1
|
Blanco CM, de Souza HADS, Martins PDC, Almeida-Silva J, Suarez-Fontes AM, Chaves YO, Vannier-Santos MA, Pratt-Riccio LR, Daniel-Ribeiro CT, Lopes SCP, Totino PRR. Cell Death of P. vivax Blood Stages Occurs in Absence of Classical Apoptotic Events and Induces Eryptosis of Parasitized Host Cells. Pathogens 2024; 13:673. [PMID: 39204273 PMCID: PMC11357032 DOI: 10.3390/pathogens13080673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Elucidation of pathways regulating parasite cell death is believed to contribute to identification of novel therapeutic targets for protozoan diseases, and in this context, apoptosis-like cell death has been reported in different groups of protozoa, in which metacaspases seem to play a role. In the genus Plasmodium, apoptotic markers have been detected in P. falciparum and P. berghei, and no study focusing on P. vivax cell death has been reported so far. In the present study, we investigated the susceptibility of P. vivax to undergo apoptotic cell death after incubating mature trophozoites with the classical apoptosis inducer staurosporine. As assessed by flow cytometry assays, staurosporine inhibited parasite intraerythrocytic development, which was accompanied by a decrease in cell viability, evidenced by reduced plasmodial mitochondrial activity. However, typical signs of apoptosis, such as DNA fragmentation, chromatin condensation, and nuclear segregation, were not detected in the parasites induced to cell death, and no significant alteration in metacaspase gene expression (PvMCA1) was observed under cell death stimulus. Interestingly, dying parasites positively modulated cell death (eryptosis) of host erythrocytes, which was marked by externalization of phosphatidylserine and cell shrinkage. Our study shows for the time that P. vivax blood stages may not be susceptible to apoptosis-like processes, while they could trigger eryptosis of parasitized cells by undergoing cell death. Further studies are required to elucidate the cellular machinery involved in cell death of P. vivax parasites as well as in the modulation of host cell death.
Collapse
Affiliation(s)
- Carolina Moreira Blanco
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| | - Hugo Amorim dos Santos de Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| | - Priscilla da Costa Martins
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| | - Juliana Almeida-Silva
- Laboratório de Inovações em Terapia, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (J.A.-S.); (M.A.V.-S.)
| | - Ana Marcia Suarez-Fontes
- Laboratório de Inovações em Terapia, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (J.A.-S.); (M.A.V.-S.)
| | - Yury Oliveira Chaves
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus 69057-070, Brazil; (Y.O.C.); (S.C.P.L.)
| | - Marcos André Vannier-Santos
- Laboratório de Inovações em Terapia, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-360, Brazil; (J.A.-S.); (M.A.V.-S.)
| | - Lilian Rose Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| | - Stefanie Costa Pinto Lopes
- Instituto Leônidas e Maria Deane, Fiocruz Amazônia, Manaus 69057-070, Brazil; (Y.O.C.); (S.C.P.L.)
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus 69040-000, Brazil
| | - Paulo Renato Rivas Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz & Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Secretaria de Vigilância em Saúde e Ambiente (SVSA), Ministério da Saúde, Rio de Janeiro 21040-360, Brazil; (C.M.B.); (H.A.d.S.d.S.); (P.d.C.M.); (L.R.P.-R.); (C.T.D.-R.)
| |
Collapse
|
2
|
Yadav K, Kuldeep J, Shabeer Ali H, Siddiqi MI, Tripathi R. Metacaspase (Pf MCA-1) as antimalarial drug target: An in silico approach and their biological validation. Life Sci 2023; 335:122271. [PMID: 37977356 DOI: 10.1016/j.lfs.2023.122271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
AIMS Acquired drug resistance of Plasmodium is a global issue for the treatment of malaria. There are various proteases in the genome of Plasmodium falciparum (P. falciparum) including metacaspase-1 (PfMCA-1) that are essential and are being considered as an attractive drug target. It is aimed to identify novel therapeutics against malaria and their action on PfMCA-1 along with other apoptotic pathway events. MAIN METHODS High throughput virtual screening of 55,000 compounds derived from Maybridge library was performed against PfMCA-1. Based on the docking score, sixteen compounds were selected for in vitro antimalarial screening against drug sensitive and resistant strains of P. falciparum using SYBR green-based assay. Subsequently, three lead molecules were selected and subjected to the evaluation of cytotoxicity, caspase like protease activity, mitochondrial membrane potential, ROS generation and DNA fragmentation via TUNEL assay. KEY FINDINGS The in silico and in vitro approaches have brought forward some Maybridge library compounds with antiplasmodial activity most likely by enhancing the metacaspase activity. The compound CD11095 has shown better antimalarial efficacy, and KM06591 depicted higher caspase mediated killing, elevated TUNEL positive cells and moderate ROS generation. Mitochondrial membrane depolarization was augmented by RJC0069. Exposure of P. falciparum to CD11095, KM06591 and RJC0069 has ended up in parasite growth arrest via multiple mechanisms. SIGNIFICANCE It is proposed that the Maybridge molecules CD11095, KM06591 and RJC0069 have antimalarial activity. Their mechanism of action was found to be by enhancing the metacaspases-like protease activity, mitochondrial depolarization and DNA fragmentation which stipulates significant insights towards promising candidates for drug development.
Collapse
Affiliation(s)
- Kanchan Yadav
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Jitendra Kuldeep
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - H Shabeer Ali
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mohammad Imran Siddiqi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Renu Tripathi
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
3
|
Fraser M, Matuschewski K, Maier AG. Of membranes and malaria: phospholipid asymmetry in Plasmodium falciparum-infected red blood cells. Cell Mol Life Sci 2021; 78:4545-4561. [PMID: 33713154 PMCID: PMC11071739 DOI: 10.1007/s00018-021-03799-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 11/29/2022]
Abstract
Malaria is a vector-borne parasitic disease with a vast impact on human history, and according to the World Health Organisation, Plasmodium parasites still infect over 200 million people per year. Plasmodium falciparum, the deadliest parasite species, has a remarkable ability to undermine the host immune system and cause life-threatening disease during blood infection. The parasite's host cells, red blood cells (RBCs), generally maintain an asymmetric distribution of phospholipids in the two leaflets of the plasma membrane bilayer. Alterations to this asymmetry, particularly the exposure of phosphatidylserine (PS) in the outer leaflet, can be recognised by phagocytes. Because of the importance of innate immune defence numerous studies have investigated PS exposure in RBCs infected with P. falciparum, but have reached different conclusions. Here we review recent advancements in our understanding of the molecular mechanisms which regulate asymmetry in RBCs, and whether infection with the P. falciparum parasite results in changes to PS exposure. On the balance of evidence, it is likely that membrane asymmetry is disrupted in parasitised RBCs, though some methodological issues need addressing. We discuss the potential causes and consequences of altered asymmetry in parasitised RBCs, particularly for in vivo interactions with the immune system, and the role of host-parasite co-evolution. We also examine the potential asymmetric state of parasite membranes and summarise current knowledge on the parasite proteins, which could regulate asymmetry in these membranes. Finally, we highlight unresolved questions at this time and the need for interdisciplinary approaches to uncover the machinery which enables P. falciparum parasites to hide in mature erythrocytes.
Collapse
Affiliation(s)
- Merryn Fraser
- Research School of Biology, The Australian National University, Canberra, Australia
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Kai Matuschewski
- Department of Molecular Parasitology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Alexander G Maier
- Research School of Biology, The Australian National University, Canberra, Australia.
| |
Collapse
|
4
|
Recio-Tótoro B, Condé R, Claudio-Piedras F, Lanz-Mendoza H. Affinity purification of Plasmodium ookinetes from in vitro cultures using extracellular matrix gel. Parasitol Int 2020; 80:102242. [PMID: 33152548 DOI: 10.1016/j.parint.2020.102242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/19/2020] [Accepted: 10/31/2020] [Indexed: 12/26/2022]
Abstract
Malaria transmission depends on the parasites' successful invasion of the mosquito. This is achieved by the ookinete, a motile zygote that forms in the blood bolus after the mosquito takes an infectious blood meal. The ookinete invades the midgut epithelium and strongly attaches to the basal lamina, differentiating into an oocyst that produces the vertebrate-invasive sporozoites. Despite their importance, the ookinete and the oocyst are the least studied stages of the parasite. Much of what we know about the ookinete comes from in vitro experiments, which are hindered by the concomitant contamination with blood cells and other parasite stages. Although methods to purify them exist, they vary in terms of yield, costs, and difficulty to perform. A method for ookinete purification taking advantage of their adhesive properties was herein developed. The method consists of covering any culture-suitable surface with extracellular matrix gel, after which the ookinete culture is incubated on the gel to allow for ookinete attachment. The contaminant cells are then simply washed away. This procedure results in purer and less stressed ookinete preparations, which, by the nature of the method, are ready for oocyst production. Furthermore, it allows for micro-purifications using only 1 μl of blood, opening the possibility to make axenic ookinete cultures without sacrificing mice.
