes Through the NF-κB Pathway via Toll-Like Receptor 4. Front Microbiol 2018; 9:1538. [PMID: 30050519 PMCID: PMC6052353 DOI: 10.3389/fmicb.2018.01538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/20/2018] [Indexed: 01/15/2023] Open
Abstract
Objectives:Ureaplasma diversum is a pathogen of cows that may cause intense inflammatory responses in the reproductive tract and interfere with bovine reproduction. The aims of this study were to evaluate the immune response of bovine blastocysts and macrophages to U. diversum infection and to evaluate the invasion capacity of this microorganism in bovine blastocysts. Methods: Viable and heat-inactivated U. diversum strains ATCC 49782 and CI-GOTA and their extracted membrane lipoproteins were inoculated in macrophages in the presence or absence of signaling blockers of Toll-Like Receptor (TLR) 4, TLR2/4, and Nuclear Factor KB (NF-κB). In addition, the same viable U. diversum strains were used to infect bovine blastocysts. RNA was extracted from infected and lipoprotein-exposed macrophages and infected blastocysts and assayed by qPCR to evaluate the expression of Interleukin 1 beta (IL-1β), Tumor Necrosis Factor Alpha (TNF-α), TLR2 and TLR4 genes. U. diversum internalization in blastocysts was followed by confocal microscopy. Results: Both Ureaplasma strains and different concentrations of extracted lipoproteins induced a higher gene expression of IL-1β, TNF-α, TLR2, and TLR4 in macrophages (p < 0.05) when compared to non-infected cells. The used blockers inhibited the expression of IL-1β and TNF-α in all treatments. Moreover, U. diversum was able to internalize within blastocysts and induce a higher gene expression of IL-1b and TNF- α when compared to non-infected blastocysts (p < 0.05). Conclusion: The obtained results strongly suggest that U. diversum and its lipoproteins interact with TLR4 in a signaling pathway acting via NF-kB signaling to stimulate the inflammatory response. This is the first study to evaluate the in vitro immunological response of macrophages and bovine blastocysts against U. diversum. These results may contribute to a better understanding of the immunomodulatory activity and pathogenicity of this infectious agent.
Collapse
Affiliation(s)
- Manoel N Santos-Junior
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil.,Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Izadora S Rezende
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Clarissa L S Souza
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Maysa S Barbosa
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Guilherme B Campos
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil.,Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Laís F Brito
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Éllunny C Queiroz
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Elaine N Barbosa
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Mariana M Teixeira
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Letícia O Da Silva
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Lucas S C Silva
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Flávia S Nascimento
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Tassyo L Da Silva
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Adam A Martens
- Department of Cellular Biology and Development, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Adriano F P Siqueira
- Department of Animal Reproduction, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Mayra E O D'Avila Assumpção
- Department of Animal Reproduction, College of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Glaucia M Machado-Santelli
- Department of Cellular Biology and Development, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruno L Bastos
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Ana M S Guimarães
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jorge Timenetsky
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lucas M Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil.,Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil.,Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Voltarelli DC, de Alcântara BK, Lunardi M, Alfieri AF, de Arruda Leme R, Alfieri AA. A nested-PCR strategy for molecular diagnosis of mollicutes in uncultured biological samples from cows with vulvovaginitis. Anim Reprod Sci 2017; 188:137-143. [PMID: 29191491 DOI: 10.1016/j.anireprosci.2017.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 01/17/2023]
Abstract
Bacteria classified in Mycoplasma (M. bovis and M. bovigenitalium) and Ureaplasma (U. diversum) genera are associated with granular vulvovaginitis that affect heifers and cows at reproductive age. The traditional means for detection and speciation of mollicutes from clinical samples have been culture and serology. However, challenges experienced with these laboratory methods have hampered assessment of their impact in pathogenesis and epidemiology in cattle worldwide. The aim of this study was to develop a PCR strategy to detect and primarily discriminate between the main species of mollicutes associated with reproductive disorders of cattle in uncultured clinical samples. In order to amplify the 16S-23S rRNA internal transcribed spacer region of the genome, a consensual and species-specific nested-PCR assay was developed to identify and discriminate between main species of mollicutes. In addition, 31 vaginal swab samples from dairy and beef affected cows were investigated. This nested-PCR strategy was successfully employed in the diagnosis of single and mixed mollicute infections of diseased cows from cattle herds from Brazil. The developed system enabled the rapid and unambiguous identification of the main mollicute species known to be associated with this cattle reproductive disorder through differential amplification of partial fragments of the ITS region of mollicute genomes. The development of rapid and sensitive tools for mollicute detection and discrimination without the need for previous cultures or sequencing of PCR products is a high priority for accurate diagnosis in animal health. Therefore, the PCR strategy described herein may be helpful for diagnosis of this class of bacteria in genital swabs submitted to veterinary diagnostic laboratories, not demanding expertise in mycoplasma culture and identification.
