1
|
Zibar Belasic T, Badnjevic M, Zigante M, Mohar Vitezic B, Spalj S, Markova-Car EP. Supragingival dental biofilm profile and biofilm control during orthodontic treatment with fixed orthodontic appliance: A randomized controlled trial. Arch Oral Biol 2024; 164:105984. [PMID: 38701663 DOI: 10.1016/j.archoralbio.2024.105984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
OBJECTIVE The effectiveness of supragingival dental biofilm control during orthodontic treatment and changes in the bacterial profile were analyzed. DESIGN Sixty-four participants aged 12-22 years (57% female) were included in the study. Participants underwent orthodontic treatment with fixed appliances and were randomly assigned to one of the three groups, which during a period of one month: (I) used chlorhexidine digluconate (CHX), (II) used high concentration of fluoride (F) gel and (III) performed standard oral hygiene. The plaque and gingivitis index, pH of biofilm and white spot lesions (WSL) were assessed. Changes of the bacteria in the biofilm were analyzed by the quantitative polymerase chain reaction RESULTS: Increase in the plaque index, pH of biofilm, and WSL was observed during orthodontic treatment with standard oral hygiene. Large interindividual variability was present, and the effects of one-month use of fluorides and CHX on clinical parameters were not significant. Despite standard hygiene the abundance of studied biofilm bacteria increased - the most Streptoccocus mutans (14.2x) and S. salivarius (3.3x), moderate Veillonella parvula (3x) and the least S. sobrinus (2.3x) and Agregatibacter actinomycetemcomitans (1.9x). The use of CHX reduced S. sobrinus (2.2x) and A. actinomycetemcomitans (1.9x). Fluoride use reduced A. actinomycetemcomitans (1.3x) and S. sobrinus (1.2x). Fluorides better controlled S. mutans than CHX. CONCLUSION Bacterial biomass in supragingival biofilm increased during treatment with metal orthodontic appliances, with greater increase in cariogenic bacteria than periopathogens. Fluoride controlled S. mutans, while CHX S. sobrinus and A. actinomycetemcomitans.
Collapse
Affiliation(s)
- T Zibar Belasic
- University of Trieste, Department of Medical, Surgical and Health Sciences, Piazza dell'Ospitale 1, Trieste, Italy
| | - M Badnjevic
- University of Rijeka, Faculty of Dental Medicine, Department of Orthodontics, Kresimirova 40, Rijeka, Croatia.
| | - M Zigante
- University of Rijeka, Faculty of Dental Medicine, Department of Orthodontics, Kresimirova 40, Rijeka, Croatia; Clinical Hospital Center Rijeka, Dental Clinic, Kresimirova 40, Rijeka, Croatia
| | - B Mohar Vitezic
- Clinical Hospital Center Rijeka, Dental Clinic, Kresimirova 40, Rijeka, Croatia; University of Rijeka, Faculty of Medicine, Department of Microbiology and Parasitology, Brace Branchetta 20, Rijeka, Croatia
| | - S Spalj
- University of Rijeka, Faculty of Dental Medicine, Department of Orthodontics, Kresimirova 40, Rijeka, Croatia; Clinical Hospital Center Rijeka, Dental Clinic, Kresimirova 40, Rijeka, Croatia; J. J. Strossmayer University of Osijek, Faculty of Dental Medicine and Health, Department of Dental Medicine, Crkvena 21, Osijek, Croatia
| | - E P Markova-Car
- University of Rijeka, Faculty of Medicine, Department of Basic and Clinical Pharmacology and Toxicology, Brace Branchetta 20, Rijeka, Croatia
| |
Collapse
|
2
|
Czarnowski M, Słowińska M, Sawieljew M, Wnorowska U, Daniluk T, Król G, Karasiński M, Okła S, Savage PB, Piktel E, Bucki R. Efficacy of Ceragenins in Controlling the Growth of Oral Microorganisms: Implications for Oral Hygiene Management. Pharmaceuticals (Basel) 2024; 17:204. [PMID: 38399419 PMCID: PMC10893225 DOI: 10.3390/ph17020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Ensuring proper dental hygiene is of paramount importance for individuals' general well-being, particularly for patients receiving medical care. There is a prevailing utilization of conventional oral hygiene items, including toothbrushes and mouthwashes, which have gained widespread acceptance; nevertheless, their limitations encourage investigating novel options in this domain. Our study indicates that ceragenins (CSAs) being lipid analogs of host defense peptides, well-recognized for their wide-ranging antimicrobial properties, may be a potentially efficacious means to augment oral hygiene in hospitalized individuals. We demonstrate that ceragenins CSA-13, CSA-44, and CSA-131 as well as undescribed to date CSA-255 display potent antimicrobial activities against isolates of fungi, aerobic, and anaerobic bacteria from Candida, Streptococcus, Enterococcus, and Bacteroides species, which are well-recognized representatives of microbes found in the oral cavity. These effects were further confirmed against mono- and dual-species fungal and bacterial biofilms. While the ceragenins showed similar or slightly diminished efficacy compared to commercially available mouthwashes, they demonstrated a highly favorable toxicity profile toward host cells, that may translate into better maintenance of host mucosal membrane stability. This suggests that incorporating ceragenins into oral hygiene products could be a valuable strategy for reducing the risk of both oral cavity-localized and secondary systemic infections and for improving the overall health outcomes of individuals receiving medical treatment.