Collapse
Affiliation(s)
- Benito Recio-Tótoro
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Morelos, Mexico; Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, Mexico
| | - Renaud Condé
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Morelos, Mexico
| | - Fabiola Claudio-Piedras
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Morelos, Mexico
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62100 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
5
|
Xie L, Solhaug KA, Song Y, Johnsen B, Olsen JE, Tollefsen KE. Effects of artificial ultraviolet B radiation on the macrophyte Lemna minor: a conceptual study for toxicity pathway characterization. PLANTA 2020; 252:86. [PMID: 33057834 PMCID: PMC7560917 DOI: 10.1007/s00425-020-03482-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
UVB radiation caused irradiance-dependent and target-specific responses in non-UVB acclimated Lemna minor. Conceptual toxicity pathways were developed to propose causal relationships between UVB-mediated effects at multiple levels of biological organisation. Macrophytes inhabit waterways around the world and are used in hydroponics or aquaponics for different purposes such as feed and wastewater treatment and are thus exposed to elevated levels of UVB from natural and artificial sources. Although high UVB levels are harmful to macrophytes, mechanistic understanding of irradiance-dependent effects and associated modes of action in non-UVB acclimated plants still remains low. The present study was conducted to characterise the irradiance-dependent mechanisms of UVB leading to growth inhibition in Lemna minor as an aquatic macrophyte model. The L. minor were continuously exposed to UVB (0.008-4.2 W m-2) and constant UVA (4 W m-2) and photosynthetically active radiation, PAR (80 µmol m-2 s-1) for 7 days. A suite of bioassays was deployed to assess effects on oxidative stress, photosynthesis, DNA damage, and transcription of antioxidant biosynthesis, DNA repair, programmed cell death, pigment metabolism and respiration. The results showed that UVB triggered both irradiance-dependent and target-specific effects at multiple levels of biological organization, whereas exposure to UVA alone did not cause any effects. Inhibition of photosystem II and induction of carotenoids were observed at 0.23 W m-2, whereas growth inhibition, excessive reactive oxygen species, lipid peroxidation, cyclobutane pyrimidine dimer formation, mitochondrial membrane potential reduction and chlorophyll depletion were observed at 0.5-1 W m-2. Relationships between responses at different levels of biological organization were used to establish a putative network of toxicity pathways to improve our understanding of UVB effects in aquatic macrophytes under continuous UVB exposures. Additional studies under natural illuminations were proposed to assess whether these putative toxicity pathways may also be relevant for more ecologically relevant exposure scenarios.
Collapse
Affiliation(s)
- Li Xie
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway
| | - Knut Asbjørn Solhaug
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway
| | - You Song
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway
| | - Bjørn Johnsen
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway
- Norwegian Radiation and Nuclear Safety Authority (DSA), 1361, Østerås, Norway
| | - Jorunn Elisabeth Olsen
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway
- Faculty of Biosciences, Institute of Plant Sciences, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway
| | - Knut Erik Tollefsen
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway.
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, 1432, Ås, Norway.
| |
Collapse
|
6
|
Izak D, Klim J, Kaczanowski S. Host-parasite interactions and ecology of the malaria parasite-a bioinformatics approach. Brief Funct Genomics 2019; 17:451-457. [PMID: 29697785 DOI: 10.1093/bfgp/ely013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Malaria remains one of the highest mortality infectious diseases. Malaria is caused by parasites from the genus Plasmodium. Most deaths are caused by infections involving Plasmodium falciparum, which has a complex life cycle. Malaria parasites are extremely well adapted for interactions with their host and their host's immune system and are able to suppress the human immune system, erase immunological memory and rapidly alter exposed antigens. Owing to this rapid evolution, parasites develop drug resistance and express novel forms of antigenic proteins that are not recognized by the host immune system. There is an emerging need for novel interventions, including novel drugs and vaccines. Designing novel therapies requires knowledge about host-parasite interactions, which is still limited. However, significant progress has recently been achieved in this field through the application of bioinformatics analysis of parasite genome sequences. In this review, we describe the main achievements in 'malarial' bioinformatics and provide examples of successful applications of protein sequence analysis. These examples include the prediction of protein functions based on homology and the prediction of protein surface localization via domain and motif analysis. Additionally, we describe PlasmoDB, a database that stores accumulated experimental data. This tool allows data mining of the stored information and will play an important role in the development of malaria science. Finally, we illustrate the application of bioinformatics in the development of population genetics research on malaria parasites, an approach referred to as reverse ecology.
Collapse
Affiliation(s)
- Dariusz Izak
- Department of Bioinformatics at the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences
| | - Joanna Klim
- Department of Microbial Chemistry at the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences
| | - Szymon Kaczanowski
- Department of Bioinformatics at the Institute of Biochemistry and Biophysics of the Polish Academy of Sciences
| |
Collapse
|
7
|
Tixeira R, Poon IKH. Disassembly of dying cells in diverse organisms. Cell Mol Life Sci 2019; 76:245-257. [PMID: 30317529 PMCID: PMC11105331 DOI: 10.1007/s00018-018-2932-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/09/2023]
Abstract
Programmed cell death (PCD) is a conserved phenomenon in multicellular organisms required to maintain homeostasis. Among the regulated cell death pathways, apoptosis is a well-described form of PCD in mammalian cells. One of the characteristic features of apoptosis is the change in cellular morphology, often leading to the fragmentation of the cell into smaller membrane-bound vesicles through a process called apoptotic cell disassembly. Interestingly, some of these morphological changes and cell disassembly are also noted in cells of other organisms including plants, fungi and protists while undergoing 'apoptosis-like PCD'. This review will describe morphologic features leading to apoptotic cell disassembly, as well as its regulation and function in mammalian cells. The occurrence of cell disassembly during cell death in other organisms namely zebrafish, fly and worm, as well as in other eukaryotic cells will also be discussed.
Collapse
Affiliation(s)
- Rochelle Tixeira
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
8
|
Li J, Ma L, Liao X, Liu D, Lu X, Chen S, Ye X, Ding T. Ultrasound-Induced Escherichia coli O157:H7 Cell Death Exhibits Physical Disruption and Biochemical Apoptosis. Front Microbiol 2018; 9:2486. [PMID: 30459727 PMCID: PMC6232819 DOI: 10.3389/fmicb.2018.02486] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022] Open
Abstract
Ultrasound has attracted great interest of both industry and scientific communities for its potential use as a physical processing and preservation tool. In this study, Escherichia coli O157:H7 was selected as the model microbe to investigate the ultrasound-induced cell death. Slight variations in membrane potential and ion exchanges across membrane induced by low-intensity ultrasound increased the membrane permeability of E. coli O157:H7, and this reversible sublethal effect can preserve the viability of E. coli O157:H7 and meanwhile be beneficial for bioprocessing application. In comparison, high-intensity ultrasound resulted in irreversible lethal effect on E. coli O157:H7, which can be applied in the field of microbial inactivation. In addition, both low- and high-intensity ultrasound induced either physical destruction or trigger genetically encoded apoptosis of E. coli O157:H7. Accumulation of reactive oxygen species and decrease of adenosine tri-phosphate might be related to the physiological and biochemical hallmarks of apoptosis, including exposed phosphatidylserine and activated caspases in E. coli O157:H7. The result provides novel insight into the mechanisms of non-thermal physical treatment on the inactivation of bacteria and lays foundation for the further research on the cell signaling and metabolic pathway in apoptotic bacteria.
Collapse
Affiliation(s)
- Jiao Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| | - Luyao Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Xinyu Liao
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| | - Donghong Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Shiguo Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| | - Xingqian Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| | - Tian Ding
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| |
Collapse
|
9
|
Ancestral State Reconstruction of the Apoptosis Machinery in the Common Ancestor of Eukaryotes. G3-GENES GENOMES GENETICS 2018; 8:2121-2134. [PMID: 29703784 PMCID: PMC5982838 DOI: 10.1534/g3.118.200295] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptotic cell death is a type of eukaryotic cell death. In animals, it regulates development, is involved in cancer suppression, and causes cell death during pathological aging of neuronal cells in neurodegenerative diseases such as Alzheimer's. Mitochondrial apoptotic-like cell death, a form of primordial apoptosis, also occurs in unicellular organisms. Here, we ask the question why the apoptosis machinery has been acquired and maintained in unicellular organisms and attempt to answer it by performing ancestral state reconstruction. We found indications of an ancient evolutionary arms race between protomitochondria and host cells, leading to the establishment of the currently existing apoptotic pathways. According to this reconstruction, the ancestral protomitochondrial apoptosis machinery contained both caspases and metacaspases, four types of apoptosis induction factors (AIFs), both fungal and animal OMI/HTR proteases, and various apoptotic DNases. This leads to the prediction that in extant unicellular eukaryotes, the apoptotic factors are involved in mitochondrial respiration and their activity is needed exclusively in aerobic conditions. We test this prediction experimentally using yeast and find that a loss of the main apoptotic factors is beneficial under anaerobic conditions yet deleterious under aerobic conditions in the absence of lethal stimuli. We also point out potential medical implications of these findings.
