1
|
Local Disease-Free Survival Rate (LSR) Application to Personalize Radiation Therapy Treatments in Breast Cancer Models. J Pers Med 2020; 10:jpm10040177. [PMID: 33080870 PMCID: PMC7712665 DOI: 10.3390/jpm10040177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
Cancer heterogeneity represents the main issue for defining an effective treatment in clinical practice, and the scientific community is progressively moving towards the development of more personalized therapeutic regimens. Radiotherapy (RT) remains a fundamental therapeutic treatment used for many neoplastic diseases, including breast cancer (BC), where high variability at the clinical and molecular level is known. The aim of this work is to apply the generalized linear quadratic (LQ) model to customize the radiant treatment plan for BC, by extracting some characteristic parameters of intrinsic radiosensitivity that are not generic, but may be exclusive for each cell type. We tested the validity of the generalized LQ model and analyzed the local disease-free survival rate (LSR) for breast RT treatment by using four BC cell cultures (both primary and immortalized), irradiated with clinical X-ray beams. BC cells were chosen on the basis of their receptor profiles, in order to simulate a differential response to RT between triple negative breast and luminal adenocarcinomas. The MCF10A breast epithelial cell line was utilized as a healthy control. We show that an RT plan setup based only on α and β values could be limiting and misleading. Indeed, two other parameters, the doubling time and the clonogens number, are important to finely predict the tumor response to treatment. Our findings could be tested at a preclinical level to confirm their application as a variant of the classical LQ model, to create a more personalized approach for RT planning.
Collapse
|
2
|
Bravatà V, Cava C, Minafra L, Cammarata FP, Russo G, Gilardi MC, Castiglioni I, Forte GI. Radiation-Induced Gene Expression Changes in High and Low Grade Breast Cancer Cell Types. Int J Mol Sci 2018; 19:E1084. [PMID: 29617354 PMCID: PMC5979377 DOI: 10.3390/ijms19041084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND There is extensive scientific evidence that radiation therapy (RT) is a crucial treatment, either alone or in combination with other treatment modalities, for many types of cancer, including breast cancer (BC). BC is a heterogeneous disease at both clinical and molecular levels, presenting distinct subtypes linked to the hormone receptor (HR) status and associated with different clinical outcomes. The aim of this study was to assess the molecular changes induced by high doses of ionizing radiation (IR) on immortalized and primary BC cell lines grouped according to Human epidermal growth factor receptor (HER2), estrogen, and progesterone receptors, to study how HR status influences the radiation response. Our genomic approach using in vitro and ex-vivo models (e.g., primary cells) is a necessary first step for a translational study to describe the common driven radio-resistance features associated with HR status. This information will eventually allow clinicians to prescribe more personalized total doses or associated targeted therapies for specific tumor subtypes, thus enhancing cancer radio-sensitivity. METHODS Nontumorigenic (MCF10A) and BC (MCF7 and MDA-MB-231) immortalized cell lines, as well as healthy (HMEC) and BC (BCpc7 and BCpcEMT) primary cultures, were divided into low grade, high grade, and healthy groups according to their HR status. At 24 h post-treatment, the gene expression profiles induced by two doses of IR treatment with 9 and 23 Gy were analyzed by cDNA microarray technology to select and compare the differential gene and pathway expressions among the experimental groups. RESULTS We present a descriptive report of the substantial alterations in gene expression levels and pathways after IR treatment in both immortalized and primary cell cultures. Overall, the IR-induced gene expression profiles and pathways appear to be cell-line dependent. The data suggest that some specific gene and pathway signatures seem to be linked to HR status. CONCLUSIONS Genomic biomarkers and gene-signatures of specific tumor subtypes, selected according to their HR status and molecular features, could facilitate personalized biological-driven RT treatment planning alone and in combination with targeted therapies.
Collapse
Affiliation(s)
- Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology, National Research Council, 90015 Cefalù (Pa), Italy.
| | - Claudia Cava
- Institute of Molecular Bioimaging and Physiology, National Research Council, 20090 Segrate (Mi), Italy .
| | - Luigi Minafra
- Institute of Molecular Bioimaging and Physiology, National Research Council, 90015 Cefalù (Pa), Italy.
| | - Francesco Paolo Cammarata
- Institute of Molecular Bioimaging and Physiology, National Research Council, 90015 Cefalù (Pa), Italy.
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council, 90015 Cefalù (Pa), Italy.
| | - Maria Carla Gilardi
- Institute of Molecular Bioimaging and Physiology, National Research Council, 90015 Cefalù (Pa), Italy.
- Institute of Molecular Bioimaging and Physiology, National Research Council, 20090 Segrate (Mi), Italy .