Collapse
Affiliation(s)
- Michał Czarnowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Monika Słowińska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Mariusz Sawieljew
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Grzegorz Król
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland; (G.K.); (S.O.)
| | - Maciej Karasiński
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Sławomir Okła
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland; (G.K.); (S.O.)
- Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, 15-222 Białystok, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| |
Collapse
|
3
|
Bajpai D, Malaiappan S, S R. Evaluation of Anti-inflammatory and Antimicrobial Properties of Mustard Seed Extract-Based Hydrogel: An In Vitro Study. Cureus 2023; 15:e45146. [PMID: 37842410 PMCID: PMC10575557 DOI: 10.7759/cureus.45146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
INTRODUCTION Mustard has been regarded as one of the world's most extensively produced and useful plants as well as one of the oldest condiments ever. The aim of the study was to develop and analyse the anti-inflammatory and antimicrobial properties of mustard seed extract. METHODS The extract was prepared by using a double filtration technique and anti-inflammatory properties were checked using egg albumin assay and bovine serum albumin assay and diclofenac sodium was the control. The antimicrobial property was evaluated by the Kirby-Bauer test and chlorhexidine gel was the control. The species included were Staphylococcus aureus, Streptococcus mutans, Enterococcus faecalis and Candida albicans. RESULTS The results showed that the anti-inflammatory property of mustard seed extract is comparable to diclofenac sodium whereas the maximum zone of inhibition was seen against C. albicans. CONCLUSION This study discovered that mustard seed extract has potent antimicrobial and anti-inflammatory activity against a variety of oral microorganisms. These findings indicate that this hydrogel was highly active against the tested pathogens and will be effective in the treatment of periodontitis.
Collapse
Affiliation(s)
- Devika Bajpai
- Periodontology, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Sankari Malaiappan
- Periodontology, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Rajeshkumar S
- Pharmacology, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
4
|
Pauter-Iwicka K, Railean V, Złoch M, Pomastowski P, Szultka-Młyńska M, Błońska D, Kupczyk W, Buszewski B. Characterization of the salivary microbiome before and after antibiotic therapy via separation technique. Appl Microbiol Biotechnol 2023; 107:2515-2531. [PMID: 36843196 PMCID: PMC10033590 DOI: 10.1007/s00253-023-12371-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/28/2023]
Abstract
In the present research, the MALDI-TOF MS technique was applied as a tool to rapidly identify the salivary microbiome. In this fact, it has been monitored the changes occurred in molecular profiles under different antibiotic therapy. Significant changes in the composition of the salivary microbiota were noticed not only in relation to the non antibiotic (non-AT) and antibiotic treatment (AT) groups, but also to the used media, the antibiotic therapy and co-existed microbiota. Each antibiotic generates specific changes in molecular profiles. The highest number of bacterial species was isolated in the universal culture medium (72%) followed by the selective medium (48% and 38%). In the case of non-AT patients, the prevalence of Streptococcus salivarius (25%), Streptococcus vestibularis (19%), Streptococcus oralis (13%), and Staphylococcus aureus (6%) was identified while in the case of AT, Streptococcus salivarius (11%), Streptococcus parasanguinis (11%), Staphylococcus epidermidis (12%), Enterococcus faecalis (9%), Staphylococcus hominis (8%), and Candida albicans (6%) were identified. Notable to specified that the Candida albicans was noticed only in AT samples, indicating a negative impact on the antibiotic therapy. The accuracy of the MALDI-TOF MS technique was performed by the 16S rRNA gene sequencing analysis-as a reference method. Conclusively, such an approach highlighted in the present study can help in developing the methods enabling a faster diagnosis of disease changes at the cellular level before clinical changes occur. Once the MALDI tool allows for the distinguishing of the microbiota of non-AT and AT, it may enable to monitor the diseases treatment and develop a treatment regimen for individual patients in relation to each antibiotic. KEY POINTS: The salivary microbiota of antibiotic-treated patients was more bacteria variety MALDI-TOF MS is a promising tool for recording of reproducible molecular profiles Our data can allow to monitor the treatment of bacterial diseases for patients.