Collapse
|
10
|
Lefevre T, Ohm J, Dabiré KR, Cohuet A, Choisy M, Thomas MB, Cator L. Transmission traits of malaria parasites within the mosquito: Genetic variation, phenotypic plasticity, and consequences for control. Evol Appl 2018; 11:456-469. [PMID: 29636799 PMCID: PMC5891056 DOI: 10.1111/eva.12571] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022] Open
Abstract
Evaluating the risk of emergence and transmission of vector-borne diseases requires knowledge of the genetic and environmental contributions to pathogen transmission traits. Compared to the significant effort devoted to understanding the biology of malaria transmission from vertebrate hosts to mosquito vectors, the strategies that malaria parasites have evolved to maximize transmission from vectors to vertebrate hosts have been largely overlooked. While determinants of infection success within the mosquito host have recently received attention, the causes of variability for other key transmission traits of malaria, namely the duration of parasite development and its virulence within the vector, as well as its ability to alter mosquito behavior, remain largely unknown. This important gap in our knowledge needs to be bridged in order to obtain an integrative view of the ecology and evolution of malaria transmission strategies. Associations between transmission traits also need to be characterized, as they trade-offs and constraints could have important implications for understanding the evolution of parasite transmission. Finally, theoretical studies are required to evaluate how genetic and environmental influences on parasite transmission traits can shape malaria dynamics and evolution in response to disease control.
Collapse
Affiliation(s)
- Thierry Lefevre
- MIVEGEC, IRD, CNRSUniversity of MontpellierMontpellierFrance
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo DioulassoBurkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT)Bobo DioulassoBurkina Faso
| | - Johanna Ohm
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPAUSA
| | - Kounbobr R. Dabiré
- Institut de Recherche en Sciences de la Santé (IRSS)Bobo DioulassoBurkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT)Bobo DioulassoBurkina Faso
| | - Anna Cohuet
- MIVEGEC, IRD, CNRSUniversity of MontpellierMontpellierFrance
| | - Marc Choisy
- MIVEGEC, IRD, CNRSUniversity of MontpellierMontpellierFrance
- Oxford University Clinical Research UnitHanoiVietnam
| | - Matthew B. Thomas
- Department of Entomology and Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPAUSA
| | - Lauren Cator
- Grand Challenges in Ecosystems and EnvironmentImperial College LondonAscotUK
| |
Collapse
|
11
|
High-Content Screening of the Medicines for Malaria Venture Pathogen Box for Plasmodium falciparum Digestive Vacuole-Disrupting Molecules Reveals Valuable Starting Points for Drug Discovery. Antimicrob Agents Chemother 2018; 62:AAC.02031-17. [PMID: 29311064 DOI: 10.1128/aac.02031-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Plasmodium falciparum infections leading to malaria have severe clinical manifestations and high mortality rates. Chloroquine (CQ), a former mainstay of malaria chemotherapy, has been rendered ineffective due to the emergence of widespread resistance. Recent studies, however, have unveiled a novel mode of action in which low-micromolar levels of CQ permeabilized the parasite's digestive vacuole (DV) membrane, leading to calcium efflux, mitochondrial depolarization, and DNA degradation. These phenotypes implicate the DV as an alternative target of CQ and suggest that DV disruption is an attractive target for exploitation by DV-disruptive antimalarials. In the current study, high-content screening of the Medicines for Malaria Venture (MMV) Pathogen Box (2015) was performed to select compounds which disrupt the DV membrane, as measured by the leakage of intravacuolar Ca2+ using the calcium probe Fluo-4 AM. The hits were further characterized by hemozoin biocrystallization inhibition assays and dose-response half-maximal (50%) inhibitory concentration (IC50) assays across resistant and sensitive strains. Three hits, MMV676380, MMV085071, and MMV687812, were shown to demonstrate a lack of CQ cross-resistance in parasite strains and field isolates. Through systematic analyses, MMV085071 emerged as the top hit due to its rapid parasiticidal effect, low-nanomolar IC50, and good efficacy in triggering DV disruption, mitochondrial degradation, and DNA fragmentation in P. falciparum These programmed cell death (PCD)-like phenotypes following permeabilization of the DV suggests that these compounds kill the parasite by a PCD-like mechanism. From the drug development perspective, MMV085071, which was identified to be a potent DV disruptor, offers a promising starting point for subsequent hit-to-lead generation and optimization through structure-activity relationships.
Collapse
|
12
|
Garcia FP, Henrique da Silva Rodrigues J, Din ZU, Rodrigues-Filho E, Ueda-Nakamura T, Auzély-Velty R, Nakamura CV. A3K2A3-induced apoptotic cell death of Leishmania amazonensis occurs through caspase- and ATP-dependent mitochondrial dysfunction. Apoptosis 2018; 22:57-71. [PMID: 27761752 DOI: 10.1007/s10495-016-1308-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leishmaniasis is a neglected tropical disease that affects millions of people worldwide. Current therapies mainly rely on antimonial drugs that are inadequate because of their high toxicity and increased drug resistance. An urgent need exists to discover new, more effective, more affordable, and more target-specific drugs. Pathways that are associated with apoptosis-like cell death have been identified in unicellular eukaryotes, including protozoan parasites. In the present study, we studied the mechanism of cell death that is induced by A3K2A3 against L. amazonensis. A3K2A3 is a dibenzylideneacetone that has an acyclic dienone that is attached to aryl groups in both β-positions, which is similar to curcuminoids and chalcone structures. This compound was previously shown to be safe with regard to cytotoxicity and active against the parasite. Biochemical and morphological approaches were used in the present study. The results suggested that A3K2A3 caused mitochondrial dysfunction in L. amazonensis promastigotes, leading to mechanisms of cell death that share some common phenotypic features with metazoan apoptosis, such as an increase in reactive oxygen species production, a decrease in the adenosine triphosphate ratio, phosphatidylserine exposure, a decrease in cell volume, caspase production, and DNA fragmentation. Altogether, these findings indicate that apoptosis can indeed be triggered by chemotherapeutic agents.
Collapse
Affiliation(s)
- Francielle Pelegrin Garcia
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR, CEP 87020-900, Brazil
| | - Jean Henrique da Silva Rodrigues
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR, CEP 87020-900, Brazil
| | - Zia Ud Din
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos, SP, 13.565-905, Brazil
| | - Edson Rodrigues-Filho
- LaBioMMi, Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos, SP, 13.565-905, Brazil
| | - Tânia Ueda-Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR, CEP 87020-900, Brazil
| | | | - Celso Vataru Nakamura
- Programa de Pós-graduação em Ciências Biológicas, Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos, Universidade Estadual de Maringá, Bloco B-08, Av. Colombo 5790, Maringá, PR, CEP 87020-900, Brazil.
| |
Collapse
|
13
|
Fanti JR, Tomiotto-Pellissier F, Miranda-Sapla MM, Cataneo AHD, Andrade CGTDJ, Panis C, Rodrigues JHDS, Wowk PF, Kuczera D, Costa IN, Nakamura CV, Nakazato G, Durán N, Pavanelli WR, Conchon-Costa I. Biogenic silver nanoparticles inducing Leishmania amazonensis promastigote and amastigote death in vitro. Acta Trop 2018; 178:46-54. [PMID: 29111137 DOI: 10.1016/j.actatropica.2017.10.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/01/2022]
Abstract
American Cutaneous Leishmaniasis (ACL) is a zoonosis caused by Leishmania protozoa. The ACL chemotherapy available is unsatisfactory motivating researches to seek alternative treatments. In this study, we investigated the action of biogenic silver nanoparticle (AgNp-bio) obtained from Fusarium oxysporium, against Leishmania amazonensis promastigote and amastigote forms. The AgNp-bio promastigote treatment results in promastigote death leading to apoptosis-like events due an increased production of reactive oxygen species (ROS), loss of mitochondrial integrity, phosphatidylserine exposure and damage on promastigotes membrane. In L. amazonensis infected macrophages, AgNp-bio treatment was still able to reduce the percentage of infected macrophages and the amount of amastigotes per macrophage, consequently, the amount of promastigotes recovered. This leishmanicidal effect was also accompanied by a decrease in the levels of ROS and nitric oxide. By observing the ultrastructural integrity of the intracellular amastigotes, we found that the AgNp-bio treatment made a significant damage, suggesting that the compound has a direct effect on intracellular amastigotes. These results demonstrated that AgNp-bio had a direct effect against L. amazonensis forms and acted on immunomodulatory ability of infected macrophages, reducing the infection without inducing the synthesis of inflammatory mediators, which continuous stimulation can generate and aggravate leishmaniotic lesions. Overall, our findings suggest that the use of AgNp-bio stands out as a new therapeutic option to be considered for further in vivo investigations representing a possible treatment for ACL.