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology, National Research Council, 20090 Segrate (Mi), Italy .
| | - Giusi Irma Forte
- Institute of Molecular Bioimaging and Physiology, National Research Council, 90015 Cefalù (Pa), Italy.
| |
Collapse
|
3
|
Bravatà V, Minafra L, Forte GI, Cammarata FP, Russo G, Di Maggio FM, Augello G, Lio D, Gilardi MC. Cytokine profile of breast cell lines after different radiation doses. Int J Radiat Biol 2017; 93:1217-1226. [PMID: 28763256 DOI: 10.1080/09553002.2017.1362504] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Ionizing radiation (IR) treatment activates inflammatory processes causing the release of a great amount of molecules able to affect the cell survival. The aim of this study was to analyze the cytokine signature of conditioned medium produced by non-tumorigenic mammary epithelial cell line MCF10A, as well as MCF7 and MDA-MB-231 breast cancer cell lines, after single high doses of IR in order to understand their role in high radiation response. MATERIALS AND METHODS We performed a cytokine profile of irradiated conditioned media of MCF10A, MCF7 and MDA-MB-231 cell lines treated with 9 or 23 Gy, by Luminex and ELISA analyses. RESULTS Overall, our results show that both 9 Gy and 23 Gy of IR induce the release within the first 72 h of cytokines and growth factors potentially able to influence the tumor outcome, with a dose-independent and cell-line dependent signature. Moreover, our results show that the cell-senescence phenomenon does not correlate with the amount of 'senescence-associated secretory phenotype' (SASP) molecules released in media. Thus, additional mechanisms are probably involved in this process. CONCLUSIONS These data open the possibility to evaluate cytokine profile as useful marker in modulating the personalized radiotherapy in breast cancer care.
Collapse
Affiliation(s)
- Valentina Bravatà
- a Institute of Molecular Bioimaging and Physiology (IBFM)-CNR , Cefalù ( PA ), Italy.,b Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Luigi Minafra
- a Institute of Molecular Bioimaging and Physiology (IBFM)-CNR , Cefalù ( PA ), Italy
| | - Giusi Irma Forte
- a Institute of Molecular Bioimaging and Physiology (IBFM)-CNR , Cefalù ( PA ), Italy
| | | | - Giorgio Russo
- a Institute of Molecular Bioimaging and Physiology (IBFM)-CNR , Cefalù ( PA ), Italy
| | - Federica Maria Di Maggio
- b Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Giuseppa Augello
- c Institute of Biomedicine and Molecular Immunology 'A. Monroy' (IBIM)-CNR , Palermo , Italy
| | - Domenico Lio
- b Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Maria Carla Gilardi
- a Institute of Molecular Bioimaging and Physiology (IBFM)-CNR , Cefalù ( PA ), Italy.,d Department of Health Sciences , Tecnomed Foundation, University of Milano-Bicocca , Milan , Italy.,e Nuclear Medicine , San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
4
|
Retrospective Proteomic Screening of 100 Breast Cancer Tissues. Proteomes 2017; 5:proteomes5030015. [PMID: 28686225 PMCID: PMC5620532 DOI: 10.3390/proteomes5030015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/20/2017] [Accepted: 07/04/2017] [Indexed: 12/18/2022] Open
Abstract
The present investigation has been conducted on one hundred tissue fragments of breast cancer, collected and immediately cryopreserved following the surgical resection. The specimens were selected from patients with invasive ductal carcinoma of the breast, the most frequent and potentially aggressive type of mammary cancer, with the objective to increase the knowledge of breast cancer molecular markers potentially useful for clinical applications. The proteomic screening; by 2D-IPG and mass spectrometry; allowed us to identify two main classes of protein clusters: proteins expressed ubiquitously at high levels in all patients; and proteins expressed sporadically among the same patients. Within the group of ubiquitous proteins, glycolytic enzymes and proteins with anti-apoptotic activity were predominant. Among the sporadic ones, proteins involved in cell motility, molecular chaperones and proteins involved in the detoxification appeared prevalent. The data of the present study indicates that the primary tumor growth is reasonably supported by concurrent events: the inhibition of apoptosis and stimulation of cellular proliferation, and the increased expression of glycolytic enzymes with multiple functions. The second phase of the evolution of the tumor can be prematurely scheduled by the occasional presence of proteins involved in cell motility and in the defenses of the oxidative stress. We suggest that this approach on large-scale 2D-IPG proteomics of breast cancer is currently a valid tool that offers the opportunity to evaluate on the same assay the presence and recurrence of individual proteins, their isoforms and short forms, to be proposed as prognostic indicators and susceptibility to metastasis in patients operated on for invasive ductal carcinoma of the breast.
