1
|
Kamau L, Bennett KL, Ochomo E, Herren J, Agumba S, Otieno S, Omoke D, Matoke-Muhia D, Mburu D, Mwangangi J, Ramaita E, Juma EO, Mbogo C, Barasa S, Miles A. The Anopheles coluzzii range extends into Kenya: detection, insecticide resistance profiles and population genetic structure in relation to conspecific populations in West and Central Africa. Malar J 2024; 23:122. [PMID: 38671462 PMCID: PMC11046809 DOI: 10.1186/s12936-024-04950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Anopheles coluzzii is a primary vector of malaria found in West and Central Africa, but its presence has hitherto never been documented in Kenya. A thorough understanding of vector bionomics is important as it enables the implementation of targeted and effective vector control interventions. Malaria vector surveillance efforts in the country have tended to focus on historically known primary vectors. The current study sought to determine the taxonomic status of samples collected from five different malaria epidemiological zones in Kenya as well as describe the population genetic structure and insecticide resistance profiles in relation to other An. coluzzii populations. METHODS Mosquitoes were sampled as larvae from Busia, Kwale, Turkana, Kirinyaga and Kiambu counties, representing the range of malaria endemicities in Kenya, in 2019 and 2021 and emergent adults analysed using Whole Genome Sequencing (WGS) data processed in accordance with the Anopheles gambiae 1000 Genomes Project phase 3. Where available, historical samples from the same sites were included for WGS. Comparisons were made with An. coluzzii cohorts from West and Central Africa. RESULTS This study reports the detection of An. coluzzii for the first time in Kenya. The species was detected in Turkana County across all three time points from which samples were analyzed and its presence confirmed through taxonomic analysis. Additionally, there was a lack of strong population genetic differentiation between An. coluzzii from Kenya and those from the more northerly regions of West and Central Africa, suggesting they represent a connected extension to the known species range. Mutations associated with target-site resistance to DDT and pyrethroids and metabolic resistance to DDT were found at high frequencies up to 64%. The profile and frequencies of the variants observed were similar to An. coluzzii from West and Central Africa but the ace-1 mutation linked to organophosphate and carbamate resistance present in An. coluzzii from coastal West Africa was absent in Kenya. CONCLUSIONS These findings emphasize the need for the incorporation of genomics in comprehensive and routine vector surveillance to inform on the range of malaria vector species, and their insecticide resistance status to inform the choice of effective vector control approaches.
Collapse
Affiliation(s)
- Luna Kamau
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, PO Box 54840, Nairobi, 00200, Kenya.
| | - Kelly L Bennett
- Malaria Vector Genomic Surveillance, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Eric Ochomo
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Nairobi, Kenya
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jeremy Herren
- International Center for Insect Physiology and Ecology (Icipe), Nairobi, Kenya
| | - Silas Agumba
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Nairobi, Kenya
| | - Samson Otieno
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Nairobi, Kenya
| | - Diana Omoke
- Centre for Global Health Research (CGHR), Kenya Medical Research Institute, Nairobi, Kenya
| | - Damaris Matoke-Muhia
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute, PO Box 54840, Nairobi, 00200, Kenya
- Pan African Mosquito Control Association (PAMCA), Nairobi, Kenya
| | - David Mburu
- Pwani University Biosciences Research Centre (PUBReC), Kilifi, Kenya
| | - Joseph Mwangangi
- Centre for Geographic Medicine Research-Coast (CGMR-C), Kenya Medical Research Institute, Nairobi, Kenya
| | - Edith Ramaita
- Ministry of Health-National Malaria Control Programme (NMCP), Kenya, Nairobi, Kenya
| | - Elijah O Juma
- Pan African Mosquito Control Association (PAMCA), Nairobi, Kenya
| | - Charles Mbogo
- Pan African Mosquito Control Association (PAMCA), Nairobi, Kenya
| | - Sonia Barasa
- Malaria Vector Genomic Surveillance, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Pan African Mosquito Control Association (PAMCA), Nairobi, Kenya
| | - Alistair Miles
- Malaria Vector Genomic Surveillance, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| |
Collapse
|
2
|