Collapse
Affiliation(s)
- Katarzyna Pauter-Iwicka
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Viorica Railean
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100, Toruń, Poland
| | - Michał Złoch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Małgorzata Szultka-Młyńska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
| | - Dominika Błońska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Wojciech Kupczyk
- Department of General, Gastroenterological&Oncological Surgery Collegium Medicum, Nicolaus Copernicus University, Torun, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100, Torun, Poland.
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland.
| |
Collapse
|
5
|
Schönbächler N, Thurnheer T, Paqué PN, Attin T, Karygianni L. In vitro versus in situ biofilms for evaluating the antimicrobial effectiveness of herbal mouthrinses. Front Cell Infect Microbiol 2023; 13:1130255. [PMID: 36798085 PMCID: PMC9927218 DOI: 10.3389/fcimb.2023.1130255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
For centuries, diverse mouthrinses have been applied for medicinal purposes in the oral cavity. In view of the growing resistance of oral microorganisms against conventional antimicrobial agents e.g. chlorhexidine, the implementation of alternative treatments inspired by nature has lately gained increasing interest. The aim of the present study was to compare in vitro biofilm models with in situ biofilms in order to evaluate the antimicrobial potential of different natural mouthrinses. For the in vitro study a six-species supragingival biofilm model containing A. oris, V. dispar, C. albicans, F. nucleatum, S. mutans and S. oralis was used. Biofilms were grown anaerobically on hydroxyapatite discs and treated with natural mouthrinses Ratanhia, Trybol and Tebodont. 0.9% NaCl and 10% ethanol served as negative controls, while 0.2% CHX served as positive control. After 64h hours, biofilms were harvested and quantified by cultural analysis CFU. For the in situ study, individual test splints were manufactured for the participants. After 2h and 72h the biofilm-covered samples were removed and treated with the mouthrinses and controls mentioned above. The biofilms were quantified by CFU and stained for vitality under the confocal laser scanning microscope. In the in vitro study, 0.2% CHX yielded the highest antimicrobial effect. Among all mouthrinses, Tebodont (4.708 ± 1.294 log10 CFU, median 5.279, p<0.0001) compared with 0.9% NaCl showed the highest antimicrobial potential. After 72h there was no significant reduction in CFU after 0.2% CHX treatment. Only Trybol showed a statistically significant reduction of aerobic growth of microorganisms in situ (5.331 ± 0.7350 log10 CFU, median 5.579, p<0.0209). After treatment with the positive control 0.2% CHX, a significant percentage of non-vital bacteria (42.006 ± 12.173 log10 CFU, median 42.150) was detected. To sum up, a less pronounced effect of all mouthrinses was shown for the in situ biofilms compared to the in vitro biofilms.
Collapse
Affiliation(s)
- Nicole Schönbächler
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Thurnheer
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Pune Nina Paqué
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Lamprini Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
- *Correspondence: Lamprini Karygianni,
| |
Collapse
|
6
|
Laumen JGE, Van Dijck C, Manoharan-Basil SS, Abdellati S, De Baetselier I, Cuylaerts V, De Block T, Van den Bossche D, Xavier BB, Malhotra-Kumar S, Kenyon C. Sub-Inhibitory Concentrations of Chlorhexidine Induce Resistance to Chlorhexidine and Decrease Antibiotic Susceptibility in Neisseria gonorrhoeae. Front Microbiol 2021; 12:776909. [PMID: 34899659 PMCID: PMC8660576 DOI: 10.3389/fmicb.2021.776909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Objectives: Chlorhexidine digluconate (chlorhexidine) and Listerine® mouthwashes are being promoted as alternative treatment options to prevent the emergence of antimicrobial resistance in Neisseria gonorrhoeae. We performed in vitro challenge experiments to assess induction and evolution of resistance to these two mouthwashes and potential cross-resistance to other antimicrobials. Methods: A customized morbidostat was used to subject N. gonorrhoeae reference strain WHO-F to dynamically sustained Listerine® or chlorhexidine pressure for 18 days and 40 days, respectively. Cultures were sampled twice a week and minimal inhibitory concentrations (MICs) of Listerine®, chlorhexidine, ceftriaxone, ciprofloxacin, cefixime and azithromycin were determined using the agar dilution method. Isolates with an increased MIC for Listerine® or chlorhexidine were subjected to whole genome sequencing to track the evolution of resistance. Results: We were unable to increase MICs for Listerine®. Three out of five cultures developed a 10-fold increase in chlorhexidine MIC within 40 days compared to baseline (from 2 to 20 mg/L). Increases in chlorhexidine MIC were positively associated with increases in the MICs of azithromycin and ciprofloxacin. Low-to-higher-level chlorhexidine resistance (2–20 mg/L) was associated with mutations in NorM. Higher-level resistance (20 mg/L) was temporally associated with mutations upstream of the MtrCDE efflux pump repressor (mtrR) and the mlaA gene, part of the maintenance of lipid asymmetry (Mla) system. Conclusion: Exposure to sub-lethal chlorhexidine concentrations may not only enhance resistance to chlorhexidine itself but also cross-resistance to other antibiotics in N. gonorrhoeae. This raises concern regarding the widespread use of chlorhexidine as an oral antiseptic, for example in the field of dentistry.
