1
|
Winter E, Cisilotto J, Goetten ALF, Veiga Â, Ramos AT, Zimermann FC, Reck C, Creczynski-Pasa TB. MicroRNAs as serum biomarker for Senecio brasiliensis poisoning in cattle. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103906. [PMID: 35697189 DOI: 10.1016/j.etap.2022.103906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/12/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Senecio spp. is one of the most frequent plant-related poisonings in cattle. Its ingestion generates the disease seneciosis, characterized by hepatic damages. Liver biopsies and serum markers dosage are tools used in diagnosis; however, many breeding cattle are undiagnosed. MicroRNAs are non-coding RNA, stable in biological fluids. Their difference in expression levels may indicate the presence of the poisoning. We analyzed the miRNA profiling to identify potential diagnostic biomarkers for Senecio brasiliensis poisoning. The expression of miR-21, miR-885, miR-122, miR-181b, miR-30a, miR-378, and let-7 f were evaluated in the serum of exposed cattle. At least one histological change was found in liver and lower quantity of albumin and high AST and ALP were also detected. MiRNAs miR-30a, miR-378, miR-21, miR-885, and miR-122 presented significantly higher expression in intoxicated animals than in healthy animals. Furthermore, miR-122, miR-885, and, especially, miR-21 signatures demonstrated high sensitivity and specificity, with potential application for detecting poisoning.
Collapse
Affiliation(s)
- Evelyn Winter
- Department of Agriculture, Biodiversity and Forest, Postgraduate Program in Conventional and Integrative Veterinary Medicine, Curitibanos, SC 89520-000, Brazil.
| | - Julia Cisilotto
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - André L F Goetten
- Department of Agriculture, Biodiversity and Forest, Postgraduate Program in Conventional and Integrative Veterinary Medicine, Curitibanos, SC 89520-000, Brazil
| | - Ângela Veiga
- Department of Agriculture, Biodiversity and Forest, Postgraduate Program in Conventional and Integrative Veterinary Medicine, Curitibanos, SC 89520-000, Brazil
| | - Adriano T Ramos
- Department of Agriculture, Biodiversity and Forest, Postgraduate Program in Conventional and Integrative Veterinary Medicine, Curitibanos, SC 89520-000, Brazil
| | - Francielli C Zimermann
- Department of Agriculture, Biodiversity and Forest, Postgraduate Program in Conventional and Integrative Veterinary Medicine, Curitibanos, SC 89520-000, Brazil
| | - Carolina Reck
- VERTÁ, Laboratory of Veterinary Diagnostic, Institute of Veterinary Research and Diagnostic, Curitibanos, SC 89520-000, Brazil
| | - Tânia B Creczynski-Pasa
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
2
|
Winter E, Cisilotto J, Silva AH, Rosolen D, Fabichak AP, Rode MP, Creczynski-Pasa TB. MicroRNAs: Potential biomarkers for reproduction, diagnosis, prognosis, and therapeutic in domestic animals. Res Vet Sci 2021; 142:117-132. [PMID: 34942556 DOI: 10.1016/j.rvsc.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/02/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
MicroRNA (miRNAs) are small non-coding RNA molecules involved in a wide range of biological processes through the post-transcriptional regulation of gene expression. Most studies evaluated microRNA expression in human, and despite fewer studies in veterinary medicine, this topic is one of the most exciting areas of modern veterinary medicine. miRNAs showed to be part of the pathogenesis of diseases and reproduction physiology in animals, making them biomarkers candidates. This review provides an overview of the current knowledge regarding miRNAs' role in reproduction and animal diseases, diagnostic and therapy.
