1
|
Maccioni P, Kaczanowska K, Lobina C, Regonini Somenzi L, Bassareo V, Gessa GL, Lawrence HR, McDonald P, Colombo G. Delving into the reducing effects of the GABA B positive allosteric modulator, KK-92A, on alcohol-related behaviors in rats. Alcohol 2023; 112:61-70. [PMID: 37495087 DOI: 10.1016/j.alcohol.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/26/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Recent studies have demonstrated the ability of the positive allosteric modulator (PAM) of the GABAB receptor (GABAB PAM), KK-92A, to suppress operant alcohol self-administration and reinstatement of alcohol seeking in selectively bred Sardinian alcohol-preferring (sP) rats. The present study was designed to scrutinize the suppressing effects of KK-92A on alcohol-related behaviors; to this end, four separate experiments were conducted to address just as many new research questions, some of which bear translational value. Experiment 1 found that 7-day treatment with KK-92A (0, 5, 10, and 20 mg/kg, intraperitoneally [i.p.]) effectively reduced alcohol intake in male sP rats exposed to the home-cage 2-bottle "alcohol (10% v/v) vs. water" choice regimen with 1 hour/day limited access, extending to excessive alcohol drinking the ability of KK-92A to suppress operant alcohol self-administration. Experiment 2 demonstrated that the ability of KK-92A to reduce lever-responding for alcohol was maintained also after acute, intragastric treatment (0, 20, and 40 mg/kg) in female sP rats trained to lever-respond for 15% (v/v) alcohol under the fixed ratio 5 schedule of reinforcement. In Experiment 3, acutely administered KK-92A (0, 5, 10, and 20 mg/kg, i.p.) dampened alcohol-seeking behavior in female sP rats exposed to a single session under the extinction responding schedule. Experiment 4 used a taste reactivity test to demonstrate that acute treatment with KK-92A (0 and 20 mg/kg, i.p.) did not alter either hedonic or aversive reactions to a 15% (v/v) alcohol solution in male sP rats, ruling out that KK-92A-induced reduction of alcohol drinking and self-administration could be due to alterations in alcohol palatability. Together, these results enhance the behavioral pharmacological profile of KK-92A and further strengthen the notion that GABAB PAMs may represent a novel class of ligands with therapeutic potential for treating alcohol use disorder.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA), Italy
| | | | - Carla Lobina
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA), Italy
| | - Laura Regonini Somenzi
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA), Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Monserrato (CA), Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA), Italy
| | | | - Patricia McDonald
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, Florida, United States
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato (CA), Italy.
| |
Collapse
|
2
|
Zheng S, Pan L, Hou J, Liao A, Hou Y, Yu G, Li X, Yuan Y, Dong Y, Zhao P, Zhang J, Hu Z, Hui M, Cao J, Huang JH. The role of wheat embryo globulin nutrients in improving cognitive dysfunction in AD rats. Food Funct 2022; 13:9856-9867. [PMID: 36047913 DOI: 10.1039/d2fo00815g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuroinflammation and intestinal microbiota cause pathological progression of Alzheimer's disease (AD), leading to neurodegeneration and cognitive decline. This study investigates the effects of wheat embryo globulin nutrient (WEGN) on depression, neuroinflammation, and intestinal microbial disorder caused by AD and its protective mechanism on cognitive impairment. Results demonstrated that rats in the WEGN group have lower feed intake but higher body weight than those in the control group. Notably, rats in the WEGN group have a higher number of cross grids and uprights and a smaller amount of fecal particles than those in the control group. Biochemical examinations revealed that rats in the WEGN group had lower expression of interleukin-1β, interleukin-6, and tumor necrosis factor α in hippocampus tissue and the expression of genes and proteins related to the TLR4/MyD88/NF-κB signaling pathway in AD rats was down-regulated compared to those in the control group. The 16S rRNA gene sequencing results demonstrated that WEGN treatment inhibits the increase of Erysipelotrichaceae, Erysipelatoclostridium, Erysipelotrichaceae, Corynebacterium, and Frisingicoccus, and the reduction of Lactobacillus in AD rats. WEGN has potential value as a practical food in alleviating neuroinflammation-related diseases such as AD.