Collapse
Affiliation(s)
| | | | - Michele Lunardi
- Laboratory of Veterinary Microbiology, University of Cuiaba, 3100 Ave Beira Rio, Cuiaba, MT, 78065-900, Brazil
| | - Alice Fernandes Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Brazil; Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitário, 86057-970, Londrina, Paraná, PO Box 10011, Brazil
| | | | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Brazil; Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid - Campus Universitário, 86057-970, Londrina, Paraná, PO Box 10011, Brazil.
| |
Collapse
|
16
|
Ureaplasma diversum Genome Provides New Insights about the Interaction of the Surface Molecules of This Bacterium with the Host. PLoS One 2016; 11:e0161926. [PMID: 27603136 PMCID: PMC5015763 DOI: 10.1371/journal.pone.0161926] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022] Open
Abstract
Whole genome sequencing and analyses of Ureaplasma diversum ATCC 49782 was undertaken as a step towards understanding U. diversum biology and pathogenicity. The complete genome showed 973,501 bp in a single circular chromosome, with 28.2% of G+C content. A total of 782 coding DNA sequences (CDSs), and 6 rRNA and 32 tRNA genes were predicted and annotated. The metabolic pathways are identical to other human ureaplasmas, including the production of ATP via hydrolysis of the urea. Genes related to pathogenicity, such as urease, phospholipase, hemolysin, and a Mycoplasma Ig binding protein (MIB)-Mycoplasma Ig protease (MIP) system were identified. More interestingly, a large number of genes (n = 40) encoding surface molecules were annotated in the genome (lipoproteins, multiple-banded antigen like protein, membrane nuclease lipoprotein and variable surface antigens lipoprotein). In addition, a gene encoding glycosyltransferase was also found. This enzyme has been associated with the production of capsule in mycoplasmas and ureaplasma. We then sought to detect the presence of a capsule in this organism. A polysaccharide capsule from 11 to 17 nm of U. diversum was observed trough electron microscopy and using specific dyes. This structure contained arabinose, xylose, mannose, galactose and glucose. In order to understand the inflammatory response against these surface molecules, we evaluated the response of murine macrophages J774 against viable and non-viable U. diversum. As with viable bacteria, non-viable bacteria were capable of promoting a significant inflammatory response by activation of Toll like receptor 2 (TLR2), indicating that surface molecules are important for the activation of inflammatory response. Furthermore, a cascade of genes related to the inflammasome pathway of macrophages was also up-regulated during infection with viable organisms when compared to non-infected cells. In conclusion, U. diversum has a typical ureaplasma genome and metabolism, and its surface molecules, including the identified capsular material, represent major components of the organism immunopathogenesis.
