1
|
Al-Naseri A, Al-Absi S, El Ridi R, Mahana N. A comprehensive and critical overview of schistosomiasis vaccine candidates. J Parasit Dis 2021; 45:557-580. [PMID: 33935395 PMCID: PMC8068781 DOI: 10.1007/s12639-021-01387-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
A digenetic platyhelminth Schistosoma is the causative agent of schistosomiasis, one of the neglected tropical diseases that affect humans and animals in numerous countries in the Middle East, sub-Saharan Africa, South America and China. Several control methods were used for prevention of infection or treatment of acute and chronic disease. Mass drug administration led to reduction in heavy-intensity infections and morbidity, but failed to decrease schistosomiasis prevalence and eliminate transmission, indicating the need to develop anti-schistosome vaccine to prevent infection and parasite transmission. This review summarizes the efficacy and protective capacity of available schistosomiasis vaccine candidates with some insights and future prospects.
Collapse
Affiliation(s)
- Aya Al-Naseri
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Samar Al-Absi
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Rashika El Ridi
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| | - Noha Mahana
- Zoology Department, Faculty of Science, Cairo Univesity, Giza, 12613 Egypt
| |
Collapse
|
2
|
Duan MM, Xu RM, Yuan CX, Li YY, Liu Q, Cheng GF, Lin JJ, Feng XG. SjHSP70, a recombinant Schistosoma japonicum heat shock protein 70, is immunostimulatory and induces protective immunity against cercarial challenge in mice. Parasitol Res 2015; 114:3415-29. [PMID: 26091761 DOI: 10.1007/s00436-015-4567-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022]
Abstract
High levels of protective immunity can be induced in different animals immunized with radiation-attenuated (RA) Schistosoma cercariae or schistosomula. However, the schistosome-derived molecules responsible for the strong protective effect elicited by RA schistosome larvae have not been identified or characterized. The 70-kDa heat shock proteins of schistosomes are considered major immunogens, and may play an important role in stimulating high levels of innate and adaptive immune responses in an RA schistosome vaccine model. Here, we demonstrate the immunobiological functions of Schistosoma japonicum heat shock protein 70 (SjHSP70) by investigating its expression profile in RA-schistosomula-derived cells, evaluating the protection induced by recombinant SjHSP70 (rSjHSP70) against cercarial challenge, and assaying the humoral and cellular immune responses to rSjHSP70 in BALB/c and C57BL/6 mice. The expression of SjHSP70 on the surfaces of cells from RA or normal schistosomula was determined with flow cytometry. Its expression was significantly higher on early RA schistosomula cells than on the cells from normal parasites. The protection afforded both BALB/c and C57BL/6 mice vaccinated with rSjHSP70 alone, rSj22.6 (a membrane-anchoring protein of S. japonicum) alone, or a combination of rSj22.6 and rSjHSP70 without adjuvant was evaluated. rSjHSP70 alone induced the highest protective effect against S. japonicum cercarial challenge, followed by the rSj22.6 plus rSjHSP70 combination and then rSj22.6 alone, in both mouse strains. Like ISA206 adjuvant, rSjHSP70 enhanced the protective efficacy induced by rSj22.6 in the C57BL/6 mouse strain. Antigen-specific IgG1 and IgG2a responses were detected with enzyme-linked immunosorbent assays in mice immunized with rSjHSP70 alone, rSj22.6 alone, or the rSj22.6 plus rSjHSP70 combination. Immunization with rSjHSP70 or the rSj22.6 plus rSjHSP70 combination induced mixed Th1/Th2-type antibody responses in BALB/c mice and a Th2-type antibody response in C57BL/6 mice. The profiles of cytokine production by splenic lymphocytes in both strains of mice immunized with the antigens described above were detected in vitro using a Cytometric Bead Array. The profiles of the proinflammatory cytokines interferon γ, tumor necrosis factor α, interleukin 6 (IL-6), and IL-17A and the regulatory cytokine IL-10 induced by the rSj22.6 plus rSjHSP70 combination were similar to those induced by rSj22.6 emulsified with the ISA206 adjuvant control. Like the ISA206 adjuvant, rSjHSP70 protein enhanced the proinflammatory and Th2-type or regulatory cytokine production induced by the rSj22.6 antigen. These results indicate that SjHSP70 is exposed on the surfaces of cells from RA schistosomula, and that rSjHSP70 protein is a promising protective antigen with a potential adjuvant function. Thus, SjHSP70 protein might play a key role in the protective immunity elicited by the RA schistosome vaccine.