Collapse
Affiliation(s)
- Jacqueline Rodrigues Fanti
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Fernanda Tomiotto-Pellissier
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Milena Menegazzo Miranda-Sapla
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil.
| | - Allan Henrique Depieri Cataneo
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Célia Guadalupe Tardeli de Jesus Andrade
- Laboratory of Electron Microscopy and Microanalysis, Department of General Biology, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, University of Western Paraná, Francisco Beltrão, Paraná, Brazil
| | - Jean Henrique da Silva Rodrigues
- Laboratory of Technological Innovation in Development of Drugs and Cosmetics, Department of Health Basic Sciences, Center of Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Pryscilla Fanini Wowk
- Laboratory of Molecular Virology, Carlos Chagas Institute (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil
| | - Diogo Kuczera
- Laboratory of Molecular Virology, Carlos Chagas Institute (ICC/Fiocruz/PR), Curitiba, Paraná, Brazil
| | - Idessania Nazareth Costa
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Celso Vataru Nakamura
- Laboratory of Technological Innovation in Development of Drugs and Cosmetics, Department of Health Basic Sciences, Center of Health Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Gerson Nakazato
- Laboratory of Bacteriology Basic and Applied, Department of Microbiology, Biological Sciences Center, State University of Londrina, Londrina, Paraná, Brazil
| | - Nelson Durán
- Institute of Chemistry, Biological Chemistry Laboratory, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil; Brazilian Nanotechnology National Laboratory (LNNano-CNPEM), Campinas, São Paulo, Brazil
| | - Wander Rogério Pavanelli
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Ivete Conchon-Costa
- Laboratory of Experimental Protozoology, Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
14
|
Tuteja R. Emerging functions of helicases in regulation of stress survival in malaria parasite Plasmodium falciparum and their comparison with human host. Parasitol Int 2016; 65:645-664. [PMID: 27586396 DOI: 10.1016/j.parint.2016.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 06/28/2016] [Accepted: 08/28/2016] [Indexed: 02/04/2023]
Abstract
The cellular response to various stresses is a universal phenomenon and involves a common set of stress responses that are largely independent of the type of stress. The response to stress is complex and cells can activate multiple signaling pathways that act in concert to influence cell fate and results in a specific cellular outcome, including reduction in macromolecular synthesis by shared pathways, cell cycle arrest, DNA repair, senescence and/or apoptosis. Whether cells mount a protective response or die depends to a great degree on the nature and duration of the stress and the particular cell type. Helicases play essential roles in DNA replication, repair, recombination, transcription and translation, and also participate in RNA metabolic processes including pre-mRNA processing, ribosome biogenesis, RNA turnover, export, translation, surveillance, storage and decay. In order to survive in the human host, the malaria parasite Plasmodium falciparum has to handle variety of stresses, which it encounters during the erythrocytic stages of its life cycle. In recent past the role of helicases in imparting various stress responses has emerged. Therefore in the present review an attempt has been made to highlight the emerging importance of helicases in stress responses in malaria parasite and their comparison with human host is also presented. It is noteworthy that PfDHX33 and PfDDX60 are larger in size and different in sequence as compared to the HsDHX33 and HsDDX60. The study suggests that helicases are multifunctional and play major role in helping the cells to combat various stresses.
Collapse
Affiliation(s)
- Renu Tuteja
- Parasite Biology Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
15
|
Sharma N, Mohanakrishnan D, Shard A, Sharma A, Sinha AK, Sahal D. Hydroxylated di- and tri-styrylbenzenes, a new class of antiplasmodial agents: discovery and mechanism of action. RSC Adv 2016. [DOI: 10.1039/c6ra06059e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The first systematic evaluation of the antiplasmodial activity of the hydroxystilbene family of natural products and di/tristyrylbenzenes is described.
Collapse
Affiliation(s)
- Naina Sharma
- Natural Plant Products Division
- CSIR-Institute of Himalaya Bioresource Technology
- Palampur
- India
- Department of Chemistry
| | - Dinesh Mohanakrishnan
- Malaria Drug Discovery Group
- International Centre for Genetic Engineering and Biotechnology
- New Delhi 110067
- India
| | - Amit Shard
- Natural Plant Products Division
- CSIR-Institute of Himalaya Bioresource Technology
- Palampur
- India
| | - Abhishek Sharma
- Natural Plant Products Division
- CSIR-Institute of Himalaya Bioresource Technology
- Palampur
- India
- Department of Chemistry
| | - Arun K. Sinha
- Natural Plant Products Division
- CSIR-Institute of Himalaya Bioresource Technology
- Palampur
- India
| | - Dinkar Sahal
- Malaria Drug Discovery Group
- International Centre for Genetic Engineering and Biotechnology
- New Delhi 110067
- India
| |
Collapse
|
16
|
Genes CM, de Lucio H, González VM, Sánchez-Murcia PA, Rico E, Gago F, Fasel N, Jiménez-Ruiz A. A functional BH3 domain in an aquaporin from Leishmania infantum. Cell Death Discov 2016; 2:16043. [PMID: 27551533 PMCID: PMC4979448 DOI: 10.1038/cddiscovery.2016.43] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/15/2016] [Indexed: 02/08/2023] Open
Abstract
Despite the absence of sequences showing significant similarity to any of the members of the Bcl-2 family of proteins in protozoa, experiments carried out in yeast or trypanosomatids have demonstrated that ectopic expression of some of these members alters their response to different death stimuli. Because the BH3 domain is the smallest common signature in all the proteins of this family of apoptosis regulators and also because they are essential for molecular interactions between antagonistic members, we looked for sequences with significant similarity to the BH3 motif in the Leishmania infantum genome. Among the top scoring ones, we found the MYLALQNLGDEV amino-acid stretch at the C terminus of a previously described aquaporin, now renamed as Li-BH3AQP. This motif is highly conserved in homologous proteins from other species of the Leishmania genus. The association of Li-BH3AQP with human Bcl-XL was demonstrated by both co-immunoprecipitation and yeast two-hybrid experiments. Ectopic expression of Li-BH3AQP reduced viability of HeLa cells and this deleterious effect was abrogated by the simultaneous overexpression of Bcl-XL. Although we were not able to demonstrate a reduction in parasite viability when the protein was overexpressed in Leishmania promastigotes, a prodeath effect could be observed when the parasites overexpressing Li-BH3AQP were treated with staurosporine or antimycin A. Surprisingly, these parasites were more resistant, compared with wild-type parasites, to hypotonic stress or nutrient deprivation. The prodeath activity was abolished upon replacement of two highly conserved amino acids in this BH3 domain. Taken together, these results point to Li-BH3AQP as the first non-enzymatic protein ever described in trypanosomatids that is involved in cell death.
Collapse
Affiliation(s)
- C M Genes
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - H de Lucio
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - V M González
- Laboratory of aptamers, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - P A Sánchez-Murcia
- Departamento de Ciencias Biomédicas, Universidad de Alcalá, Facultad de Medicina, Alcalá de Henares 28805, Spain
| | - E Rico
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - F Gago
- Departamento de Ciencias Biomédicas, Universidad de Alcalá, Facultad de Medicina, Alcalá de Henares 28805, Spain
| | - N Fasel
- Department of Biochemistry, University of Lausanne, 155 Chemin des Boveresses, Epalinges 1066, Switzerland
| | - A Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares 28805, Spain
- ()
| |
Collapse
|
17
|
Abstract
Mechanisms of cell death in unicellular parasites have been subjects of debate for the last decade, with studies demonstrating evidence of apoptosis or non-apoptosis like mechanisms, including necrosis, and autophagy. Recent clarifications on the definition of regulated or accidental cell death by The Nomenclature Committee on Cell Death provides an opportunity to reanalyze some data, re-evaluate conclusions in the light of parasite diversity, and to propose alternative arguments in the context of malaria drug resistance, considering lack of really new drugs in the pipeline. Deciphering the mechanisms of death may help in detection of new drug targets and the design of innovative drugs. However, classifications have been evolving rapidly since initial description of "programmed cell death", leading to some uncertainty as to whether Plasmodium cell death is accidental or regulated.