Collapse
Affiliation(s)
- Jolein G E Laumen
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Christophe Van Dijck
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | - Saïd Abdellati
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Irith De Baetselier
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Vicky Cuylaerts
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tessa De Block
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dorien Van den Bossche
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Basil B Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
7
|
Inhibitory effect of host ocular microenvironmental factors on chlorhexidine digluconate activity. Antimicrob Agents Chemother 2021; 65:AAC.02066-20. [PMID: 33685899 PMCID: PMC8092908 DOI: 10.1128/aac.02066-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acanthamoeba spp. are free-living protozoan that cause a serious human eye disease called Acanthamoeba keratitis (AK). Several new and effective medical therapy for AK patients remains highly debated and therefore, CHG is still considered one of the first lines of treatment for AK patients. We hypothesized that ocular microenvironmental factors are responsible for Acanthamoeba drug resistance and clinical AK treatment failure. To investigate the influence of the ocular surface on CHG treatment, we tested the effect of several ocular elements on the anti-amoeba activity of CHG. The suspected inhibitory elements, including mucin, albumin, human and amoeba cell lysates, live and heat-killed bacteria, and cornea, were added to the amoebicidal activity platform, where amoeba was incubated with CHG at varying concentrations. Mucin showed a significant inhibitory effect on CHG activity against Acanthamoeba castellanii In contrast, albumin did not affect CHG treatment. Furthermore, human and amoeba cell lysates as well as live and heat-killed bacterial suspensions also significantly inhibited CHG activity. Additionally, we found that pig corneas also reduced CHG activity. In contrast, dry eye drops and their major component, propylene glycol, which is commonly used as eyewash material, did not have an impact on CHG activity. Our results demonstrate the effect of ocular microenvironmental factors on CHG activity and suggest that these factors may play a role in the development of amoeba resistance to CHG and treatment failure.
Collapse
|
8
|
Karygianni L, Ruf S, Hellwig E, Follo M, Vach K, Al-Ahmad A. Antimicrobial Photoinactivation of In Situ Oral Biofilms by Visible Light Plus Water-Filtered Infrared A and Tetrahydroporphyrin-tetratosylate (THPTS). Microorganisms 2021; 9:microorganisms9010145. [PMID: 33440906 PMCID: PMC7827502 DOI: 10.3390/microorganisms9010145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to examine the effect of aPDT with visual light (VIS) + water-filtered infrared A (wIRA) as a light source, and tetrahydroporphyrin-tetratosylate (THPTS) as a photosensitizer on in situ initial and mature oral biofilms. The samples were incubated, ex situ, with THPTS for two minutes, followed by irradiation with 200 mW cm − 2 VIS + wIRA for five minutes at 37 °C. The adherent microorganisms were quantified, and the biofilm samples were visualized using live/dead staining and confocal laser scanning microscopy (CLSM). The THPTS-mediated aPDT resulted in significant decreases in both the initially adherent microorganisms and the microorganisms in the mature oral biofilms, in comparison to the untreated control samples (>99.99% each; p = 0.018 and p = 0.0066, respectively). The remaining vital bacteria significantly decreased in the aPDT-treated biofilms during initial adhesion (vitality rate 9.4% vs. 71.2% untreated control, 17.28% CHX). Of the mature biofilms, 25.67% remained vital after aPDT treatment (81.97% untreated control, 16.44% CHX). High permeability of THPTS into deep layers could be shown. The present results indicate that the microbial reduction in oral initial and mature oral biofilms resulting from aPDT with VIS + wIRA in combination with THPTS has significant potential for the treatment of oral biofilm-associated diseases.
Collapse
Affiliation(s)
- Lamprini Karygianni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine University of Zurich, CH-8032 Zürich, Switzerland;
| | - Sandra Ruf
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.R.); (E.H.)
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.R.); (E.H.)
| | - Marie Follo
- Lighthouse Core Facility, Department of Hematology, Oncology & Stem Cell Transplantation, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany;
| | - Kirstin Vach
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, 79104 Freiburg, Germany;
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.R.); (E.H.)