Collapse
Affiliation(s)
- Ming Ming Duan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, 200241, China
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Arce-Fonseca M, Rios-Castro M, Carrillo-Sánchez SDC, Martínez-Cruz M, Rodríguez-Morales O. Prophylactic and therapeutic DNA vaccines against Chagas disease. Parasit Vectors 2015; 8:121. [PMID: 25885641 PMCID: PMC4343048 DOI: 10.1186/s13071-015-0738-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/13/2015] [Indexed: 12/26/2022] Open
Abstract
Chagas disease is a zoonosis caused by Trypanosoma cruzi in which the most affected organ is the heart. Conventional chemotherapy has a very low effectiveness; despite recent efforts, there is currently no better or more effective treatment available. DNA vaccines provide a new alternative for both prevention and treatment of a variety of infectious disorders, including Chagas disease. Recombinant DNA technology has allowed some vaccines to be developed using recombinant proteins or virus-like particles capable of inducing both a humoral and cellular specific immune response. This type of immunization has been successfully used in preclinical studies and there are diverse models for viral, bacterial and/or parasitic diseases, allergies, tumors and other diseases. Therefore, several research groups have been given the task of designing a DNA vaccine against experimental infection with T. cruzi. In this review we explain what DNA vaccines are and the most recent studies that have been done to develop them with prophylactic or therapeutic purposes against Chagas disease.
Collapse
Affiliation(s)
- Minerva Arce-Fonseca
- Department of Molecular Biology, Laboratory of Molecular Immunology and Proteomics. Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, C.P. 14080, Mexico City, Mexico.
| | - Martha Rios-Castro
- Department of Molecular Biology, Laboratory of Molecular Immunology and Proteomics. Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, C.P. 14080, Mexico City, Mexico.
| | - Silvia del Carmen Carrillo-Sánchez
- Department of Molecular Biology, Laboratory of Molecular Immunology and Proteomics. Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, C.P. 14080, Mexico City, Mexico.
| | - Mariana Martínez-Cruz
- Department of Molecular Biology, Laboratory of Molecular Immunology and Proteomics. Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, C.P. 14080, Mexico City, Mexico.
| | - Olivia Rodríguez-Morales
- Department of Molecular Biology, Laboratory of Molecular Immunology and Proteomics. Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, C.P. 14080, Mexico City, Mexico.
| |
Collapse
|
4
|
Schussek S, Trieu A, Doolan DL. Genome- and proteome-wide screening strategies for antigen discovery and immunogen design. Biotechnol Adv 2014; 32:403-14. [DOI: 10.1016/j.biotechadv.2013.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/04/2013] [Accepted: 12/16/2013] [Indexed: 01/17/2023]
|
5
|
Wang X, Dong L, Ni H, Zhou S, Xu Z, Hoellwarth JS, Chen X, Zhang R, Chen Q, Liu F, Wang J, Su C. Combined TLR7/8 and TLR9 ligands potentiate the activity of a Schistosoma japonicum DNA vaccine. PLoS Negl Trop Dis 2013; 7:e2164. [PMID: 23593527 PMCID: PMC3617091 DOI: 10.1371/journal.pntd.0002164] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/01/2013] [Indexed: 01/07/2023] Open
Abstract
Background Toll-like receptor (TLR) ligands have been explored as vaccine adjuvants for tumor and virus immunotherapy, but few TLR ligands affecting schistosoma vaccines have been characterized. Previously, we developed a partially protective DNA vaccine encoding the 26-kDa glutathione S-transferase of Schistosoma japonicum (pVAX1-Sj26GST). Methodology/Principal Findings In this study, we evaluated a TLR7/8 ligand (R848) and a TLR9 ligand (CpG oligodeoxynucleotides, or CpG) as adjuvants for pVAX1-Sj26GST and assessed their effects on the immune system and protection against S. japonicum. We show that combining CpG and R848 with pVAX1-Sj26GST immunization significantly increases splenocyte proliferation and IgG and IgG2a levels, decreases CD4+CD25+Foxp3+ regulatory T cells (Treg) frequency in vivo, and enhances protection against S. japonicum. CpG and R848 inhibited Treg-mediated immunosuppression, upregulated the production of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-10, IL-2, and IL-6, and decreased Foxp3 expression in vitro, which may contribute to prevent Treg suppression and conversion during vaccination and allow expansion of antigen-specific T cells against pathogens. Conclusions Our data shows that selective TLR ligands can increase the protective efficacy of DNA vaccines against schistosomiasis, potentially through combined antagonism of Treg-mediated immunosuppression and conversion. There is evidence that TLR activation can block Treg cell responses and thereby break tolerance to self-antigens. It is expected that the use of TLR ligands as vaccine adjuvants will induce potent anti-pathogen immune