Matsumoto T, Nagashima M, Kagaya W, Kongere J, Gitaka J, Kaneko A. Evaluation of a financial incentive intervention on malaria prevalence among the residents in Lake Victoria basin, Kenya: study protocol for a cluster-randomized controlled trial. Trials 2024; 25:165. [PMID: 38438925 PMCID: PMC10913238 DOI: 10.1186/s13063-024-07991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/24/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND In the Lake Victoria basin of western Kenya, malaria remains highly endemic despite high coverage of interventions such as mass distribution of long-lasting insecticidal nets (LLIN), indoor residual spraying (IRS) programs, and improvement of availability and accessibility of rapid diagnostic tests (RDT) and artemisinin-based combination therapy (ACT) at community healthcare facilities. We hypothesize that one major cause of the residual transmission is the lack of motivation among residents for malaria prevention and early treatment. METHODS This study will aim to develop a demand-side policy tool to encourage local residents' active malaria prevention and early treatment-seeking behaviors. We examine the causal impact of a financial incentive intervention complemented with malaria education to residents in malaria-prone areas. A cluster-randomized controlled trial is designed to assess the effect of the financial incentive intervention on reducing malaria prevalence in residents of Suba South in Homa Bay County, Kenya. The intervention includes two components. The first component is the introduction of a financial incentive scheme tied to negative RDT results for malaria infection among the target population. This study is an attempt to promote behavioral changes in the residents by providing them with monetary incentives. The project has two different forms of incentive schemes. One is a conditional cash transfer (CCT) that offers a small reward (200 Ksh) for non-infected subjects during the follow-up survey, and the other is a lottery incentive scheme (LIS) that gives a lottery with a 10% chance of winning a large reward (2000 Ksh) instead of the small reward. The second component is a knowledge enhancement with animated tablet-based malaria educational material (EDU) developed by the research team. It complements the incentive scheme by providing the appropriate knowledge to the residents for malaria elimination. We evaluate the intervention's impact on the residents' malaria prevalence using a cluster-randomized control trial. DISCUSSION A policy tool to encourage active malaria prevention and early treatment to residents in Suba South, examined in this trial, may benefit other malaria-endemic counties and be incorporated as part of Kenya's national malaria elimination strategy. TRIAL REGISTRATION UMIN000047728. Registered on 29th July 2022.
Collapse
Affiliation(s)
- Tomoya Matsumoto
- Department of Economics, Faculty of Commerce, Otaru University of Commerce, Hokkaido, Japan.
| | - Masaru Nagashima
- Institute of Developing Economies Japan External Trade Organization (IDE-JETRO), Chiba, Japan
| | - Wataru Kagaya
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Department of Ecoepidemiology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - James Kongere
- Department of Virology and Parasitology, Graduate School of Medicine/Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Akira Kaneko
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- Department of Virology and Parasitology, Graduate School of Medicine/Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Kagaya W, Chan CW, Kongere J, Kanoi BN, Ngara M, Omondi P, Osborne A, Barbieri L, Kc A, Minakawa N, Gitaka J, Kaneko A. Evaluation of the protective efficacy of Olyset®Plus ceiling net on reducing malaria prevalence in children in Lake Victoria Basin, Kenya: study protocol for a cluster-randomized controlled trial. Trials 2023; 24:354. [PMID: 37231429 DOI: 10.1186/s13063-023-07372-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND In the Lake Victoria Basin of western Kenya, malaria remains highly endemic despite high coverage of interventions such as insecticide-impregnated long-lasting insecticidal nets (LLIN). The malaria-protective effect of LLINs is hampered by insecticide resistance in Anopheles vectors and its repurposing by the community. Ceiling nets and LLIN with synergist piperonyl butoxide (PBO-LLIN) are novel tools that can overcome the problems of behavioral variation of net use and metabolic resistance to insecticide, respectively. The two have been shown to reduce malaria prevalence when used independently. Integration of these two tools (i.e., ceiling nets made with PBO-LLIN or Olyset®Plus ceiling nets) appears promising in further reducing the malaria burden. METHODS A cluster-randomized controlled trial is designed to assess the effect of Olyset®Plus ceiling nets on reducing malaria prevalence in children on Mfangano Island in Homa Bay County, where malaria transmission is moderate. Olyset®Plus ceiling nets will be installed in 1315 residential structures. Malaria parasitological, entomological, and serological indicators will be measured for 12 months to compare the effectiveness of this new intervention against conventional LLIN in the control arm. DISCUSSION Wider adoption of Olyset®Plus ceiling nets to complement existing interventions may benefit other malaria-endemic counties and be incorporated as part of Kenya's national malaria elimination strategy. TRIAL REGISTRATION UMIN Clinical Trials Registry UMIN000045079. Registered on 4 August 2021.