Collapse
Affiliation(s)
- Evelyn Winter
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, 89520000, SC, Brazil.
| | - Júlia Cisilotto
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Adny Henrique Silva
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Daiane Rosolen
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Ana Paula Fabichak
- Department of Agriculture, Biodiversity and Forests, Federal University of Santa Catarina, Curitibanos, 89520000, SC, Brazil
| | - Michele Patricia Rode
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Postgraduate Program in Pharmacy, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil; Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianopolis, 88040-900, SC, Brazil
| |
Collapse
|
3
|
Bhalla M, Heinzinger LR, Morenikeji OB, Marzullo B, Thomas BN, Bou Ghanem EN. Transcriptome Profiling Reveals CD73 and Age-Driven Changes in Neutrophil Responses against Streptococcus pneumoniae. Infect Immun 2021; 89:e0025821. [PMID: 34310891 PMCID: PMC8519284 DOI: 10.1128/iai.00258-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022] Open
Abstract
Neutrophils are required for host resistance against Streptococcus pneumoniae, but their function declines with age. We previously found that CD73, an enzyme required for antimicrobial activity, is downregulated in neutrophils (also known as polymorphonuclear leukocytes [PMNs]) from aged mice. This study explored transcriptional changes in neutrophils induced by S. pneumoniae to identify pathways controlled by CD73 and dysregulated with age. Pure bone marrow-derived neutrophils isolated from wild-type (WT) young and old and CD73 knockout (CD73KO) young mice were mock challenged or infected with S. pneumoniae ex vivo. RNA sequencing (RNA-Seq) was performed to identify differentially expressed genes (DEGs). We found that infection triggered distinct global transcriptional changes across hosts that were strongest in CD73KO neutrophils. Surprisingly, there were more downregulated than upregulated genes in all groups upon infection. Downregulated DEGs indicated a dampening of immune responses in old and CD73KO hosts. Further analysis revealed that CD73KO neutrophils expressed higher numbers of long noncoding RNAs (lncRNAs) than those in WT controls. Predicted network analysis indicated that CD73KO-specific lncRNAs control several signaling pathways. We found that genes in the c-Jun N-terminal kinase (JNK)-mitogen-activated protein kinase (MAPK) pathway were upregulated upon infection in CD73KO mice and in WT old mice, but not in WT young mice. This corresponded to functional differences, as phosphorylation of the downstream AP-1 transcription factor component c-Jun was significantly higher in neutrophils from infected CD73KO mice and old mice. Importantly, inhibition of JNK/AP-1 rescued the ability of these neutrophils to kill S. pneumoniae. Together, our findings revealed that the ability of neutrophils to modify their gene expression to better adapt to bacterial infection is in part regulated by CD73 and declines with age.
Collapse
Affiliation(s)
- Manmeet Bhalla
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York, USA
| | - Lauren R. Heinzinger
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York, USA
| | - Olanrewaju B. Morenikeji
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, New York, USA
- Division of Biological and Health Sciences, University of Pittsburgh–Bradford, Bradford, Pennsylvania, USA
| | - Brandon Marzullo
- Department of Biochemistry and Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, New York, USA
| | - Elsa N. Bou Ghanem
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|
4
|
Identification of differentially expressed microRNAs in the skin of experimentally sensitized naturally affected atopic beagles by next-generation sequencing. Immunogenetics 2020; 72:241-250. [PMID: 32219493 DOI: 10.1007/s00251-020-01162-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
Abstract
Canine atopic dermatitis (AD) is a very common inflammatory skin disease, but limited data are available on the genetic characterization (somatic mutations, microarrays, and genome-wide association study (GWAS)) of skin lesions in affected dogs. microRNAs are good biomarkers in inflammatory and neoplastic diseases in people. The aim of this study was to evaluate microRNA expression in the skin of atopic beagles, before and after exposure to Dermatophagoides farinae. Four atopic and four unrelated age-matched healthy beagle dogs were enrolled. Total RNA was extracted from flash-frozen skin biopsies of healthy and atopic dogs. For the atopic dogs, skin biopsies were taken from non-lesional (day 0) and lesional skin (day 28 of weekly environmental challenge with Dermatophagoides farinae). Small RNA libraries were constructed and sequenced. The microRNA sequences were aligned to CanFam3.1 genome. Differential expressed microRNAs were selected on the basis of fold-change and statistical significance (fold-change ≥ 1.5 and p ≤ 0.05 as thresholds. A total of 277 microRNAs were sequenced. One hundred and twenty-one differentially regulated microRNAs were identified between non-lesional and healthy skin. Among these, two were increased amount and 119 were decreased amount. A total of 45 differentially regulated microRNAs between lesional and healthy skin were identified, 44 were decreased amount and one was increased amount. Finally, only two increased amount microRNAs were present in lesional skin when compared with that of non-lesional skin. This is the first study in which dysregulation of microRNAs has been associated with lesional and non-lesional canine AD. Larger studies are needed to understand the role of microRNA in canine AD.