- Correspondence: ; Tel.: +49-761-27048940
| |
Collapse
|
9
|
Application of Mathematical Models and Microfluidics in the Analysis of Saliva Mixing with Antiseptic Solutions. BALKAN JOURNAL OF DENTAL MEDICINE 2020. [DOI: 10.2478/bjdm-2020-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Summary
Background/Aim: Human saliva offers many advantages over blood-based biochemical assays, therefore, becomes the biological fluid of interest. Once antiseptic solutions react with saliva, both fluids undergo significant changes of their biophysical properties, consequently, those changes have an impact on their principal function.
Material and Methods: In this study, saliva was collected and mixed with 0,1% chlorhexidine digluconate solution, fluoride mouthwash, zinc-hydroxyapatite solution and CPP-ACP paste. Microfluidic PVC/Green tape chips within the experimental setup were used to simulate solution mixing. The chip had 2 inlets and 1 outlet, and channel was designed in Y shape without any obstacles. The inlet channels were set at a 60° angle. The channel width was 600 µm and the diameter of inlets and outlet was 2 mm. For better visualization, blue food coloring was added to the saliva. The procedure was recorded with digital USB microscope camera and afterwards the percentage of mixing was obtained by MATLAB programming language.
Results: Obtained results show incomplete mixing of all the solutions with saliva. The value of mixed liquid, when mixing 0,1% chlorhexidine digluconate solution with saliva was 51,11%. In case of medium concentration fluoride mouthwash, result was 84,37%. Zinc hydroxyapatite solution obtained result of 85,24%, and the fourth tested solution, CPP-ACP paste, 83,89%.
Conclusions: Analyzed mouthwashes exhibit specific, non uniform behavior during mixing with saliva. Microfluidic setups could be efficiently used in simulating real clinical conditions in laboratory settings. Image processing mathematical models are applicable, accurate and useful in determination of the interaction of saliva with commonly used antiseptic solutions.
Collapse
|
10
|
Eichel V, Schüller A, Biehler K, Al-Ahmad A, Frank U. Antimicrobial effects of mustard oil-containing plants against oral pathogens: an in vitro study. BMC Complement Med Ther 2020; 20:156. [PMID: 32448381 PMCID: PMC7247255 DOI: 10.1186/s12906-020-02953-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/14/2020] [Indexed: 11/10/2022] Open
Abstract
Background The present study examines the antimicrobial activity of nasturtium herb (Tropaeoli maji herba) and horseradish root (Armoraciae rusticanae radix) against clinically important oral bacterial pathogens involved in periodontitis, gingivitis, pulpitis, implantitis and other infectious diseases. Methods A total of 15 oral pathogens, including members of the genera Campylobacter, Fusobacterium, Prevotella, Parvimonas, Porphyromonas, Tanerella, Veillonella, and HACEK organisms, were exposed to [1] a combination of herbal nasturtium and horseradish using a standardized gas test and [2] a mixture of synthetic Isothiocyantes (ITCs) using an agardilution test. Headspace gas chromatography mass spectrometry was employed to quantify the amount of allyl-, benzyl-, and 2- phenyl- ethyl-ITC. Results With exception of Veillonella parvula, all tested species were highly susceptible to herbal nasturtium and horseradish in the gas test with minimal inhibitory concentrations (MICs) between 50/20 mg and 200/80 mg and to synthetic ITCs in the agardilution with MICs between 0.0025 and 0.08 mg ITC/mL, respectively. Minimal bactericidal concentrations extended from 0.005 mg ITC/mL to 0.34 mg ITC/mL. Conclusions ITCs may be considered an interesting alternative to antibiotics for prevention and treatment of oropharyngeal infections, periodontitis and related diseases. Furthermore, the suitability of ITCs for endocarditis prophylaxis in dental procedures might be worth further investigation.
Collapse
Affiliation(s)
- Vanessa Eichel
- Center for Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - Anne Schüller
- Institute for Infection Prevention and Hospital Epidemiology, University of Freiburg, Breisacher Straße 115 B, 79106, Freiburg, Germany
| | - Klaus Biehler
- Institute for Infection Prevention and Hospital Epidemiology, University of Freiburg, Breisacher Straße 115 B, 79106, Freiburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Freiburg University Hospital, Hugstetterstrasse 55, 79106, Freiburg, Germany
| | - Uwe Frank
- Center for Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.,Institute for Infection Prevention and Hospital Epidemiology, University of Freiburg, Breisacher Straße 115 B, 79106, Freiburg, Germany
| |
Collapse
|
11
|
Bescos R, Ashworth A, Cutler C, Brookes ZL, Belfield L, Rodiles A, Casas-Agustench P, Farnham G, Liddle L, Burleigh M, White D, Easton C, Hickson M. Effects of Chlorhexidine mouthwash on the oral microbiome. Sci Rep 2020; 10:5254. [PMID: 32210245 PMCID: PMC7093448 DOI: 10.1038/s41598-020-61912-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/26/2020] [Indexed: 11/12/2022] Open
Abstract
Following a single blind, cross-over and non-randomized design we investigated the effect of 7-day use of chlorhexidine (CHX) mouthwash on the salivary microbiome as well as several saliva and plasma biomarkers in 36 healthy individuals. They rinsed their mouth (for 1 min) twice a day for seven days with a placebo mouthwash and then repeated this protocol with CHX mouthwash for a further seven days. Saliva and blood samples were taken at the end of each treatment to analyse the abundance and diversity of oral bacteria, and pH, lactate, glucose, nitrate and nitrite concentrations. CHX significantly increased the abundance of Firmicutes and Proteobacteria, and reduced the content of Bacteroidetes, TM7, SR1 and Fusobacteria. This shift was associated with a significant decrease in saliva pH and buffering capacity, accompanied by an increase in saliva lactate and glucose levels. Lower saliva and plasma nitrite concentrations were found after using CHX, followed by a trend of increased systolic blood pressure. Overall, this study demonstrates that mouthwash containing CHX is associated with a major shift in the salivary microbiome, leading to more acidic conditions and lower nitrite availability in healthy individuals.