Collapse
Affiliation(s)
- Shuainan Zheng
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Jianguang Hou
- Workstation of Zhongyuan Scholars of Henan Province, Henan Yangshao Liquor Co., Ltd., Mianchi Xian, 472400, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Xiaoxiao Li
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Yongjian Yuan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Yuqi Dong
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Penghui Zhao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Jie Zhang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Zheyuan Hu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Ming Hui
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Jian Cao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Ji-Hong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China. .,School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.,State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China.
| |
Collapse
|
3
|
Yiannakas A, Rosenblum K. The Insula and Taste Learning. Front Mol Neurosci 2017; 10:335. [PMID: 29163022 PMCID: PMC5676397 DOI: 10.3389/fnmol.2017.00335] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/03/2017] [Indexed: 12/29/2022] Open
Abstract
The sense of taste is a key component of the sensory machinery, enabling the evaluation of both the safety as well as forming associations regarding the nutritional value of ingestible substances. Indicative of the salience of the modality, taste conditioning can be achieved in rodents upon a single pairing of a tastant with a chemical stimulus inducing malaise. This robust associative learning paradigm has been heavily linked with activity within the insular cortex (IC), among other regions, such as the amygdala and medial prefrontal cortex. A number of studies have demonstrated taste memory formation to be dependent on protein synthesis at the IC and to correlate with the induction of signaling cascades involved in synaptic plasticity. Taste learning has been shown to require the differential involvement of dopaminergic GABAergic, glutamatergic, muscarinic neurotransmission across an extended taste learning circuit. The subsequent activation of downstream protein kinases (ERK, CaMKII), transcription factors (CREB, Elk-1) and immediate early genes (c-fos, Arc), has been implicated in the regulation of the different phases of taste learning. This review discusses the relevant neurotransmission, molecular signaling pathways and genetic markers involved in novel and aversive taste learning, with a particular focus on the IC. Imaging and other studies in humans have implicated the IC in the pathophysiology of a number of cognitive disorders. We conclude that the IC participates in circuit-wide computations that modulate the interception and encoding of sensory information, as well as the formation of subjective internal representations that control the expression of motivated behaviors.
Collapse
Affiliation(s)
- Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| |
Collapse
|
4
|
Rotella FM, Vig V, Olsson K, Pagirsky J, Aminov A, Kohen I, Bodnar RJ. Baclofen differentially mediates fructose-conditioned flavor preference and quinine-conditioned flavor avoidance in rats. Eur J Pharmacol 2016; 775:15-21. [DOI: 10.1016/j.ejphar.2016.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 01/02/2023]
|
5
|
Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev 2016; 63:1-28. [PMID: 26814961 DOI: 10.1016/j.neubiorev.2016.01.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/31/2015] [Accepted: 01/21/2016] [Indexed: 01/13/2023]
Abstract
Although it is evident from the literature that altered GABAB receptor function does affect behavior, these results often do not correspond well. These differences could be due to the task protocol, animal strain, ligand concentration, or timing of administration utilized. Because several clinical populations exhibit learning and memory deficits in addition to altered markers of GABA and the GABAB receptor, it is important to determine whether altered GABAB receptor function is capable of contributing to the deficits. The aim of this review is to examine the effect of altered GABAB receptor function on synaptic plasticity as demonstrated by in vitro data, as well as the effects on performance in learning and memory tasks. Finally, data regarding altered GABA and GABAB receptor markers within clinical populations will be reviewed. Together, the data agree that proper functioning of GABAB receptors is crucial for numerous learning and memory tasks and that targeting this system via pharmaceuticals may benefit several clinical populations.
Collapse
|
6
|
Moraga-Amaro R, Cortés-Rojas A, Simon F, Stehberg J. Role of the insular cortex in taste familiarity. Neurobiol Learn Mem 2013; 109:37-45. [PMID: 24296461 DOI: 10.1016/j.nlm.2013.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 10/16/2013] [Accepted: 11/18/2013] [Indexed: 11/16/2022]
Abstract
Determining the role of the main gustatory cortical area within the insular cortex (IC), in conditioned taste aversion (CTA) has been elusive due to effective compensatory mechanisms that allow animals to learn in spite of lacking IC. IC lesions performed before CTA training induces mild if any memory impairments, while IC lesions done weeks after CTA produce amnesia. IC lesions before taste presentation have also been shown not to affect taste familiarity learning (attenuation of neophobia). This lack of effect could be either explained by compensation from other brain areas or by a lack of involvement of the IC in taste familiarity. To assess this issue, rats were bilaterally IC lesioned with ibotenic acid (200-300 nl.; 15 mg/ml) one week before or after taste familiarity, using either a preferred (0.1%) or a non-preferred (0.5%) saccharin solution. Rats lesioned before familiarity showed a decrease in neophobia to both solutions but no difference in their familiarity curve or their slope. When animals were familiarized and then IC lesioned, both IC lesioned groups treated the solutions as familiar, showing no differences from sham animals in their retention of familiarity. However, both lesioned groups showed increased latent inhibition (or impaired CTA) when CTA trained after repeated pre-exposures. The role of the IC in familiarity was also assessed using temporary inactivation of the IC, using bilateral micro-infusions of sodium channel blocker bupivacaine before each of 3 saccharin daily presentations. Intra-insular bupivacaine had no effects on familiarity acquisition, but did impair CTA learning in a different group of rats micro-infused before saccharin presentation in a CTA training protocol. Our data indicate that the IC is not essentially involved in acquisition or retention of taste familiarity, suggesting regional dissociation of areas involved in CTA and taste familiarity.