Collapse
|
5
|
Craig KKL, Wood GA, Keller SM, Mutsaers AJ, Wood RD. MicroRNA profiling in canine multicentric lymphoma. PLoS One 2019; 14:e0226357. [PMID: 31826004 PMCID: PMC6905567 DOI: 10.1371/journal.pone.0226357] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/25/2019] [Indexed: 12/27/2022] Open
Abstract
Lymphoma is the most common hematopoietic tumour in dogs and is remarkably similar to the human disease. Tumour biomarker discovery is providing new tools for diagnostics and predicting therapeutic response and clinical outcome. MicroRNAs are small non-coding RNAs that participate in post-transcriptional gene regulation and their aberrant expression can impact genes involved in cancer. The aim of this study was to characterize microRNA expression in lymph nodes and plasma from dogs with multicentric B or T cell lymphoma compared to healthy control dogs. We further compared expression between lymph nodes and corresponding plasma samples and assessed changes in expression at relapse compared to time of diagnosis. Lastly, we investigated microRNAs for association with clinical outcome in patients treated with CHOP chemotherapy. A customized PCR array was utilized to profile 38 canine target microRNAs. Quantification was performed using real time RT-qPCR and relative expression was determined by the delta-delta Ct method. In lymph nodes, there were 16 microRNAs with significantly altered expression for B cell lymphoma and 9 for T cell lymphoma. In plasma, there were 15 microRNAs altered for B cell lymphoma and 3 for T cell lymphoma. The majority of microRNAs did not have correlated expression between lymph node and plasma and only 8 microRNAs were significantly different between diagnosis and relapse. For B cell lymphoma, 8 microRNAs had differential expression in the non-remission group compared to dogs that completed CHOP in complete remission. Four of these microRNAs were also altered in patients that died prior to one-year. Kaplan-Meier survival curves for high versus low microRNA expression revealed that 10 microRNAs were correlated with progression-free survival and 3 with overall survival. This study highlights microRNAs of interest for canine multicentric lymphoma. Future goals include development of microRNA panels that may be useful as biomarkers with the intent to provide improved outcome prediction to veterinary cancer patients.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cyclophosphamide/therapeutic use
- Dog Diseases/diagnosis
- Dog Diseases/drug therapy
- Dog Diseases/genetics
- Dog Diseases/mortality
- Dogs
- Doxorubicin/therapeutic use
- Female
- Gene Expression Regulation, Neoplastic
- Immunophenotyping
- Kaplan-Meier Estimate
- Lymph Nodes/metabolism
- Lymphoma, B-Cell/diagnosis
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/mortality
- Lymphoma, T-Cell/diagnosis
- Lymphoma, T-Cell/drug therapy
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/mortality
- Male
- MicroRNAs/blood
- MicroRNAs/metabolism
- Neoplasm Recurrence, Local
- Prednisone/therapeutic use
- Progression-Free Survival
- Treatment Outcome
- Vincristine/therapeutic use
Collapse
Affiliation(s)
- Karlee K. L. Craig
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A. Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Stefan M. Keller
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anthony J. Mutsaers
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - R. Darren Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
6
|
Mármol-Sánchez E, Cirera S, Quintanilla R, Pla A, Amills M. Discovery and annotation of novel microRNAs in the porcine genome by using a semi-supervised transductive learning approach. Genomics 2019; 112:2107-2118. [PMID: 31816430 DOI: 10.1016/j.ygeno.2019.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022]
Abstract