Collapse
Affiliation(s)
- Raul Bescos
- Institute of Health & Community, University of Plymouth, Plymouth, PL4 8AA, UK.
| | - Ann Ashworth
- Institute of Health & Community, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Craig Cutler
- Institute of Health & Community, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Zoe L Brookes
- Peninsula Dental School, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Louise Belfield
- Peninsula Dental School, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Ana Rodiles
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | | | - Garry Farnham
- Peninsula Medical School, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Luke Liddle
- School of Social Sciences, Bishop Grosseteste University, Lincolnshire, LN1 3DY, UK.,Institute for Clinical Exercise and Health Science, University of the West of Scotland, South Lanarkshire, G72 0LH, UK
| | - Mia Burleigh
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, South Lanarkshire, G72 0LH, UK
| | - Desley White
- Institute of Health & Community, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Chris Easton
- Institute for Clinical Exercise and Health Science, University of the West of Scotland, South Lanarkshire, G72 0LH, UK
| | - Mary Hickson
- Institute of Health & Community, University of Plymouth, Plymouth, PL4 8AA, UK
| |
Collapse
|
12
|
Makvandi P, Gu JT, Zare EN, Ashtari B, Moeini A, Tay FR, Niu LN. Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater 2020; 101:69-101. [PMID: 31542502 DOI: 10.1016/j.actbio.2019.09.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/26/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
Failure of dental treatments is mainly due to the biofilm accumulated on the dental materials. Many investigations have been conducted on the advancements of antimicrobial dental materials. Polymeric and inorganic nanoscopical agents are capable of inhibiting microorganism proliferation. Applying them as fillers in dental materials can achieve enhanced microbicidal ability. The present review provides a broad overview on the state-of-the-art research in the field of antimicrobial fillers which have been adopted for incorporation into dental materials over the last 5 years. The antibacterial agents and applications are described, with the aim of providing information for future investigations. STATEMENT OF SIGNIFICANCE: Microbial infection is the primary cause of dental treatment failure. The present review provides an overview on the state-of-art in the field of antimicrobial nanoscopical or polymeric fillers that have been applied in dental materials. Trends in the biotechnological development of these antimicrobial fillers over the last 5 years are reviewed to provide a backdrop for further advancement in this field of research.
Collapse
|
13
|
Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Ahmad A. Resistance Toward Chlorhexidine in Oral Bacteria - Is There Cause for Concern? Front Microbiol 2019; 10:587. [PMID: 30967854 PMCID: PMC6439480 DOI: 10.3389/fmicb.2019.00587] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
The threat of antibiotic resistance has attracted strong interest during the last two decades, thus stimulating stewardship programs and research on alternative antimicrobial therapies. Conversely, much less attention has been given to the directly related problem of resistance toward antiseptics and biocides. While bacterial resistances toward triclosan or quaternary ammonium compounds have been considered in this context, the bis-biguanide chlorhexidine (CHX) has been put into focus only very recently when its use was associated with emergence of stable resistance to the last-resort antibiotic colistin. The antimicrobial effect of CHX is based on damaging the bacterial cytoplasmic membrane and subsequent leakage of cytoplasmic material. Consequently, mechanisms conferring resistance toward CHX include multidrug efflux pumps and cell membrane changes. For instance, in staphylococci it has been shown that plasmid-borne qac ("quaternary ammonium compound") genes encode Qac efflux proteins that recognize cationic antiseptics as substrates. In Pseudomonas stutzeri, changes in the outer membrane protein and lipopolysaccharide profiles have been implicated in CHX resistance. However, little is known about the risk of resistance toward CHX in oral bacteria and potential mechanisms conferring this resistance or even cross-resistances toward antibiotics. Interestingly, there is also little awareness about the risk of CHX resistance in the dental community even though CHX has been widely used in dental practice as the gold-standard antiseptic for more than 40 years and is also included in a wide range of oral care consumer products. This review provides an overview of general resistance mechanisms toward CHX and the evidence for CHX resistance in oral bacteria. Furthermore, this work aims to raise awareness among the dental community about the risk of resistance toward CHX and accompanying cross-resistance to antibiotics. We propose new research directions related to the effects of CHX on bacteria in oral biofilms.