Collapse
|
17
|
Silva JR, Ferreira LF, Oliveira PV, Nunes IV, Pereira ÍS, Timenetsky J, Marques LM, Figueiredo TB, Silva RA. Intra-uterine experimental infection by Ureaplasma diversum induces TNF-α mediated womb inflammation in mice. ACTA ACUST UNITED AC 2016; 88 Suppl 1:643-52. [DOI: 10.1590/0001-3765201620150244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/15/2015] [Indexed: 11/22/2022]
Abstract
Ureaplasma diversum is an opportunistic pathogen associated with uterine inflammation, impaired embryo implantation, infertility, abortions, premature birth of calves and neonatal pneumonia in cattle. It has been suggested that the intra-uterine infection by Ureaplasma diversum can cause vascular changes that hinder the success of pregnancy. Thus, the aim of this study was to evaluate the changes of intrauterine site of A/J mice in estrus or proestrus phase inoculated with Ureaplasma diversum. The infection was monitored at 24, 48 and 72 hours by the PCR methodology to detect the Ureaplasma in the inoculation site and the profile of circulating blood cells. Morphological changes, intensity of inflammation and the production of cytokines were compared. The infected mice showed local inflammation through the production of IFN-γ and TNF-α. Ureaplasma diversum infections in the reproductive tract of studied mice seemed to be associated with the production of pro-inflammatory cytokines in uterine parenchyma. The levels of TNF-α of infected mice were dependent on the bacterial load of inoculated Ureaplasma. Uterine experimental infections by Ureaplasma diversum have not been mentioned yet and herein we presented the first report of an intrauterine infection model in mice.
Collapse
|
18
|
Abstract
Here, we report the complete genome sequence of Ureaplasma diversum strain ATCC 49782. This species is of bovine origin, having an association with reproductive disorders in cattle, including placentitis, fetal alveolitis, abortion, and birth of weak calves. It has a small circular chromosome of 975,425 bp.
Collapse
|
19
|
Amorim AT, Marques LM, Santos AMOG, Martins HB, Barbosa MS, Rezende IS, Andrade EF, Campos GB, Lobão TN, Cortez BA, Monezi TA, Machado-Santelli GM, Timenetsky J. Apoptosis in HEp-2 cells infected with Ureaplasma diversum. Biol Res 2014; 47:38. [PMID: 25299837 PMCID: PMC4167145 DOI: 10.1186/0717-6287-47-38] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/22/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location of Ureaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversum invasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. RESULTS The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. CONCLUSIONS The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS). Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.
Collapse
Affiliation(s)
- Aline Teixeira Amorim
- Instituto Multidisciplinar em Saúde, Núcleo de Tecnologia em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil.
| | - Lucas Miranda Marques
- Instituto Multidisciplinar em Saúde, Núcleo de Tecnologia em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil. .,Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil.
| | | | - Hellen Braga Martins
- Instituto Multidisciplinar em Saúde, Núcleo de Tecnologia em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil.
| | - Maysa Santos Barbosa
- Instituto Multidisciplinar em Saúde, Núcleo de Tecnologia em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil.
| | - Izadora Souza Rezende
- Instituto Multidisciplinar em Saúde, Núcleo de Tecnologia em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil.
| | - Ewerton Ferraz Andrade
- Instituto Multidisciplinar em Saúde, Núcleo de Tecnologia em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil.
| | - Guilherme Barreto Campos
- Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil.
| | - Tássia Neves Lobão
- Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil.
| | - Beatriz Araujo Cortez
- Instituto de Ciências Biomédicas, Departamento de Biologia Celular e do Desenvolvimento, Universidade de São Paulo, São Paulo, Brazil.
| | - Telma Alvez Monezi
- Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil.
| | - Glaucia Maria Machado-Santelli
- Instituto de Ciências Biomédicas, Departamento de Biologia Celular e do Desenvolvimento, Universidade de São Paulo, São Paulo, Brazil.