Despite the broad variety of available microRNA (miRNA) prediction tools, their application to the discovery and annotation of novel miRNA genes in domestic species is still limited. In this study we designed a comprehensive pipeline (eMIRNA) for miRNA identification in the yet poorly annotated porcine genome and demonstrated the usefulness of implementing a motif search positional refinement strategy for the accurate determination of precursor miRNA boundaries. The small RNA fraction from gluteus medius skeletal muscle of 48 Duroc gilts was sequenced and used for the prediction of novel miRNA loci. Additionally, we selected the human miRNA annotation for a homology-based search of porcine miRNAs with orthologous genes in the human genome. A total of 20 novel expressed miRNAs were identified in the porcine muscle transcriptome and 27 additional novel porcine miRNAs were also detected by homology-based search using the human miRNA annotation. The existence of three selected novel miRNAs (ssc-miR-483, ssc-miR484 and ssc-miR-200a) was further confirmed by reverse transcription quantitative real-time PCR analyses in the muscle and liver tissues of Göttingen minipigs. In summary, the eMIRNA pipeline presented in the current work allowed us to expand the catalogue of porcine miRNAs and showed better performance than other commonly used miRNA prediction approaches. More importantly, the flexibility of our pipeline makes possible its application in other yet poorly annotated non-model species.
Collapse
Affiliation(s)
- Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, 2nd Floor, 1870 Frederiksberg C, Denmark
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - Albert Pla
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
7
|
Morenikeji OB, Hawkes ME, Hudson AO, Thomas BN. Computational Network Analysis Identifies Evolutionarily Conserved miRNA Gene Interactions Potentially Regulating Immune Response in Bovine Trypanosomosis. Front Microbiol 2019; 10:2010. [PMID: 31555241 PMCID: PMC6722470 DOI: 10.3389/fmicb.2019.02010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022] Open
Abstract
Bovine trypanosomosis is a devastating disease that causes huge economic loss to the global cattle industry on a yearly basis. Selection of accurate biomarkers are important in early disease diagnosis and treatment. Of late, micro-RNAs (miRNAs) are becoming the most useful biomarkers for both infectious and non-infectious diseases in humans, but this is not the case in animals. miRNAs are non-coding RNAs that regulate gene expression through binding to the 3'-, 5'-untranslated regions (UTR) or coding sequence (CDS) region of one or more target genes. The molecular identification of miRNAs that regulates the expression of immune genes responding to bovine trypanosomosis is poorly defined, as is the possibility that these miRNAs could serve as potential biomarkers for disease diagnosis and treatment currently unknown. To this end, we utilized in silico tools to elucidate conserved miRNAs regulating immune response genes during infection, in addition to cataloging significant genes. Based on the p value of 1.77E-32, we selected 25 significantly expressed immune genes. Using prediction analysis, we identified a total of 4,251 bovine miRNAs targeting these selected genes across the 3'UTR, 5'UTR and CDS regions. Thereafter, we identified candidate miRNAs based on the number of gene targets and their abundance at the three regions. In all, we found the top 13 miRNAs that are significantly conserved targeting 7 innate immune response genes, including bta-mir-2460, bta-mir-193a, bta-mir-2316, and bta-mir-2456. Our gene ontology analysis suggests that these miRNAs are involved in gene silencing, cellular protein modification process, RNA-induced silencing complex, regulation of humoral immune response mediated by circulating immunoglobulin and negative regulation of chronic inflammatory response, among others. In conclusion, this study identifies specific miRNAs that may be involved in the regulation of gene expression during bovine trypanosomosis. These miRNAs have the potential to be used as biomarkers in the animal and veterinary research community to facilitate the development of tools for early disease diagnosis/detection, drug targeting, and the rational design of drugs to facilitate disease treatment.