Collapse
Affiliation(s)
- Wataru Kagaya
- Department of Virology and Parasitology/Research Center for Infectious Diseases, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
| | - Chim W Chan
- Department of Virology and Parasitology/Research Center for Infectious Diseases, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - James Kongere
- Department of Virology and Parasitology/Research Center for Infectious Diseases, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Bernard N Kanoi
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Mtakai Ngara
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Protus Omondi
- Department of Virology and Parasitology/Research Center for Infectious Diseases, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Ashley Osborne
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Laura Barbieri
- Department of Virology and Parasitology/Research Center for Infectious Diseases, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Achyut Kc
- Department of Virology and Parasitology/Research Center for Infectious Diseases, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Noboru Minakawa
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Jesse Gitaka
- Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya
| | - Akira Kaneko
- Department of Virology and Parasitology/Research Center for Infectious Diseases, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
4
|
Minakawa N, Kawada H, Kongere JO, Sonye GO, Lutiali PA, Awuor B, Isozumi R, Futami K. Effectiveness of screened ceilings over the current best practice in reducing malaria prevalence in western Kenya: a cluster randomised controlled trial. Parasitology 2022; 149:1-39. [PMID: 35437129 PMCID: PMC10090608 DOI: 10.1017/s0031182022000415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/06/2022]
Abstract
Increases in bed net coverage and antimalarial treatment have reduced the risk of malaria in sub-Saharan Africa. However, the pace of reduction has slowed, and new tools are needed to reverse this trend. We evaluated houses screened with insecticide-treated ceiling nets using a cluster randomized-controlled trial in western Kenya. The primary endpoints were Plasmodium falciparum PCR-positive prevalence (PCRPf PR) of children from 7 months to 10 years old and anopheline density. Ceiling nets and bed nets were provided to 1073 houses, and 1162 houses were provided with bed nets only. The treatment and control arms each had four clusters. We conducted three epidemiological and entomological post-intervention surveys over the course of a year and a half. Each epidemiological survey targeted 150 children per cluster, and entomological surveys targeted 25 houses. When the three surveys were combined, the median PCRPf PRs were 23% (IQR 8%) in the intervention arm and 42% (IQR 12%) in the control arm. The adjusted risk ratio (RR) was 0.53 [95% confidence interval (CI) 0.41–0.71; P = 0.029]. The median anopheline densities were 0.4 (IQR 0.4) and 2.0 (IQR 1.4), respectively. The adjusted RR was 0.41 (95% CI 0.29–0.90; P = 0.029). The present study indicates additional protection from insecticide-screened ceilings over the current best practice.
Collapse
Affiliation(s)
- Noboru Minakawa
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Hitoshi Kawada
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - James O. Kongere
- Kenya Medical Research Institute, Nairobi, Kenya
- Center for Research in Tropical Medicine and Community Development (CRTMCD), Nairobi, Kenya
| | | | - Peter A. Lutiali
- Kenya Medical Research Institute, Nairobi, Kenya
- Center for Research in Tropical Medicine and Community Development (CRTMCD), Nairobi, Kenya
| | | | - Rie Isozumi
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| | - Kyoko Futami
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
5
|
Minakawa N, Kongere JO, Sonye GO, Lutiali PA, Awuor B, Kawada H, Isozumi R, Futami K. Long-Lasting Insecticidal Nets Incorporating Piperonyl Butoxide Reduce the Risk of Malaria in Children in Western Kenya: A Cluster Randomized Controlled Trial. Am J Trop Med Hyg 2021; 105:461-471. [PMID: 34125699 PMCID: PMC8437186 DOI: 10.4269/ajtmh.20-1069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/22/2021] [Indexed: 11/10/2022] Open
Abstract
Malaria vectors have acquired an enzyme that metabolizes pyrethroids. To tackle this problem, we evaluated long-lasting insecticidal nets incorporating piperonyl butoxide (PBO-LLINs) with a community-based cluster randomized control trial in western Kenya. The primary endpoints were anopheline density and Plasmodium falciparum polymerase chain reaction (PCR)-positive prevalence (PCRpfPR) of children aged 7 months to 10 years. Four clusters were randomly selected for each of the treatment and control arms (eight clusters in total) from 12 clusters, and PBO-LLINs and standard LLINs were distributed in February 2011 to 982 and 1,028 houses for treatment and control arms, respectively. Entomological surveys targeted 20 houses in each cluster, and epidemiological surveys targeted 150 children. Cluster-level permutation tests evaluated the effectiveness using the fitted values from individual level regression models adjusted for baseline. Bootstrapping estimated 95% confidence intervals (CIs). The medians of anophelines per house were 1.4 (interquartile range [IQR]: 2.3) and 3.4 (IQR: 3.7) in the intervention and control arms after 3 months, and 0.4 (IQR: 0.2) and 1.6 (IQR: 0.5) after 10 months, respectively. The differences were -2.5 (95% CI: -6.4 to -0.6) and -1.3 (95% CI: -2.0 to -0.7), respectively. The datasets of 861 and 775 children were analyzed in two epidemiological surveys. The median PCRpfPRs were 25% (IQR: 11%) in the intervention arm and 52% (IQR: 11%) in the control arm after 5 months and 33% (IQR: 11%) and 45% (IQR: 5%) after 12 months. The PCRpfPR ratios were 0.67 (95% CI: 0.38, 0.91) and 0.74 (95% CI: 0.53, 0.90), respectively. We confirmed the superiority of PBO-LLINs.