Collapse
Affiliation(s)
- Fatimata Sow
- University Claude Bernard Lyon 1, Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-UCBL1, 8 avenue Rockefeller, 69373 Lyon cedex 08, France
| | - Mary Nyonda
- University Claude Bernard Lyon 1, Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-UCBL1, 8 avenue Rockefeller, 69373 Lyon cedex 08, France
| | - Anne-Lise Bienvenu
- University Claude Bernard Lyon 1, Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-UCBL1, 8 avenue Rockefeller, 69373 Lyon cedex 08, France. ; Hospices Civils de Lyon, Institut de Parasitologie et de Mycologie Médicale (IP2M), Hôpital de la Croix-Rousse, 103 grande rue de la Croix-Rousse, 69317 Lyon cedex 04, France
| | - Stephane Picot
- University Claude Bernard Lyon 1, Malaria Research Unit, SMITh, ICBMS, UMR 5246 CNRS-INSA-CPE-UCBL1, 8 avenue Rockefeller, 69373 Lyon cedex 08, France. ; Hospices Civils de Lyon, Institut de Parasitologie et de Mycologie Médicale (IP2M), Hôpital de la Croix-Rousse, 103 grande rue de la Croix-Rousse, 69317 Lyon cedex 04, France
| |
Collapse
|
18
|
Volpato H, Desoti VC, Valdez RH, Ueda-Nakamura T, Silva SDO, Sarragiotto MH, Nakamura CV. Mitochondrial Dysfunction Induced by N-Butyl-1-(4-Dimethylamino)Phenyl-1,2,3,4-Tetrahydro-β-Carboline-3-Carboxamide Is Required for Cell Death of Trypanosoma cruzi. PLoS One 2015; 10:e0130652. [PMID: 26086449 PMCID: PMC4472351 DOI: 10.1371/journal.pone.0130652] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/22/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Chagas' disease is caused by the protozoan Trypanosoma cruzi and affects thousands of people worldwide. The available treatments are unsatisfactory, and new drugs must be developed. Our group recently reported the trypanocidal activity of the synthetic compound N-butyl-1-(4-dimethylamino)phenyl-1,2,3,4-tetrahydro-β-carboline-3-carboxamide (C4), but the mechanism of action of this compound was unclear. METHODOLOGY/PRINCIPAL FINDINGS We investigated the mechanism of action of C4 against epimastigote and trypomastigote forms of T. cruzi. The results showed alterations in mitochondrial membrane potential, alterations in cell membrane integrity, an increase in the formation of reactive oxygen species, phosphatidylserine exposure, a reduction of cell volume, DNA fragmentation, and the formation of lipid inclusions. CONCLUSION/SIGNIFICANCE These finding suggest that mitochondria are a target of C4, the dysfunction of which can lead to different pathways of cell death.
Collapse
Affiliation(s)
- Hélito Volpato
- Programa de Pós-Graduação em Ciências Biológicas—Biologia Celular e Molecular, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Vânia Cristina Desoti
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Paraná, Brazil
| | | | - Tânia Ueda-Nakamura
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Paraná, Brazil
| | - Sueli de Oliveira Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Paraná, Brazil
| | | | - Celso Vataru Nakamura
- Programa de Pós-Graduação em Ciências Biológicas—Biologia Celular e Molecular, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Paraná, Brazil
- * E-mail:
| |
Collapse
|
19
|
Sharma N, Mohanakrishnan D, Sharma UK, Kumar R, Richa, Sinha AK, Sahal D. Design, economical synthesis and antiplasmodial evaluation of vanillin derived allylated chalcones and their marked synergism with artemisinin against chloroquine resistant strains of Plasmodium falciparum. Eur J Med Chem 2014; 79:350-68. [DOI: 10.1016/j.ejmech.2014.03.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
|
20
|
Taylor-Brown E, Hurd H. The first suicides: a legacy inherited by parasitic protozoans from prokaryote ancestors. Parasit Vectors 2013; 6:108. [PMID: 23597031 PMCID: PMC3640913 DOI: 10.1186/1756-3305-6-108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/05/2013] [Indexed: 12/23/2022] Open
Abstract
It is more than 25 years since the first report that a protozoan parasite could die by a process resulting in a morphological phenotype akin to apoptosis. Since then these phenotypes have been observed in many unicellular parasites, including trypanosomatids and apicomplexans, and experimental evidence concerning the molecular pathways that are involved is growing. These observations support the view that this form of programmed cell death is an ancient one that predates the evolution of multicellularity. Here we review various hypotheses that attempt to explain the origin of apoptosis, and look for support for these hypotheses amongst the parasitic protists as, with the exception of yeast, most of the work on death mechanisms in unicellular organisms has focussed on them. We examine the role that addiction modules may have played in the original eukaryote cell and the part played by mitochondria in the execution of present day cells, looking for examples from Leishmania spp. Trypanosoma spp. and Plasmodium spp. In addition, the expanding knowledge of proteases, nucleases and other molecules acting in protist execution pathways has enabled comparisons to be made with extant Archaea and bacteria and with biochemical pathways that evolved in metazoans. These comparisons lend support to the original sin hypothesis but also suggest that present-day death pathways may have had multifaceted beginnings.
Collapse
|
21
|
Eupomatenoid-5 Isolated from Leaves of Piper regnellii Induces Apoptosis in Leishmania amazonensis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:940531. [PMID: 23573160 PMCID: PMC3618946 DOI: 10.1155/2013/940531] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/26/2013] [Indexed: 11/24/2022]
Abstract
Leishmania spp. are protozoa responsible for leishmaniasis, a neglected disease that kills up to 50,000 people every year. Current therapies mainly rely on antimonial drugs that are inadequate because of their poor efficacy and safety and increased drug resistance. An urgent need exists to find new and more affordable drugs. Our previous study demonstrated the antileishmanial activity of eupomatenoid-5, a neolignan obtained from leaves of Piper regnellii var. pallescens. The aim of the present study was to clarify the mode of action of eupomatenoid-5 against L. amazonensis. We used biochemical and morphological techniques and demonstrated that eupomatenoid-5 induced cell death in L. amazonensis promastigotes, sharing some phenotypic features observed in metazoan apoptosis, including increased reactive oxygen species production, hypopolarization of mitochondrial potential, phosphatidylserine exposure, decreased cell volume, and G0/G1 phase cell cycle arrest.
Collapse
|
22
|
Pollitt LC, Churcher TS, Dawes EJ, Khan SM, Sajid M, Basáñez MG, Colegrave N, Reece SE. Costs of crowding for the transmission of malaria parasites. Evol Appl 2013; 6:617-29. [PMID: 23789029 PMCID: PMC3684743 DOI: 10.1111/eva.12048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 12/13/2012] [Accepted: 12/13/2012] [Indexed: 01/03/2023] Open
Abstract
The utility of using evolutionary and ecological frameworks to understand the dynamics of infectious diseases is gaining increasing recognition. However, integrating evolutionary ecology and infectious disease epidemiology is challenging because within-host dynamics can have counterintuitive consequences for between-host transmission, especially for vector-borne parasites. A major obstacle to linking within- and between-host processes is that the drivers of the relationships between the density, virulence, and fitness of parasites are poorly understood. By experimentally manipulating the intensity of rodent malaria (Plasmodium berghei) infections in Anopheles stephensi mosquitoes under different environmental conditions, we show that parasites experience substantial density-dependent fitness costs because crowding reduces both parasite proliferation and vector survival. We then use our data to predict how interactions between parasite density and vector environmental conditions shape within-vector processes and onward disease transmission. Our model predicts that density-dependent processes can have substantial and unexpected effects on the transmission potential of vector-borne disease, which should be considered in the development and evaluation of transmission-blocking interventions.
Collapse
Affiliation(s)
- Laura C Pollitt
- Institute of Evolutionary Biology, University of Edinburgh Edinburgh, UK ; Center for Infectious Disease Dynamics, Pennsylvania State University University Park, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Eickel N, Kaiser G, Prado M, Burda PC, Roelli M, Stanway RR, Heussler VT. Features of autophagic cell death in Plasmodium liver-stage parasites. Autophagy 2013; 9:568-80. [PMID: 23388496 DOI: 10.4161/auto.23689] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Analyzing molecular determinants of Plasmodium parasite cell death is a promising approach for exploring new avenues in the fight against malaria. Three major forms of cell death (apoptosis, necrosis and autophagic cell death) have been described in multicellular organisms but which cell death processes exist in protozoa is still a matter of debate. Here we suggest that all three types of cell death occur in Plasmodium liver-stage parasites. Whereas typical molecular markers for apoptosis and necrosis have not been found in the genome of Plasmodium parasites, we identified genes coding for putative autophagy-marker proteins and thus concentrated on autophagic cell death. We characterized the Plasmodium berghei homolog of the prominent autophagy marker protein Atg8/LC3 and found that it localized to the apicoplast. A relocalization of PbAtg8 to autophagosome-like vesicles or vacuoles that appear in dying parasites was not, however, observed. This strongly suggests that the function of this protein in liver-stage parasites is restricted to apicoplast biology.