Collapse
Affiliation(s)
- Olanrewaju B. Morenikeji
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Megan E. Hawkes
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
8
|
Pacholewska A, Kraft MF, Gerber V, Jagannathan V. Differential Expression of Serum MicroRNAs Supports CD4⁺ T Cell Differentiation into Th2/Th17 Cells in Severe Equine Asthma. Genes (Basel) 2017; 8:E383. [PMID: 29231896 PMCID: PMC5748701 DOI: 10.3390/genes8120383] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) regulate post-transcriptional gene expression and may be exported from cells via exosomes or in partnership with RNA-binding proteins. MiRNAs in body fluids can act in a hormone-like manner and play important roles in disease initiation and progression. Hence, miRNAs are promising candidates as biomarkers. To identify serum miRNA biomarkers in the equine model of asthma we investigated small RNA derived from the serum of 34 control and 37 asthmatic horses. These samples were used for next generation sequencing, novel miRNA identification and differential miRNA expression analysis. We identified 11 significantly differentially expressed miRNAs between case and control horses: eca-miR-128, eca-miR-744, eca-miR-197, eca-miR-103, eca-miR-107a, eca-miR-30d, eca-miR-140-3p, eca-miR-7, eca-miR-361-3p, eca-miR-148b-3p and eca-miR-215. Pathway enrichment using experimentally validated target genes of the human homologous miRNAs showed a significant enrichment in the regulation of epithelial-to-mesenchymal transition (key player in airway remodeling in asthma) and the phosphatidylinositol (3,4,5)-triphosphate (PIP3) signaling pathway (modulator of CD4⁺ T cell maturation and function). Downregulated miR-128 and miR-744 supports a Th2/Th17 type immune response in severe equine asthma.
Collapse
Affiliation(s)
- Alicja Pacholewska
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland.
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| | - Matthias F Kraft
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland.
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| | - Vincent Gerber
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland.
| | - Vidhya Jagannathan
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland.
| |
Collapse
|
9
|
Chuammitri P, Srikok S, Saipinta D, Boonyayatra S. The effects of quercetin on microRNA and inflammatory gene expression in lipopolysaccharide-stimulated bovine neutrophils. Vet World 2017; 10:403-410. [PMID: 28507412 PMCID: PMC5422244 DOI: 10.14202/vetworld.2017.403-410] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/28/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate gene expression of microRNA (miRNA) milieus (MIRLET7E, MIR17, MIR24-2, MIR146A, and MIR181C), inflammatory cytokine genes (interleukin 1β [IL1B], IL6, CXCL8, and tumor necrosis factor [TNF]), and the pathogen receptor toll-like receptor (TLR4) in bovine neutrophils under quercetin supplementation. MATERIALS AND METHODS Isolated bovine neutrophils were incubated with bacterial lipopolysaccharide under quercetin treatment or left untreated. Real-time polymerase chain reaction was performed to determine the expression of the miRNAs and messenger RNA (mRNA) transcripts in neutrophils. RESULTS Quercetin-treated neutrophils exhibited a remarkable suppression in MIR24-2, MIR146A, and MIR181C expression. Similarly, mRNA expression of IL1B, IL6, CXCL8, TLR4, and TNF genes noticeably declined in the quercetin group. Many proinflammatory genes (IL1B, IL6, and CXCL8) and the pathogen receptor TLR4 had a negative correlation with MIR146A and MIR181C as revealed by Pearson correlation. CONCLUSIONS Interaction between cognate mRNAs and miRNAs under quercetin supplementation can be summarized as a positive or negative correlation. This finding may help understand the effects of quercetin either on miRNA or gene expression during inflammation, especially as a potentially applicable indicator in bovine mastitis.