| | - Jorge Timenetsky
- Instituto de Ciências Biomédicas, Departamento de Microbiologia, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
20
|
In vitro and in vivo cell invasion and systemic spreading of Mycoplasma agalactiae in the sheep infection model. Int J Med Microbiol 2014; 304:1024-31. [PMID: 25129554 PMCID: PMC4282308 DOI: 10.1016/j.ijmm.2014.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/25/2014] [Accepted: 07/21/2014] [Indexed: 01/17/2023] Open
Abstract
Generally regarded as extracellular pathogens, molecular mechanisms of mycoplasma persistence, chronicity and disease spread are largely unknown. Mycoplasma agalactiae, an economically important pathogen of small ruminants, causes chronic infections that are difficult to eradicate. Animals continue to shed the agent for several months and even years after the initial infection, in spite of long antibiotic treatment. However, little is known about the strategies that M. agalactiae employs to survive and spread within an immunocompetent host to cause chronic disease. Here, we demonstrate for the first time its ability to invade cultured human (HeLa) and ruminant (BEND and BLF) host cells. Presence of intracellular mycoplasmas is clearly substantiated using differential immunofluorescence technique and quantitative gentamicin invasion assays. Internalized M. agalactiae could survive and exit the cells in a viable state to repopulate the extracellular environment after complete removal of extracellular bacteria with gentamicin. Furthermore, an experimental sheep intramammary infection was carried out to evaluate its systemic spread to organs and host niches distant from the site of initial infection. Positive results obtained via PCR, culture and immunohistochemistry, especially the latter depicting the presence of M. agalactiae in the cytoplasm of mammary duct epithelium and macrophages, clearly provide the first formal proof of M. agalactiae's capability to translocate across the mammary epithelium and systemically disseminate to distant inner organs. Altogether, the findings of these in vitro and in vivo studies indicate that M. agalactiae is capable of entering host cells and this might be the strategy that it employs at a population level to ward off the host immune response and antibiotic action, and to disseminate to new and safer niches to later egress and once again proliferate upon the return of favorable conditions to cause persistent chronic infections.
Collapse
|
21
|
Gaeti JGLN, Lana MVC, Silva GS, Lerner L, de Campos CG, Haruni F, Colodel EM, Costa EF, Corbellini LG, Nakazato L, Pescador CA. Ureaplasma diversum as a cause of pustular vulvovaginitis in bovine females in Vale Guapore, Mato Grosso State, Brazil. Trop Anim Health Prod 2014; 46:1059-63. [PMID: 24817480 DOI: 10.1007/s11250-014-0614-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2014] [Indexed: 02/04/2023]
Abstract
Ureaplasma diversum has been associated with various reproductive problems in cattle that include granular vulvovaginitis, weak calves, and abortion. This study was conducted in a beef herd situated in the Middle-West region of Brazil, and the objectives were to verify the presence of U. diversum and to elucidate its possible relationships with independent variables in this bovine herd population. A total of 134 vaginal mucous swabs were taken for polymerase chain reaction (PCR). Of these, 51 (38 %) were PCR positive for U. diversum. Of the 58 heifers with vulvovaginal lesions characterized by hyperemia, granulated lesions, and edema distributed throughout the vulvar mucosa, 37 (64 %) were U. diversum positive; of the 76 heifers without reproductive lesions, 14 (18 %) were U. diversum positive. All tested samples were negative for bovine herpesvirus 1 (BoHV-1). Multivariate logistic regression revealed that the following two variables were significantly associated with the presence of U. diversum: the presence of vulvar lesions (p = 0.001) and the presence of a progesterone (P4) device (p = 0.001). These findings indicate that U. diversum should be considered a pathogen that is associated with pustular vulvovaginitis in heifers from the Mato Grosso state and that additional studies of the risk factors associated with intravaginal P4 device transmission should be performed.
Collapse
Affiliation(s)
- João Guilherme L N Gaeti
- Laboratory of Veterinary Pathology, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa da Costa 2367, Cuiabá, Mato Grosso, CEP 78069-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|