Collapse
Affiliation(s)
- Nina Eickel
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
24
|
Turturice BA, Lamm MA, Tasch JJ, Zalewski A, Kooistra R, Schroeter EH, Sharma S, Kawazu SI, Kanzok SM. Expression of cytosolic peroxiredoxins in Plasmodium berghei ookinetes is regulated by environmental factors in the mosquito bloodmeal. PLoS Pathog 2013; 9:e1003136. [PMID: 23382676 PMCID: PMC3561267 DOI: 10.1371/journal.ppat.1003136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
Abstract
The Plasmodium ookinete develops over several hours in the bloodmeal of its mosquito vector where it is exposed to exogenous stresses, including cytotoxic reactive oxygen species (ROS). How the parasite adapts to these challenging conditions is not well understood. We have systematically investigated the expression of three cytosolic antioxidant proteins, thioredoxin-1 (Trx-1), peroxiredoxin-1 (TPx-1), and 1-Cys peroxiredoxin (1-Cys Prx), in developing ookinetes of the rodent parasite Plasmodium berghei under various growth conditions. Transcriptional profiling showed that tpx-1 and 1-cys prx but not trx-1 are more strongly upregulated in ookinetes developing in the mosquito bloodmeal when compared to ookinetes growing under culture conditions. Confocal immunofluorescence imaging revealed comparable expression patterns on the corresponding proteins. 1-Cys Prx in particular exhibited strong expression in mosquito-derived ookinetes but was not detectable in cultured ookinetes. Furthermore, ookinetes growing in culture upregulated tpx-1 and 1-cys prx when challenged with exogenous ROS in a dose-dependent fashion. This suggests that environmental factors in the mosquito bloodmeal induce upregulation of cytosolic antioxidant proteins in Plasmodium ookinetes. We found that in a parasite line lacking TPx-1 (TPx-1KO), expression of 1-Cys Prx occurred significantly earlier in mosquito-derived TPx-1KO ookinetes when compared to wild type (WT) ookinetes. The protein was also readily detectable in cultured TPx-1KO ookinetes, indicating that 1-Cys Prx at least in part compensates for the loss of TPx-1 in vivo. We hypothesize that this dynamic expression of the cytosolic peroxiredoxins reflects the capacity of the developing Plasmodium ookinete to rapidly adapt to the changing conditions in the mosquito bloodmeal. This would significantly increase its chances of survival, maturation and subsequent escape. Our results also emphasize that environmental conditions must be taken into account when investigating Plasmodium-mosquito interactions. The malaria parasite Plasmodium is transmitted by Anopheles mosquitoes. Within the midgut of the insect, it is exposed to multiple environmental stresses, including cytotoxic reactive oxygen species (ROS). To avoid destruction, the parasite develops into a motile ookinete capable of leaving the midgut. Yet, ookinete development lasts over several hours and requires the parasite to adapt to an increasingly challenging environment. Here we show that ookinetes of the rodent parasite Plasmodium berghei during development in the mosquito midgut increase the expression of the protective antioxidant proteins peroxiredoxin-1 (TPx-1) and 1-Cys peroxiredoxin (1-Cys Prx). This upregulation was also inducible in cultured ookinetes by challenging them with ROS. This suggests that ookinetes actively modulate the expression of their antioxidant proteins in response to the changing conditions in the mosquito. We also found that ookinetes lacking TPx-1 (TPx-1KO) upregulated 1-Cys Prx expression significantly earlier than wild type ookinetes. This indicates that the TPx-1KO parasites compensate for the loss of TPx-1 by altering the expression pattern of the functionally related 1-Cys Prx. The observed dynamic regulation of the cytosolic antioxidant proteins may help the Plasmodium ookinete to adapt to rapidly changing environmental conditions and thus to increase the probability of survival, maturation and escape from the mosquito midgut.
Collapse
Affiliation(s)
- Benjamin A. Turturice
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Michael A. Lamm
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - James J. Tasch
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Angelika Zalewski
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Rachel Kooistra
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Eric H. Schroeter
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Sapna Sharma
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Shin-Ichiro Kawazu
- Obihiro University of Agriculture and Veterinarian Medicine, National Research Center for Protozoan Diseases, Obihiro, Hokkaido, Japan
| | - Stefan M. Kanzok
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
25
|
Chen WJ, Huang CG, Fan-Chiang MH, Liu YH, Lee YF. Apoptosis of Ascogregarina taiwanensis (Apicomplexa: Lecudinidae), which failed to migrate within its natural host. J Exp Biol 2013; 216:230-5. [PMID: 22996442 DOI: 10.1242/jeb.072918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sexual reproduction of Ascogregarina taiwanensis (Apicomplexa: Lecudinidae), a parasite specific to the mosquito Aedes albopictus, in Malpighian tubules is initiated by the entry of the trophotozoites developed in the midgut shortly after pupation (usually <5 h). However, only a low proportion of trophozoites are able to migrate; others end up dying. In this study, we demonstrated that those trophozoites that failed to migrate eventually died of apoptosis. Morphological changes such as shrinkage, chromatin aggregations and formation of blunt ridges on the surface were seen in moribund trophozoites. In addition, DNA fragmentation of trophozoites isolated from the midgut of pupae was demonstrated by the presence of DNA ladders, Annexin V staining and TUNEL assays. Detection of caspase-like activity suggests that apoptosis of those trophozoites may have occurred through a mechanism of an intrinsic or mitochondrial-mediated pathway. Although apoptosis has been observed in various protozoan species, it is not clear how apoptosis in single-celled organisms might result from evolution by natural selection. However, we speculate that apoptosis may regulate the parasite load of A. taiwanensis within its natural mosquito host, leading to an optimized state of the survival rate for both parasite and host.
Collapse
Affiliation(s)
- Wei-June Chen
- Department of Public Health and Parasitology, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan.
| | | | | | | | | |
Collapse
|
26
|
Ramsdale M. Programmed cell death in the cellular differentiation of microbial eukaryotes. Curr Opin Microbiol 2012; 15:646-52. [DOI: 10.1016/j.mib.2012.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/21/2012] [Accepted: 09/25/2012] [Indexed: 01/22/2023]
|
27
|
Matthews H, Ali M, Carter V, Underhill A, Hunt J, Szor H, Hurd H. Variation in apoptosis mechanisms employed by malaria parasites: the roles of inducers, dose dependence and parasite stages. Malar J 2012; 11:297. [PMID: 22929459 PMCID: PMC3489549 DOI: 10.1186/1475-2875-11-297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/24/2012] [Indexed: 12/14/2022] Open
Abstract
Background Plasmodium berghei ookinetes exhibit an apoptotic phenotype when developing within the mosquito midgut lumen or when cultured in vitro. Markers of apoptosis increase when they are exposed to nitric oxide or reactive oxygen species but high concentrations of hydrogen peroxide cause death without observable signs of apoptosis. Chloroquine and other drugs have been used to induce apoptosis in erythrocytic stages of Plasmodium falciparum and to formulate a putative pathway involving cysteine protease activation and mitochondrial membrane permeabilization; initiated, at least in the case of chloroquine, after its accumulation in the digestive vacuole causes leakage of the vacuole contents. The lack of a digestive vacuole in ookinetes prompted the investigation of the effect of chloroquine and staurosporine on this stage of the life cycle. Finally, the suggestion that apoptosis may have evolved as a strategy employed by ookinetes to increase the fitness of surviving parasites was explored by determining whether increasing the ecological triggers parasite density and nutrient depletion induced apoptosis. Methods Ookinetes were grown in culture then either exposed to hydrogen peroxide, chloroquine or staurosporine, or incubated at different densities and in different media. The proportion of ookinetes displaying positive markers for apoptosis in treated samples was compared with controls and results were analyzed using analysis of variance followed by a Turkey’s test, or a Kruskal-Wallis test as appropriate. Results Hydrogen peroxide below 50 μM triggered apoptosis but cell membranes were rapidly compromised by higher concentrations, and the mode of death could not be defined. Both chloroquine and staurosporine cause a significant increase in ookinetes with condensed chromatin, caspase-like activity and, in the case of chloroquine, phosphatidylserine translocation and DNA fragmentation (not investigated for staurosporine). However, mitochondrial membrane potential remained intact. No relationship between ookinete density and apoptosis was detected but nutrient depletion significantly increased the proportion of ookinetes with chromatin condensation in four hours. Conclusions It is proposed that both a mitochondrial and an amitochondrial apoptotic pathway may be involved, dependent upon the trigger that induces apoptosis, and that pathways may differ between erythrocytic stages and ookinetes, or between rodent and human malaria parasites.