Collapse
Affiliation(s)
- Phongsakorn Chuammitri
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Suphakit Srikok
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Duanghathai Saipinta
- Dairy Cow Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Mae On, Chiang Mai 50130, Thailand
| | - Sukolrat Boonyayatra
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
10
|
Pacholewska A, Mach N, Mata X, Vaiman A, Schibler L, Barrey E, Gerber V. Novel equine tissue miRNAs and breed-related miRNA expressed in serum. BMC Genomics 2016; 17:831. [PMID: 27782799 PMCID: PMC5080802 DOI: 10.1186/s12864-016-3168-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/18/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND MiRNAs regulate multiple genes at the post-transcriptional level and therefore play an important role in many biological processes. It has been suggested that miRNA exported outside the cells contribute to inter-cellular communication. Consequently, circulating miRNAs are of particular interest and are promising biomarkers for many diseases. The number of miRNAs annotated in the horse genome is much lower compared to model organisms like human and mouse. We therefore aimed to identify novel equine miRNAs for tissue types and breed in serum. RESULTS We analysed 71 small RNA-seq libraries derived from nine tissues (gluteus medius, platysma, masseter muscle, heart, liver, cartilage, bone, total blood and serum) using miRDeep2 and miRdentify tools. Known miRNAs represented between 2.3 and 62.9 % of the reads in 71 libraries. A total of 683 novel miRNAs were identified. Breed and tissue type affected the number of miRNAs detected and interestingly, affected its average intensity. A total of 50 miRNAs in serum proved to be potential biomarkers to differentiate specific breed types, of which miR-122, miR-200, miR-483 were over-expressed and miR-328 was under-expressed in ponies compared to Warmbloods. The different miRNAs profiles, as well as the differences in their expression levels provide a foundation for more hypotheses based on the novel miRNAs discovered. CONCLUSIONS We identified 683 novel equine miRNAs expressed in seven solid tissues, blood and serum. Additionally, our approach evidenced that such data supported identification of specific miRNAs as markers of functions related to breeds or disease tissues.
Collapse
Affiliation(s)
- Alicja Pacholewska
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012, Bern, Switzerland. .,Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012, Bern, Switzerland.
| | - Núria Mach
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Xavier Mata
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Anne Vaiman
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Laurent Schibler
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Eric Barrey
- Animal Genetics and Integrative Biology unit (GABI), INRA, AgroParis Tech, University of Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Vincent Gerber
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012, Bern, Switzerland
| |
Collapse
|
11
|
Penso-Dolfin L, Swofford R, Johnson J, Alföldi J, Lindblad-Toh K, Swarbreck D, Moxon S, Di Palma F. An Improved microRNA Annotation of the Canine Genome. PLoS One 2016; 11:e0153453. [PMID: 27119849 PMCID: PMC4847789 DOI: 10.1371/journal.pone.0153453] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/30/2016] [Indexed: 01/14/2023] Open
Abstract
The domestic dog, Canis familiaris, is a valuable model for studying human diseases. The publication of the latest Canine genome build and annotation, CanFam3.1 provides an opportunity to enhance our understanding of gene regulation across tissues in the dog model system. In this study, we used the latest dog genome assembly and small RNA sequencing data from 9 different dog tissues to predict novel miRNAs in the dog genome, as well as to annotate conserved miRNAs from the miRBase database that were missing from the current dog annotation. We used both miRCat and miRDeep2 algorithms to computationally predict miRNA loci. The resulting, putative hairpin sequences were analysed in order to discard false positives, based on predicted secondary structures and patterns of small RNA read alignments. Results were further divided into high and low confidence miRNAs, using the same criteria. We generated tissue specific expression profiles for the resulting set of 811 loci: 720 conserved miRNAs, (207 of which had not been previously annotated in the dog genome) and 91 novel miRNA loci. Comparative analyses revealed 8 putative homologues of some novel miRNA in ferret, and one in microbat. All miRNAs were also classified into the genic and intergenic categories, based on the Ensembl RefSeq gene annotation for CanFam3.1. This additionally allowed us to identify four previously undescribed MiRtrons among our total set of miRNAs. We additionally annotated piRNAs, using proTRAC on the same input data. We thus identified 263 putative clusters, most of which (211 clusters) were found to be expressed in testis. Our results represent an important improvement of the dog genome annotation, paving the way to further research on the evolution of gene regulation, as well as on the contribution of post-transcriptional regulation to pathological conditions.