responses and simultaneously overcome immune inhibition mediated by Tregs. However, the impact of TLR ligands on schistosomiasis vaccines is unclear. Here, we demonstrate that the use of a TLR7/8 ligand (R848) and a TLR9 ligand (CpG) as adjuvants in combination with the S. japonicum vaccine pVAX1-Sj26GST improves disease protection. The combination of CpG and R848 administered after vaccination causes an immune response marked by an upregulation of splenocyte proliferation and IgG and IgG2a levels that also coincides with a decreased proportion of CD4+CD25+ Tregs in mice. We also show that combined adjuvant use of CpG and R848 may impair Treg development and function by promoting the secretion of proinflammatory cytokines and reducing Foxp3 expression. Our findings suggest that in combination with the vaccine, TLR ligands may protect the effector response from Treg-mediated suppression, thereby eliciting the appropriate immune response to improve vaccine efficacy. Immunization combined with the TLR ligands CpG and R848 thus represents a promising new approach for the design of schistosoma vaccines.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Central Laboratory, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dakshinamoorthy G, Samykutty AK, Munirathinam G, Reddy MV, Kalyanasundaram R. Multivalent fusion protein vaccine for lymphatic filariasis. Vaccine 2012; 31:1616-22. [PMID: 23036503 DOI: 10.1016/j.vaccine.2012.09.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 09/17/2012] [Accepted: 09/22/2012] [Indexed: 11/27/2022]
Abstract
Lymphatic filariasis affects approximately 3% of the whole world population. Mass drug administration is currently the major control strategy to eradicate this infection from endemic regions by year 2020. Combination drug treatments are highly efficient in controlling the infection. However, there are no effective vaccines available for human or animal lymphatic filariasis despite the identification of several subunit vaccines. Lymphatic filariasis parasites are multicellular organisms and potentially use multiple mechanisms to survive in the host. Therefore, there is a need to combine two or more vaccine candidate antigens to achieve the desired effect. In this study we combined three well characterized vaccine antigens of Brugia malayi, heat shock protein 12.6 (HSP12.6), Abundant Larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL) as a multivalent fusion vaccine. Putative immune individuals carry circulating antibodies against all three antigens. Depletion of these antigen specific antibodies from the sera samples removed the ability of the sera to participate in the killing of B. malayi L3 in an antibody dependent cellular cytotoxicity (ADCC) mechanism. Vaccination trials in mice with a bivalent [HSP12.6+ALT-2 (HA), HSP12.6+TSP-LEL (HT) or TSP-LEL+ALT-2 (TA)] or trivalent [HSP12.6+ALT-2+TSP-LEL (HAT)] vaccines using DNA, protein or heterologous prime boost regimen showed that trivalent HAT vaccine either as protein alone or as heterologous prime boost vaccine could confer significant protection (95%) against B. malayi L3 challenge. Immune correlates of protection suggest a Th1/Th2 bias. These finding suggests that the trivalent HAT fusion protein is a promising prophylactic vaccine against lymphatic filariasis infection in human.
Collapse
|
7
|
Wang X, Liu F, Zhou S, Xu Z, Hoellwarth J, Chen X, He L, Zhang R, Liu F, Wang J, Su C. Partial regulatory T cell depletion prior to schistosomiasis vaccination does not enhance the protection. PLoS One 2012; 7:e40359. [PMID: 22802961 PMCID: PMC3389001 DOI: 10.1371/journal.pone.0040359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 06/07/2012] [Indexed: 11/21/2022] Open
Abstract
CD4+CD25+ regulatory T cells (Tregs) do
not only influence self-antigen specific immune responses, but also dampen
the protective effect induced by a number of vaccines. The impact of CD4+CD25+
Tregs on vaccines against schistosomiasis, a neglected tropical disease that
is a major public health concern, however, has not been examined. In this
study, a DNA vaccine encoding a 26 kDa glutathione S-transferase of Schistosoma
japonicum (pVAX1-Sj26GST) was constructed and its potential effects
were evaluated by depleting CD25+ cells prior to pVAX1-Sj26GST
immunization. This work shows that removal of CD25+ cells
prior to immunization with the pVAX1-Sj26GST schistosomiasis DNA vaccine significantly
increases the proliferation of splenocytes and IgG levels. However, CD25+
cell-depleted mice immunized with pVAX1-Sj26GST show no improved protection
against S. japonicum. Furthermore, depletion of CD25+
cells causes an increase in both pro-inflammatory cytokines (e.g. IFN-γ,
GM-CSF and IL-4) and an anti-inflammatory cytokine (e.g. IL-10), with CD4+CD25-
T cells being one of the major sources of both IFN-γ and IL-10. These
findings indicate that partial CD25+ cell depletion fails
to enhance the effectiveness of the schistosome vaccine, possibly due to IL-10