Collapse
Affiliation(s)
- Holly Matthews
- Centre for Applied Entomology and Parasitology, Institute for Science and Technology in Medicine, School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | | | | | | | | | | | | |
Collapse
|
28
|
Ch'ng JH, Renia L, Nosten F, Tan KSW. Can we teach an old drug new tricks? Trends Parasitol 2012; 28:220-4. [PMID: 22445323 DOI: 10.1016/j.pt.2012.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 11/19/2022]
Abstract
Although resistance to chloroquine (CQ) has relegated it from modern chemotherapeutic strategies to treat Plasmodium falciparum malaria, new evidence suggests that higher doses of the drug may exert a different killing mechanism and offers this drug a new lease of life. Whereas the established antimalarial mechanisms of CQ are usually associated with nanomolar levels of the drug, micromolar levels of CQ trigger a distinct cell death pathway involving the permeabilization of the digestive vacuole of the parasite and a release of hydrolytic enzymes. In this paper, we propose that this pathway is a promising antimalarial strategy and suggest that revising the CQ treatment regimen may elevate blood drug levels to trigger this pathway without increasing the incidence of adverse reactions.
Collapse
Affiliation(s)
- Jun-Hong Ch'ng
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | | | | | | |
Collapse
|
29
|
On Programmed Cell Death in Plasmodium falciparum: Status Quo. J Trop Med 2012; 2012:646534. [PMID: 22287973 PMCID: PMC3263642 DOI: 10.1155/2012/646534] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 09/16/2011] [Indexed: 11/25/2022] Open
Abstract
Conflicting arguments and results exist regarding the occurrence and phenotype of programmed cell death (PCD) in the malaria parasite Plasmodium falciparum. Inconsistencies relate mainly to the number and type of PCD markers assessed and the different methodologies used in the studies. In this paper, we provide a comprehensive overview of the current state of knowledge and empirical evidence for PCD in the intraerythrocytic stages of P. falciparum. We consider possible reasons for discrepancies in the data and offer suggestions towards more standardised investigation methods in this field. Furthermore, we present genomic evidence for PCD machinery in P. falciparum. We discuss the potential adaptive or nonadaptive role of PCD in the parasite life cycle and its possible exploitation in the development of novel drug targets. Lastly, we pose pertinent unanswered questions concerning the PCD phenomenon in P. falciparum to provide future direction.
Collapse
|
30
|
Reece SE, Pollitt LC, Colegrave N, Gardner A. The meaning of death: evolution and ecology of apoptosis in protozoan parasites. PLoS Pathog 2011; 7:e1002320. [PMID: 22174671 PMCID: PMC3234211 DOI: 10.1371/journal.ppat.1002320] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The discovery that an apoptosis-like, programmed cell death (PCD) occurs in a broad range of protozoan parasites offers novel therapeutic tools to treat some of the most serious infectious diseases of humans, companion animals, wildlife, and livestock. Whilst apoptosis is an essential part of normal development, maintenance, and defence in multicellular organisms, its occurrence in unicellular parasites appears counter-intuitive and has proved highly controversial: according to the Darwinian notion of “survival of the fittest”, parasites are expected to evolve strategies to maximise their proliferation, not death. The prevailing, and untested, opinion in the literature is that parasites employ apoptosis to “altruistically” self-regulate the intensity of infection in the host/vector. However, evolutionary theory tells us that at most, this can only be part of the explanation, and other non-mutually exclusive hypotheses must also be tested. Here, we explain the evolutionary concepts that can explain apoptosis in unicellular parasites, highlight the key questions, and outline the approaches required to resolve the controversy over whether parasites “commit suicide”. We highlight the need for integration of proximate and functional approaches into an evolutionary framework to understand apoptosis in unicellular parasites. Understanding how, when, and why parasites employ apoptosis is central to targeting this process with interventions that are sustainable in the face of parasite evolution.
Collapse
Affiliation(s)
- Sarah E Reece
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|
31
|
Sharma N, Mohanakrishnan D, Shard A, Sharma A, Saima, Sinha AK, Sahal D. Stilbene-chalcone hybrids: design, synthesis, and evaluation as a new class of antimalarial scaffolds that trigger cell death through stage specific apoptosis. J Med Chem 2011; 55:297-311. [PMID: 22098429 DOI: 10.1021/jm201216y] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Novel stilbene-chalcone (S-C) hybrids were synthesized via a sequential Claisen-Schmidt-Knoevenagel-Heck approach and evaluated for antiplasmodial activity in in vitro red cell culture using SYBR Green I assay. The most potent hybrid (11) showed IC(50) of 2.2, 1.4, and 6.4 μM against 3D7 (chloroquine sensitive), Indo, and Dd2 (chloroquine resistant) strains of Plasmodium falciparum, respectively. Interestingly, the respective individual stilbene (IC(50) > 100 μM), chalcone (IC(50) = 11.5 μM), or an equimolar mixture of stilbene and chalcone (IC(50) = 32.5 μM) were less potent than 11. Studies done using specific stage enriched cultures and parasite in continuous culture indicate that 11 and 18 spare the schizont but block the progression of the parasite life cycle at the ring or the trophozoite stages. Further, 11 and 18 caused chromatin condensation, DNA fragmentation, and loss of mitochondrial membrane potential in Plasmodium falciparum, thereby suggesting their ability to cause apoptosis in malaria parasite.
Collapse
Affiliation(s)
- Naina Sharma
- Natural Plant Products Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur (H.P.) 176061, India
| | | | | | | | | | | | | |
Collapse
|
32
|
Meslin B, Beavogui AH, Fasel N, Picot S. Plasmodium falciparum metacaspase PfMCA-1 triggers a z-VAD-fmk inhibitable protease to promote cell death. PLoS One 2011; 6:e23867. [PMID: 21858231 PMCID: PMC3157471 DOI: 10.1371/journal.pone.0023867] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 07/27/2011] [Indexed: 12/11/2022] Open
Abstract
Activation of proteolytic cell death pathways may circumvent drug resistance in deadly protozoan parasites such as Plasmodium falciparum and Leishmania. To this end, it is important to define the cell death pathway(s) in parasites and thus characterize proteases such as metacaspases (MCA), which have been reported to induce cell death in plants and Leishmania parasites. We, therefore, investigated whether the cell death function of MCA is conserved in different protozoan parasite species such as Plasmodium falciparum and Leishmania major, focusing on the substrate specificity and functional role in cell survival as compared to Saccharomyces cerevisae. Our results show that, similarly to Leishmania, Plasmodium MCA exhibits a calcium-dependent, arginine-specific protease activity and its expression in yeast induced growth inhibition as well as an 82% increase in cell death under oxidative stress, a situation encountered by parasites during the host or when exposed to drugs such as artemisins. Furthermore, we show that MCA cell death pathways in both Plasmodium and Leishmania, involve a z-VAD-fmk inhibitable protease. Our data provide evidence that MCA from both Leishmania and Plasmodium falciparum is able to induce cell death in stress conditions, where it specifically activates a downstream enzyme as part of a cell death pathway. This enzymatic activity is also induced by the antimalarial drug chloroquine in erythrocytic stages of Plasmodium falciparum. Interestingly, we found that blocking parasite cell death influences their drug sensitivity, a result which could be used to create therapeutic strategies that by-pass drug resistance mechanisms by acting directly on the innate pathways of protozoan cell death.
Collapse
Affiliation(s)
- Benoît Meslin
- Malaria Research Unit, ICBMS UMR 5246 CNRS-UCBL1-INSA, Lyon, France
| | | | | | | |
Collapse
|
33
|
Kaczanowski S, Sajid M, Reece SE. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites. Parasit Vectors 2011; 4:44. [PMID: 21439063 PMCID: PMC3077326 DOI: 10.1186/1756-3305-4-44] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/25/2011] [Indexed: 11/10/2022] Open
Abstract
Apoptosis-like programmed cell death (PCD) has recently been described in multiple taxa of unicellular protists, including the protozoan parasites Plasmodium, Trypanosoma and Leishmania. Apoptosis-like PCD in protozoan parasites shares a number of morphological features with programmed cell death in multicellular organisms. However, both the evolutionary explanations and mechanisms involved in parasite PCD are poorly understood. Explaining why unicellular organisms appear to undergo 'suicide' is a challenge for evolutionary biology and uncovering death executors and pathways is a challenge for molecular and cell biology. Bioinformatics has the potential to integrate these approaches by revealing homologies in the PCD machinery of diverse taxa and evaluating their evolutionary trajectories. As the molecular mechanisms of apoptosis in model organisms are well characterised, and recent data suggest similar mechanisms operate in protozoan parasites, key questions can now be addressed. These questions include: which elements of apoptosis machinery appear to be shared between protozoan parasites and multicellular taxa and, have these mechanisms arisen through convergent or divergent evolution? We use bioinformatics to address these questions and our analyses suggest that apoptosis mechanisms in protozoan parasites and other taxa have diverged during their evolution, that some apoptosis factors are shared across taxa whilst others have been replaced by proteins with similar biochemical activities.