Collapse
Affiliation(s)
- Noboru Minakawa
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - James O. Kongere
- Kenya Medical Research Institute, Nairobi, Kenya
- Center for Research in Tropical Medicine and Community Development (CRTMCD), Nairobi, Kenya
| | | | - Peter A. Lutiali
- Kenya Medical Research Institute, Nairobi, Kenya
- Center for Research in Tropical Medicine and Community Development (CRTMCD), Nairobi, Kenya
| | | | - Hitoshi Kawada
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Rie Isozumi
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Kyoko Futami
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
6
|
Minakawa N, Kongere JO, Sonye GO, Lutiali PA, Awuor B, Kawada H, Isozumi R, Futami K. A preliminary study on designing a cluster randomized control trial of two new mosquito nets to prevent malaria parasite infection. Trop Med Health 2020; 48:98. [PMID: 33372641 PMCID: PMC7720478 DOI: 10.1186/s41182-020-00276-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/27/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although long-lasting insecticidal nets (LLINs) are the most effective tool for preventing malaria parasite transmission, the nets have some limitations. For example, the increase of LLIN use has induced the rapid expansion of mosquito insecticide resistance. More than two persons often share one net, which increases the infection risk. To overcome these problems, two new mosquito nets were developed, one incorporating piperonyl butoxide and another covering ceilings and open eaves. We designed a cluster randomized controlled trial (cRCT) to evaluate these nets based on the information provided in the present preliminary study. RESULTS Nearly 75% of the anopheline population in the study area in western Kenya was Anopheles gambiae s. l., and the remaining was Anopheles funestus s. l. More female anophelines were recorded in the western part of the study area. The number of anophelines increased with rainfall. We planned to have 80% power to detect a 50% reduction in female anophelines between the control group and each intervention group. The between-cluster coefficient of variance was 0.192. As the number of clusters was limited to 4 due to the size of the study area, the estimated cluster size was 7 spray catches with an alpha of 0.05. Of 1619 children tested, 626 (48%) were Plasmodium falciparum positive using a rapid diagnostic test (RDT). The prevalence was higher in the northwestern part of the study area. The number of children who slept under bed nets was 929 (71%). The P. falciparum RDT-positive prevalence (RDTpfPR) of net users was 45%, and that of non-users was 55% (OR 0.73; 95% CI 0.56, 0.95). Using 45% RDTpfPR of net users, we expected each intervention to reduce prevalence by 50%. The intracluster correlation coefficient was 0.053. With 80% power and an alpha of 0.05, the estimated cluster size was 116 children. Based on the distribution of children, we modified the boundaries of the clusters and established 300-m buffer zones along the boundaries to minimize a spillover effect. CONCLUSIONS The cRCT study design is feasible. As the number of clusters is limited, we will apply a two-stage procedure with the baseline data to evaluate each intervention.