Collapse
Affiliation(s)
- Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Nicholas S Jakubovics
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg, Regensburg, Germany
| | - Tim Maisch
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
14
|
Abe S, Haraga I, Kiyomi F, Kumano H, Gohara A, Matsumoto S, Yamaura K. Bacterial contamination upon the opening of injection needles. JA Clin Rep 2018; 4:61. [PMID: 32025873 PMCID: PMC6967018 DOI: 10.1186/s40981-018-0197-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/14/2018] [Indexed: 11/21/2022] Open
Abstract
Introduction Two opening methods are used for injection needle products: the “peel-apart method” where the adhesive surface of the packaging mount is peeled off, and the “push-off top method,” where the needle hub is pressed against the mount to break it. However, the risks of bacterial contamination as a result of opening method remain unknown. The aim of our study was to evaluate the bacterial contamination of needle hubs upon the opening of injection needles by the peel-apart or push-off top method under various conditions. Methods Bacterial contamination upon the opening of injection needles was examined in two materials, paper and plastic. Various concentrations of Staphylococcus aureus were applied to the mount and were maintained under wet or dry conditions. Injection needles were opened using the peel-apart or push-off top method. Needle hub contamination was examined using agar medium colony counting. Clinically assumed conditions (the hands and saliva of anesthesiologists) were also evaluated. Data were statistically examined using the Cochran-Mantel-Haenszel, Jonckheere, and Fisher’s exact tests. Results The lateral surfaces of needle hubs were contaminated using the push-off top method, but not by the peel-apart method, in a manner that was dependent on S. aureus concentrations. No significant differences were observed between mount materials. Needle hub contamination was significantly more severe for the wet than for the dry opening portion. The clinically assumed condition study revealed that the lateral and bottom surfaces of the needle hub were contaminated significantly more in the saliva contamination group than in the dry and wet hand groups. Conclusions The bacterial contamination of needle hubs may occur upon the opening of injection needles when the push-off top method is used and may be affected by hands contaminated with saliva under clinical conditions.
Collapse
Affiliation(s)
- Shintaro Abe
- Department of Anesthesiology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka, 814-0180, Japan
| | - Isao Haraga
- Department of Anesthesia, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyouin, Chikushino-shi, Fukuoka, 818-8502, Japan.
| | - Fumiaki Kiyomi
- Statitician, Ph.D., Academia, Industry and Government Collaborative Research Institute of Translational Medicine for Life Innovation, Fukuoka University, 7-45-1, Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka, 814-0180, Japan
| | - Hitomi Kumano
- Department of Anesthesiology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka, 814-0180, Japan
| | - Akira Gohara
- Department of Anesthesiology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka, 814-0180, Japan
| | - Shigehiro Matsumoto
- Department of Anesthesiology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka, 814-0180, Japan
| | - Ken Yamaura
- Department of Anesthesiology, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka-shi, Fukuoka, 814-0180, Japan
| |
Collapse
|
15
|
Vlachojannis C, Chrubasik-Hausmann S, Hellwig E, Vach K, Al-Ahmad A. Activity of preparations from Spilanthes oleracea, propolis, Nigella sativa, and black garlic on different microorganisms involved in oral diseases and on total human salivary bacteria: A pilot study. Phytother Res 2018; 32:1992-2001. [PMID: 29938856 DOI: 10.1002/ptr.6129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/15/2022]
Abstract
Due to continuous rise in antibiotic resistance, there is a need for alternative treatment options to reduce the levels of oral pathogens for the maintenance of oral as well as overall health. The aim of this study was to evaluate the in vitro antibacterial potential of tinctures of Spilanthes oleracea and propolis, Nigella seed oil, and an ethanolic extract of black garlic on microorganisms involved in oral diseases. Both the minimum inhibitory concentration assay and the minimum bactericidal/fungicidal concentration assay were used in this study. Inhibition effects against total human salivary bacteria were also determined. Our results show that all of the preparations tested had potent antimicrobial activities. When measured 10 min after exposure, even low concentrations of the propolis tincture were found to have killed more than 99% of salivary bacteria, whereas Spilanthes tincture and black garlic extract killed more than 90% and Nigella seed oil more than 60% of the pathogens. This suggests that all preparations are promising candidates for the use in oral health care products and that all have the potential to control biofilm associated infections.