Collapse
Affiliation(s)
- Szymon Kaczanowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa Pawinskiego 5A 02-106, Poland.
| | | | | |
Collapse
|
34
|
Lüder CG, Campos-Salinas J, Gonzalez-Rey E, van Zandbergen G. Impact of protozoan cell death on parasite-host interactions and pathogenesis. Parasit Vectors 2010; 3:116. [PMID: 21126352 PMCID: PMC3003647 DOI: 10.1186/1756-3305-3-116] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 12/02/2010] [Indexed: 12/18/2022] Open
Abstract
PCD in protozoan parasites has emerged as a fascinating field of parasite biology. This not only relates to the underlying mechanisms and their evolutionary implications but also to the impact on the parasite-host interactions within mammalian hosts and arthropod vectors. During recent years, common functions of apoptosis and autophagy in protozoa and during parasitic infections have emerged. Here, we review how distinct cell death pathways in Trypanosoma, Leishmania, Plasmodium or Toxoplasma may contribute to regulation of parasite cell densities in vectors and mammalian hosts, to differentiation of parasites, to stress responses, and to modulation of the host immunity. The examples provided indicate crucial roles of PCD in parasite biology. The existence of PCD pathways in these organisms and the identification as being critical for parasite biology and parasite-host interactions could serve as a basis for developing new anti-parasitic drugs that take advantage of these pathways.
Collapse
Affiliation(s)
- Carsten Gk Lüder
- Institute for Medical Microbiology, Georg-August-University, Kreuzbergring 57, 37075 Göttingen, Germany.
| | | | | | | |
Collapse
|
35
|
Pollitt LC, Colegrave N, Khan SM, Sajid M, Reece SE. Investigating the evolution of apoptosis in malaria parasites: the importance of ecology. Parasit Vectors 2010; 3:105. [PMID: 21080937 PMCID: PMC3136143 DOI: 10.1186/1756-3305-3-105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/16/2010] [Indexed: 11/16/2022] Open
Abstract
Apoptosis is a precisely regulated process of cell death which occurs widely in multicellular organisms and is essential for normal development and immune defences. In recent years, interest has grown in the occurrence of apoptosis in unicellular organisms. In particular, as apoptosis has been reported in a wide range of species, including protozoan malaria parasites and trypanosomes, it may provide a novel target for intervention. However, it is important to understand when and why parasites employ an apoptosis strategy before the likely long- and short-term success of such an intervention can be evaluated. The occurrence of apoptosis in unicellular parasites provides a challenge for evolutionary theory to explain as organisms are expected to have evolved to maximise their own proliferation, not death. One possible explanation is that protozoan parasites undergo apoptosis in order to gain a group benefit from controlling their density as this prevents premature vector mortality. However, experimental manipulations to examine the ultimate causes behind apoptosis in parasites are lacking. In this review, we focus on malaria parasites to outline how an evolutionary framework can help make predictions about the ecological circumstances under which apoptosis could evolve. We then highlight the ecological considerations that should be taken into account when designing evolutionary experiments involving markers of cell death, and we call for collaboration between researchers in different fields to identify and develop appropriate markers in reference to parasite ecology and to resolve debates on terminology.
Collapse
Affiliation(s)
- Laura C Pollitt
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, School of Biological Sciences, Edinburgh, EH9 3JT, UK
| | - Nick Colegrave
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, School of Biological Sciences, Edinburgh, EH9 3JT, UK
| | - Shahid M Khan
- Leiden Malaria Research group, Department of Parasitology, Leiden University Medical Center, The Netherlands
| | - Mohammed Sajid
- Leiden Malaria Research group, Department of Parasitology, Leiden University Medical Center, The Netherlands
| | - Sarah E Reece
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, School of Biological Sciences, Edinburgh, EH9 3JT, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, School of Biological Sciences, Edinburgh, EH9 3JT, UK
| |
Collapse
|
36
|
Jiménez-Ruiz A, Alzate JF, Macleod ET, Lüder CGK, Fasel N, Hurd H. Apoptotic markers in protozoan parasites. Parasit Vectors 2010; 3:104. [PMID: 21062457 PMCID: PMC2993696 DOI: 10.1186/1756-3305-3-104] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 11/09/2010] [Indexed: 12/25/2022] Open
Abstract
The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.
Collapse
Affiliation(s)
- Antonio Jiménez-Ruiz
- Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
37
|
Ali M, Al-Olayan EM, Lewis S, Matthews H, Hurd H. Naturally occurring triggers that induce apoptosis-like programmed cell death in Plasmodium berghei ookinetes. PLoS One 2010; 5. [PMID: 20844583 PMCID: PMC2936559 DOI: 10.1371/journal.pone.0012634] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 08/10/2010] [Indexed: 01/01/2023] Open
Abstract
Several protozoan parasites have been shown to undergo a form of programmed cell death that exhibits morphological features associated with metazoan apoptosis. These include the rodent malaria parasite, Plasmodium berghei. Malaria zygotes develop in the mosquito midgut lumen, forming motile ookinetes. Up to 50% of these exhibit phenotypic markers of apoptosis; as do those grown in culture. We hypothesised that naturally occurring signals induce many ookinetes to undergo apoptosis before midgut traversal. To determine whether nitric oxide and reactive oxygen species act as such triggers, ookinetes were cultured with donors of these molecules. Exposure to the nitric oxide donor SNP induced a significant increase in ookinetes with condensed nuclear chromatin, activated caspase-like molecules and translocation of phosphatidylserine that was dose and time related. Results from an assay that detects the potential-dependent accumulation of aggregates of JC-1 in mitochondria suggested that nitric oxide does not operate via loss of mitochondrial membrane potential. L-DOPA (reactive oxygen species donor) also caused apoptosis in a dose and time dependent manner. Removal of white blood cells significantly decreased ookinetes exhibiting a marker of apoptosis in vitro. Inhibition of the activity of nitric oxide synthase in the mosquito midgut epithelium using L-NAME significantly decreased the proportion of apoptotic ookinetes and increased the number of oocysts that developed. Introduction of a nitric oxide donor into the blood meal had no effect on mosquito longevity but did reduce prevalence and intensity of infection. Thus, nitric oxide and reactive oxygen species are triggers of apoptosis in Plasmodium ookinetes. They occur naturally in the mosquito midgut lumen, sourced from infected blood and mosquito tissue. Up regulation of mosquito nitric oxide synthase activity has potential as a transmission blocking strategy.
Collapse
Affiliation(s)
- Medhat Ali
- School of Life Sciences, Keele University, Keele, United Kingdom
- Department of Zoology, Ain Shams University, Cairo, Egypt
| | - Ebtesam M. Al-Olayan
- School of Life Sciences, Keele University, Keele, United Kingdom
- Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Steven Lewis
- School of Life Sciences, Keele University, Keele, United Kingdom
| | - Holly Matthews
- School of Life Sciences, Keele University, Keele, United Kingdom
| | - Hilary Hurd
- School of Life Sciences, Keele University, Keele, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Monte Neto RL, Sousa LMA, Dias CS, Barbosa Filho JM, Oliveira MR, Figueiredo RCBQ. Morphological and physiological changes in Leishmania promastigotes induced by yangambin, a lignan obtained from Ocotea duckei. Exp Parasitol 2010; 127:215-21. [PMID: 20691682 DOI: 10.1016/j.exppara.2010.07.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 07/13/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
Abstract
We have previously demonstrated that yangambin, a lignan obtained from Ocotea duckei Vattimo (Lauraceae), shows antileishmanial activity against promastigote forms of Leishmania chagasi and Leishmania amazonensis. The aim of this study was to determine the in vitro effects of yangambin against these parasites using electron and confocal microscopy. L. chagasi and L. amazonensis promastigotes were incubated respectively with 50 μg/mL and 65 μg/mL of pure yangambin and stained with acridine orange. Treated-parasites showed significant alterations in fluorescence emission pattern and cell morphology when compared with control cells, including the appearance of abnormal round-shaped cells, loss of cell motility, nuclear pyknosis, cytoplasm acidification and increased number of acidic vesicular organelles (AVOs), suggesting important physiological changes. Ultrastructural analysis of treated-promatigotes showed characteristics of cell death by apoptosis as well as by autophagy. The presence of parasites exhibiting multiples nuclei suggests that yangambin may also affect the microtubule dynamic in both Leishmania species. Taken together our results show that yangambin is a promising agent against Leishmania.
Collapse
Affiliation(s)
- Rubens L Monte Neto
- Laboratório de Tecnologia Farmacêutica, Universidade Federal da Paraíba, 58051-970 João Pessoa, Paraíba, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:341-53. [DOI: 10.1016/j.cbpb.2010.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 01/19/2010] [Accepted: 01/23/2010] [Indexed: 11/18/2022]
|