Collapse
|
5
|
Eliyatkin N, Aktas S, Diniz G, Ozgur HH, Ekin ZY, Kupelioglu A. Expression of Stromal Caveolin- 1 May Be a Predictor for Aggressive Behaviour of Breast Cancer. Pathol Oncol Res 2017; 24:59-65. [PMID: 28236153 DOI: 10.1007/s12253-017-0212-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/16/2017] [Indexed: 12/30/2022]
Abstract
Caveolin-1 (Cav-1) is well known as a principal scaffolding protein of caveolae which are specialized plasma membrane structures. The role of Cav-1 in tumorigenesis of breast cancers is relatively less studied. The aim of the present study is to describe the biological roles of Cav-1 in breast cancers considering its contrasting dual functions as an oncogene and as a tumor suppressor. This study included 71 females with breast cancer who had been histopathologically diagnosed in Private Gunes Pathology Laboratory between the years 2007, and 2012. The mean age is 52.48 ± 12.8 years. Patients were followed up for a mean period of 47.97 ± 20.48 months. We didn't determine Cav-1 positive tumor cells. In 36 cases (50.7%), there were stromal expressions of Cav-1. In the statistical analysis, there was a statistically significant correlation between Cav-1 expression and ER (p = 0.033), metastasis (p = 0.005), lymphatic invasion (p = 0.000), nodal metastasis (p = 0,003), perinodal invasion (p = 0.003), metastasis (p = 0.005) and survival (p = 0.009). We found that Cav-1 expression is associated with tumor size, histological grade, lymph node involvement. Accordingly, we have suggested that Cav-1 may be a predictive biomarker for breast cancer.
Collapse
Affiliation(s)
- Nuket Eliyatkin
- Pathology Department, Adnan Menderes University Medical Faculty, Aydin, Turkey
| | - Safiye Aktas
- Basic Oncology Department, Dokuz Eylul University Oncology Institute, Izmir, Turkey
| | - Gulden Diniz
- Pathology Department, Tepecik Education and Research Hospital, Kibris Sehitleri Cad 51/11 Alsancak, 35220, Izmir, Turkey.
| | | | - Zubeyde Yildirim Ekin
- Pathology Department, Tepecik Education and Research Hospital, Kibris Sehitleri Cad 51/11 Alsancak, 35220, Izmir, Turkey
| | | |
Collapse
|
6
|
Di Maggio FM, Minafra L, Forte GI, Cammarata FP, Lio D, Messa C, Gilardi MC, Bravatà V. Portrait of inflammatory response to ionizing radiation treatment. J Inflamm (Lond) 2015; 12:14. [PMID: 25705130 PMCID: PMC4336767 DOI: 10.1186/s12950-015-0058-3] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/29/2015] [Indexed: 01/05/2023] Open
Abstract
Ionizing radiation (IR) activates both pro-and anti-proliferative signal pathways producing an imbalance in cell fate decision. IR is able to regulate several genes and factors involved in cell-cycle progression, survival and/or cell death, DNA repair and inflammation modulating an intracellular radiation-dependent response. Radiation therapy can modulate anti-tumour immune responses, modifying tumour and its microenvironment. In this review, we report how IR could stimulate inflammatory factors to affect cell fate via multiple pathways, describing their roles on gene expression regulation, fibrosis and invasive processes. Understanding the complex relationship between IR, inflammation and immune responses in cancer, opens up new avenues for radiation research and therapy in order to optimize and personalize radiation therapy treatment for each patient.
Collapse
Affiliation(s)
- Federica Maria Di Maggio
- />Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| | - Luigi Minafra
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| | - Giusi Irma Forte
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| | | | - Domenico Lio
- />Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Cristina Messa
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
- />Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy
- />Nuclear Medicine Center, San Gerardo Hospital, Monza, Italy
| | - Maria Carla Gilardi
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
- />Department of Health Sciences, Tecnomed Foundation, University of Milano-Bicocca, Milan, Italy
- />Nuclear Medicine, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Bravatà
- />IBFM CNR – LATO, Contrada Pietrapollastra Pisciotto, Cefalù, PA Italy
| |
Collapse
|
7
|
Bravatà V. Controversial roles of methylenetetrahydrofolate reductase polymorphisms and folate in breast cancer disease. Int J Food Sci Nutr 2014; 66:43-9. [PMID: 25318348 DOI: 10.3109/09637486.2014.959896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Breast cancer (BC) represents a highly heterogeneous tumour at both the clinical and molecular levels. Single-nucleotide polymorphisms (SNPs) of the folate-metabolising enzyme methylenetetrahydrofolate-reductase (MTHFR) may modify the association between folate intake and BC and influence plasma folate concentration. The role of folate in BC is equivocal, association studies between the common MTHFR SNPs C677T and A1298C and BC risk are controversial. In this study, I have reviewed observed associations between folate intake, as well as its blood levels, and BC. The purpose of this review is to analyse the role of folate and the two SNPs associated with reduced enzyme activity in BC. I explored the most relevant and updated work that emphasises positive and negative associations among these variables. My findings indicate that no definitive conclusions can be drawn from the studies on this topic. However, this manuscript highlights variables that could be useful to explore in further association analyses.