Collapse
Affiliation(s)
- Christian Vlachojannis
- University of Freiburg, Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sigrun Chrubasik-Hausmann
- University of Freiburg, Institute of Forensic Medicine, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Elmar Hellwig
- University of Freiburg, Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Kirstin Vach
- University of Freiburg, Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, Freiburg, Germany
| | - Ali Al-Ahmad
- University of Freiburg, Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
16
|
Buszewski B, Milanowski M, Ligor T, Pomastowski P. Investigation of bacterial viability from incubated saliva by application of flow cytometry and hyphenated separation techniques. Electrophoresis 2017; 38:2081-2088. [PMID: 28429817 DOI: 10.1002/elps.201700057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/31/2017] [Accepted: 04/14/2017] [Indexed: 12/23/2022]
Abstract
The aim of the study was determination of bacterial viability in saliva samples and finding a correlation between microbiological and volatile profiles of saliva depending on incubation time. Bacteria colonizing healthy oral cavities were also identified. Twelve healthy adults donated unstimulated saliva samples. Flow cytometry, optical density measurements and colony-forming unit (CFU) counting method were employed for analyses of native and inoculated saliva after 0, 1, 2, 24, and 48 h of incubation. Volatile profiles were acquired using headspace-solid phase microextraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS). Oral bacteria were the most viable within 2 h after collection of saliva. Extension of incubation time to 48 h caused considerable decrease in live bacteria counts and sharp increase in dead bacteria counts. The most prevalent strain was Sphingomonas paucimobilis (26.67%). The number of volatiles raised from 5 to 27 with incubation time and most of them were putrefaction products, such as methanethiol, indole and pyrrole. HS-SPME-GC/MS method is insufficient for volatile profiling of "fresh" saliva and should be directed rather to investigation of bacterial metabolites.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Maciej Milanowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Paweł Pomastowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
17
|
Cieplik F, Pummer A, Leibl C, Regensburger J, Schmalz G, Buchalla W, Hiller KA, Maisch T. Photodynamic Inactivation of Root Canal Bacteria by Light Activation through Human Dental Hard and Simulated Surrounding Tissue. Front Microbiol 2016; 7:929. [PMID: 27379059 PMCID: PMC4908107 DOI: 10.3389/fmicb.2016.00929] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/31/2016] [Indexed: 11/16/2022] Open
Abstract
Introduction: Photodynamic inactivation of bacteria (PIB) may be a supportive antimicrobial approach for use in endodontics, but sufficient activation of photosensitizers (PS) in root canals is a critical point. Therefore, aim of this study was to evaluate the ability of PS absorbing blue (TMPyP) or red light (Methylene Blue; MB) for light activation through human dental hard and simulated surrounding tissue to inactivate root canal bacteria. Methods: A tooth model was fabricated with a human premolar and two molars in an acrylic resin bloc simulating the optical properties of a porcine jaw. The distal root canal of the first molar was enlarged to insert a glass tube (external diameter 2 mm) containing PS and stationary-phase Enterococcus faecalis. Both PS (10 μM) were irradiated for 120 s with BlueV (20 mW/cm2; λem = 400–460 nm) or PDT 1200L (37.8 mW/cm2; λem = 570–680 nm; both: Waldmann Medizintechnik), respectively. Irradiation parameters ensured identical numbers of photons absorbed by each PS. Three setups were chosen: irradiating the glass pipette only (G), the glass pipette inside the single tooth without (GT) and with (GTM) simulated surrounding tissues. Colony forming units (CFU) were evaluated. Transmission measurements of the buccal halves of hemisected mandibular first molars were performed by means of a photospectrometer. Results: PIB with both PS led to reduction by ≥ 5 log10 of E. faecalis CFU for each setup. From transmission measurements, a threshold wavelength λth for allowing an amount of light transmission for sufficient activation of PS was determined to be 430 nm. Conclusion: This study can be seen as proof of principle that light activation of given intra-canal PS from outside a tooth may be possible at wavelengths ≥ 430 nm, facilitating clinical application of PIB in endodontics.
Collapse
Affiliation(s)
- Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg Regensburg, Germany
| | - Andreas Pummer
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg Regensburg, Germany
| | - Christoph Leibl
- Department of Conservative Dentistry and Periodontology, University Medical Center RegensburgRegensburg, Germany; Private PracticeGeiselhöring, Germany
| | | | - Gottfried Schmalz
- Department of Conservative Dentistry and Periodontology, University Medical Center RegensburgRegensburg, Germany; Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of BernBern, Switzerland
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg Regensburg, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg Regensburg, Germany
| | - Tim Maisch
- Department of Dermatology, University Medical Center Regensburg Regensburg, Germany
| |
Collapse
|