Collapse
Affiliation(s)
- Rodrigo Moraga-Amaro
- Laboratorio de Neurobiologia, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Chile
| | - Andrés Cortés-Rojas
- Laboratorio de Neurobiologia, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Chile
| | - Felipe Simon
- Laboratorio de Fisiopatologia Integrativa, Departaemento de Ciencias Biologicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiologia, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biologicas & Facultad de Medicina, Universidad Andres Bello, Chile.
| |
Collapse
|
7
|
Baclofen-induced reductions in optional food intake depend upon food composition. Appetite 2013; 64:62-70. [PMID: 23321345 DOI: 10.1016/j.appet.2013.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/28/2012] [Accepted: 01/07/2013] [Indexed: 01/09/2023]
Abstract
Baclofen reduces intake of some foods but stimulates intake or has no effect on others. The reasons for these differences are not known. The present study examined effects of baclofen when composition, energy density, preference, presentation and intake of optional foods varied. Semi-solid fat emulsions and sucrose products were presented for brief periods to non-food-deprived rats. In Experiment 1, fat and sucrose composition were varied while controlling energy density. In Experiment 2A, schedule of access and the number of optional foods were varied. In Experiment 2B, the biopolymer (thickener) was examined. Baclofen reduced intake of fat and/or sugar options with different energy densities (1.28-9kcal/g), when presented daily or intermittently, and when intakes were relatively high or low. However, the efficacy of baclofen was affected by the biopolymer used to thicken the options: baclofen had no effect when options were thickened with one biopolymer (3173), but reduced intake when options were thickened with another biopolymer (515). Baclofen failed to reduce intake of a concentrated sugar option (64% sucrose), regardless of biopolymer. Based upon these results, caution is urged when interpreting results obtained with products using different thickening agents. Systematic research is needed when designing products used in rat models of food intake.
Collapse
|
8
|
Heaney CF, Bolton MM, Murtishaw AS, Sabbagh JJ, Magcalas CM, Kinney JW. Baclofen administration alters fear extinction and GABAergic protein levels. Neurobiol Learn Mem 2012; 98:261-71. [PMID: 23010137 DOI: 10.1016/j.nlm.2012.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/06/2012] [Accepted: 09/13/2012] [Indexed: 12/14/2022]
Abstract
The investigation of GABAergic systems in learning and extinction has principally focused on ionotropic GABA(A) receptors. Less well characterized is the metabotropic GABA(B) receptor, which when activated, induces a more sustained inhibitory effect and has been implicated in regulating oscillatory activity. Few studies have been carried out utilizing GABA(B) ligands in learning, and investigations of GABA(B) in extinction have primarily focused on interactions with drugs of abuse. The current study examined changes in GABA(B) receptor function using the GABA(B) agonist baclofen (2 mg/mL) or the GABA(B) antagonist phaclofen (0.3 mg/mL) on trace cued and contextual fear conditioning and extinction. The compounds were either administered during training and throughout extinction in Experiment 1, or starting 24 h after training and throughout extinction in Experiment 2. All drugs were administered 1 mL/kg via intraperitoneal injection. These studies demonstrated that the administration of baclofen during training and extinction trials impaired animals' ability to extinguish the fear association to the CS, whereas the animals that were administered baclofen starting 24 h after training (Experiment 2) did display some extinction. Further, contextual fear extinction was impaired by baclofen in both experiments. Tissue analyses suggest the cued fear extinction deficit may be related to changes in the GABA(B2) receptor subunit in the amygdala. The data in the present investigation demonstrate that GABA(B) receptors play an important role in trace cued and contextual fear extinction, and may function differently than GABA(A) receptors in learning, memory, and extinction.
Collapse
Affiliation(s)
- Chelcie F Heaney
- Behavioral Neuroscience Laboratory, Department of Psychology, University of Nevada, Las Vegas, United States
| | | | | | | | | | | |
Collapse
|