Collapse
Affiliation(s)
- Valentina Bravatà
- IBFM CNR -- LATO, Contrada Pietrapollastra Pisciotto , 90015 Cefalù (PA) , Italy
| |
Collapse
|
8
|
Yongbin Y, Jinghua L, Zhanxue Z, Aimin Z, Youchao J, Yanhong S, Manjing J. TES was epigenetically silenced and suppressed the epithelial–mesenchymal transition in breast cancer. Tumour Biol 2014; 35:11381-9. [DOI: 10.1007/s13277-014-2472-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/07/2014] [Indexed: 11/28/2022] Open
|
9
|
Bravatà V, Stefano A, Cammarata FP, Minafra L, Russo G, Nicolosi S, Pulizzi S, Gelfi C, Gilardi MC, Messa C. Genotyping analysis and ¹⁸FDG uptake in breast cancer patients: a preliminary research. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:23. [PMID: 23631762 PMCID: PMC3646684 DOI: 10.1186/1756-9966-32-23] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/19/2013] [Indexed: 12/22/2022]
Abstract
Background Diagnostic imaging plays a relevant role in the care of patients with breast cancer (BC). Positron Emission Tomography (PET) with 18F-fluoro-2-deoxy-D-glucose (FDG) has been widely proven to be a clinical tool suitable for BC detection and staging in which the glucose analog supplies metabolic information about the tumor. A limited number of studies, sometimes controversial, describe possible associations between FDG uptake and single nucleotide polymorphisms (SNPs). For this reason this field has to be explored and clarified. We investigated the association of SNPs in GLUT1, HIF-1a, EPAS1, APEX1, VEGFA and MTHFR genes with the FDG uptake in BC. Methods In 26 caucasian individuals with primary BC, whole-body PET-CT scans were obtained and quantitative analysis was performed by calculating the maximum Standardized Uptake Value normalized to body-weight (SUVmax) and the mean SUV normalized to body-weight corrected for partial volume effect (SUVpvc). Human Gene Mutation Database and dbSNP Short Genetic Variations database were used to analyze gene regions containing the selected SNPs. Patient genotypes were obtained using Sanger DNA sequencing analysis performed by Capillary Electrophoresis. Results BC patients were genotyped for the following nine SNPs: GLUT1: rs841853 and rs710218; HIF-1a: rs11549465 and rs11549467; EPAS1: rs137853037 and rs137853036; APEX1: rs1130409; VEGFA: rs3025039 and MTHFR: rs1801133. In this work correlations between the nine potentially useful polymorphisms selected and previously suggested with tracer uptake (using both SUVmax and SUVpvc) were not found. Conclusions The possible functional influence of specific SNPs on FDG uptake needs further studies in human cancer. In summary, this is the first pilot study, to our knowledge, which investigates the association between a large panel of SNPs and FDG uptake specifically in BC patients. This work represents a multidisciplinary and translational medicine approach to study BC where, the possible correlation between SNPs and tracer uptake, may be considered to improve personalized cancer treatment and care.
Collapse
|
10
|
Bravatà V, Cammarata FP, Forte GI, Minafra L. "Omics" of HER2-positive breast cancer. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:119-29. [PMID: 23421906 DOI: 10.1089/omi.2012.0099] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
HER2/neu amplification/overexpression is the only somatic mutation widely considered to be a marker of disease outcome and response to treatment in breast cancer. Pathologists have made large efforts to achieve accuracy in characterizing HER2/neu status. The introduction of transtuzumab contributed to development of additional measures to identify sensitive and resistant subclasses of HER2/neu-positive tumors. In this article, we describe the latest advances in HER2/neu status diagnostic assessment and the most relevant research emerging from "Omics" (genomics, epigenetics, transcriptomics, and proteomics) studies on HER2/neu-positive breast cancer. A large quantity of biomarkers from different studies highlighted HER2/neu-positive specific proliferation, cell cycle arrest, and apoptosis mechanisms, as well as immunological and metabolic behavior. Major driver genes of tumor progression have had a candidate status (GRB7, MYC, CCND1, EGFR, etc.), even though the main role for HER2/neu is largely recognized. Nonetheless, existing omics data and HER2/neu-positive molecular profiles seem to suggest that few proteogenomic alterations in HER2, EGFR, and PI3K networks could significantly affect the effectiveness of transtuzumab. The systematic search of molecular alterations in and across these pathways can help to select the most appropriate drug for a given patient based on in-depth understanding of complexity in tumor biology.
Collapse
Affiliation(s)
- Valentina Bravatà
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Cefalù Unit, Cefalù, Italy
| | | | | | | |
Collapse
|