Collapse
Affiliation(s)
- Luca Penso-Dolfin
- Vertebrate and Health Genomics, The Genome Analysis Centre, Norwich, United Kingdom
| | - Ross Swofford
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jeremy Johnson
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jessica Alföldi
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kerstin Lindblad-Toh
- Vertebrate Genome Biology, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - David Swarbreck
- Regulatory Genomics, The Genome Analysis Centre, Norwich, United Kingdom
| | - Simon Moxon
- Regulatory Genomics, The Genome Analysis Centre, Norwich, United Kingdom
- * E-mail: (SM); (DFP)
| | - Federica Di Palma
- Vertebrate and Health Genomics, The Genome Analysis Centre, Norwich, United Kingdom
- * E-mail: (SM); (DFP)
| |
Collapse
|
12
|
Integrated mRNA and miRNA expression profiling in blood reveals candidate biomarkers associated with endurance exercise in the horse. Sci Rep 2016; 6:22932. [PMID: 26960911 PMCID: PMC4785432 DOI: 10.1038/srep22932] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/25/2016] [Indexed: 01/07/2023] Open
Abstract
The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the objective of the present study was to perform an integrated analysis of the blood transcriptome and miRNome (using microarrays) in the horse before and after a 160 km endurance competition. A total of 2,453 differentially expressed genes and 167 differentially expressed microRNAs were identified when comparing pre- and post-ride samples. We used a hypergeometric test and its generalization to gain a better understanding of the biological functions regulated by the differentially expressed microRNA. In particular, 44 differentially expressed microRNAs putatively regulated a total of 351 depleted differentially expressed genes involved variously in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. In an independent validation set of animals, graphical Gaussian models confirmed that miR-21-5p, miR-181b-5p and miR-505-5p are candidate regulatory molecules for the adaptation to endurance exercise in the horse. To the best of our knowledge, the present study is the first to provide a comprehensive, integrated overview of the microRNA-mRNA co-regulation networks that may have a key role in controlling post-transcriptomic regulation during endurance exercise.
Collapse
|
13
|
van der Kolk JH, Pacholewska A, Gerber V. The role of microRNAs in equine medicine: a review. Vet Q 2015; 35:88-96. [PMID: 25695624 DOI: 10.1080/01652176.2015.1021186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The search for new markers of diseases in human as well as veterinary medicine is ongoing. Recently, microRNAs (miRNAs or miRs) have emerged as potential new biomarkers. MiRNAs are short sequences of RNA (∼22 nucleotides) that regulate gene expression via their target messenger RNA (mRNA). Circulating miRNAs in blood can be used as novel diagnostic markers for diseases due to their evolutionary conservation and stability. As a consequence of their systemic and manifold effects on the gene expression in various target organs, the concept that miRNAs could function as hormones has been suggested. This review summarizes the biogenesis, maturation, and stability of miRNAs and discusses their use as potential biomarkers in equine medicine. To date, over 700 equine miRNAs are identified with distinct subsets of miRNAs differentially expressed in a tissue-specific manner. A physiological involvement of various miRNAs in the regulation of cell survival, steroidogenesis, and differentiation during follicle selection and ovulation in the monovular equine ovary has been demonstrated. Furthermore, miRNAs might be used as novel diagnostic markers for myopathies such as polysaccharide storage myopathy and recurrent exertional rhabdomyolysis as well as osteochondrosis. Preliminary data indicate that miRNAs in blood might play important roles in equine glucose metabolism pathway. Of note, breed differences have been reported regarding the normal equine miRNA signature. For disease prevention, it is of utmost importance to identify disease-associated biomarkers which help detect diseases before symptoms appear. As such, circulating miRNAs represent promising novel diagnostic markers in equine medicine.
Collapse
Affiliation(s)
- J H van der Kolk
- a Department of Clinical Veterinary Medicine, Vetsuisse Faculty, Swiss Institute for Equine Medicine (ISME) , University of Bern and Agroscope , Länggassstrasse 124, 3012 Bern , Switzerland
| | | | | |
Collapse
|