production by CD4+CD25- T cells, or other cell
types, after CD25+ cell depletion during vaccination.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Pathogen Biology and Immunology, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Molecular cloning and characterization of a HSP70 gene from Schistosoma japonicum. Parasitol Res 2011; 110:1785-93. [DOI: 10.1007/s00436-011-2700-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/13/2011] [Indexed: 11/26/2022]
|
9
|
Xu J, Feng T, Lin DD, Wang QZ, Tang L, Wu XH, Guo JG, Peeling RW, Zhou XN. Performance of a dipstick dye immunoassay for rapid screening of Schistosoma japonicum infection in areas of low endemicity. Parasit Vectors 2011; 4:87. [PMID: 21599944 PMCID: PMC3123290 DOI: 10.1186/1756-3305-4-87] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/20/2011] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The dipstick dye immunoassay (DDIA), recently commercially available in the People's Republic of China (P.R. China), is a rapid and simple test to detect human antibodies against Schistosoma Japonicum. Its performance and utility for screening schistosome infection in low endemic areas is little known. We therefore carried out a cross-sectional survey in seven villages with low endemicity of schistosomiasis in P.R. China and assessed the performance and utility of DDIA for diagnosis of schistosomiasis. Stool samples were collected and examined by the Kato-Katz method and the miracidium hatching technique. Serum samples, separated from whole blood of participants, were tested by DDIA. RESULTS 6285 individuals aged 6-65 years old participated in this study, with a prevalence of schistosomiasis of 4.20%. Using stool examination as a gold reference standard, DDIA performed with a high overall sensitivity of 91.29% (95% CI: 87.89-94.69%) and also a high negative predictive value, with a mean value of 99.29% (95% CI: 98.99-99.58%). The specificity of DDIA was only moderate (53.08%, 95% CI: 51.82-54.34%). Multivariate analysis indicated that age, occupation and history of schistosome infection were significantly associated with the false positive results of DDIA. CONCLUSIONS DDIA is a sensitive, rapid, simple and portable diagnostic assay and can be used as a primary approach for screening schistosome infection in areas of low endemicity. However, more sensitive and specific confirmatory assays need to be developed and combined with DDIA for targeting chemotherapy accurately.
Collapse
Affiliation(s)
- Jing Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China
| | - Ting Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China
| | - Dan-Dan Lin
- Provincial Institute of Parasitic Diseases, Nanchang, Jiangxi 330046, People's Republic of China
| | - Qi-Zhi Wang
- Provincial Institute of Parasitic Diseases, Hefei, Anhui 230061, People's Republic of China
| | - Li Tang
- Provincial Institute of Parasitic Diseases, Wuhan, Hubei 430070, People's Republic of China
| | - Xiao-Hua Wu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China
| | - Jia-Gang Guo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China
| | | | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China
| |
Collapse
|
10
|
Enzyme digests eliminate nonfunctional Env from HIV-1 particle surfaces, leaving native Env trimers intact and viral infectivity unaffected. J Virol 2011; 85:5825-39. [PMID: 21471242 DOI: 10.1128/jvi.00154-11] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 viruses and virus-like particles (VLPs) bear nonnative "junk" forms of envelope (Env) glycoprotein that may undermine the development of antibody responses against functional gp120/gp41 trimers, thereby blunting the ability of particles to elicit neutralizing antibodies. Here, we sought to better understand the nature of junk Env with a view to devising strategies for its removal. Initial studies revealed that native trimers were surprisingly stable in the face of harsh conditions, suggesting that junk Env is unlikely to arise by trimer dissociation or gp120 shedding. Furthermore, the limited gp120 shedding that occurs immediately after synthesis of primary HIV-1 isolate Envs is not caused by aberrant cleavage at the tandem gp120/gp41 cleavage sites, which were found to cleave in a codependent manner. A major VLP contaminant was found to consist of an early, monomeric form of gp160 that is glycosylated in the endoplasmic reticulum (gp160ER) and then bypasses protein maturation and traffics directly into particles. gp160ER was found to bind two copies of monoclonal antibody (MAb) 2G12, consistent with its exclusively high-mannose glycan profile. These findings prompted us to evaluate enzyme digests as a way to remove aberrant Env. Remarkably, sequential glycosidase-protease digests led to a complete or near-complete removal of junk Env from many viral strains, leaving trimers and viral infectivity largely intact. "Trimer VLPs" may be useful neutralizing antibody immunogens.
Collapse
|