Collapse
Affiliation(s)
- Noboru Minakawa
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - James O Kongere
- Kenya Medical Research Institute, Nairobi, Kenya
- Center for Research in Tropical Medicine and Community Development (CRTMCD), Nairobi, Kenya
| | | | - Peter A Lutiali
- Kenya Medical Research Institute, Nairobi, Kenya
- Center for Research in Tropical Medicine and Community Development (CRTMCD), Nairobi, Kenya
| | | | - Hitoshi Kawada
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Rie Isozumi
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kyoko Futami
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
7
|
Tamari N, Minakawa N, Sonye GO, Awuor B, Kongere JO, Hashimoto M, Kataoka M, Munga S. Protective effects of Olyset® Net on Plasmodium falciparum infection after three years of distribution in western Kenya. Malar J 2020; 19:373. [PMID: 33076928 PMCID: PMC7574443 DOI: 10.1186/s12936-020-03444-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/10/2020] [Indexed: 12/23/2022] Open
Abstract
Background Several types of insecticides, treating technologies and materials are available for long-lasting insecticide-treated nets (LLINs). The variations may result in different efficacies against mosquitoes and correspondingly infection risks for the Plasmodium falciparum malaria parasite. This cross-sectional study investigated whether infection risk varied among children who slept under different LLIN brands in rural villages of western Kenya. Methods Children sleeping under various types of LLINs were tested for P. falciparum infection using a diagnostic polymerase chain reaction (PCR) assay. Data were collected for other potential factors associated with infection risk: sleeping location (with bed/without bed), number of persons sharing the same net, dwelling wall material, gap of eaves (open/close), proportional hole index, socio-economic status, and density of indoor resting anophelines. Bed-net efficacy against the Anopheles gambiae susceptible strain was estimated using the WHO cone test and the tunnel test. The residual insecticide content on nets was measured. Results Seven LLIN brands were identified, and deltamethrin-based DawaPlus® 2.0 was the most popular (48%) followed by permethrin-based Olyset® Net (28%). The former LLIN was distributed in the area about six months before the present study was conducted, and the latter net was distributed at least three years before. Of 254 children analysed, P. falciparum PCR-positive prevalence was 58% for DawaPlus® 2.0 users and 38% for Olyset® users. The multiple regression analysis revealed that the difference was statistically significant (adjusted OR: 0.67, 95% credible interval: 0.45–0.97), whereas the confounders were not statistically important. Among randomly selected net samples, all DawaPlus® 2.0 (n = 20) and 95% of Olyset® (n = 19) passed either the cone test or the tunnel test. Conclusions Olyset® was more effective in reducing infection risk compared with DawaPlus® 2.0. Although the data from the present study were too limited to explain the mechanism clearly, the results suggest that the characteristics of the former brand are more suitable for the conditions, such as vector species composition, of the study area.
Collapse
Affiliation(s)
- Noriko Tamari
- Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan. .,College of Public Health, The University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA.
| | - Noboru Minakawa
- Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - George O Sonye
- Ability To Solve By Knowledge Project, Mbita, Homa Bay, Kenya
| | - Beatrice Awuor
- Ability To Solve By Knowledge Project, Mbita, Homa Bay, Kenya
| | - James O Kongere
- Centre for Research in Tropical Medicine and Community Development, Nairobi, Kenya
| | - Muneaki Hashimoto
- National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute, Kagawa, Japan
| | - Masatoshi Kataoka
- National Institute of Advanced Industrial Science and Technology (AIST), Health Research Institute, Kagawa, Japan
| | - Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| |
Collapse
|
8
|
Kagaya W, Gitaka J, Chan CW, Kongere J, Md Idris Z, Deng C, Kaneko A. Malaria resurgence after significant reduction by mass drug administration on Ngodhe Island, Kenya. Sci Rep 2019; 9:19060. [PMID: 31836757 PMCID: PMC6910941 DOI: 10.1038/s41598-019-55437-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Although WHO recommends mass drug administration (MDA) for malaria elimination, further evidence is required for understanding the obstacles for the optimum implementation of MDA. Just before the long rain in 2016, two rounds of MDA with artemisinin/piperaquine (Artequick) and low-dose primaquine were conducted with a 35-day interval for the entire population of Ngodhe Island (~500 inhabitants) in Lake Victoria, Kenya, which is surrounded by areas with moderate and high transmission. With approximately 90% compliance, Plasmodium prevalence decreased from 3% to 0% by microscopy and from 10% to 2% by PCR. However, prevalence rebounded to 9% by PCR two months after conclusion of MDA. Besides the remained local transmission, parasite importation caused by human movement likely contributed to the resurgence. Analyses of 419 arrivals to Ngodhe between July 2016 and September 2017 revealed Plasmodium prevalence of 4.6% and 16.0% by microscopy and PCR, respectively. Risk factors for infection among arrivals included age (0 to 5 and 11 to 15 years), and travelers from Siaya County, located to the north of Ngodhe Island. Parasite importation caused by human movement is one of major obstacles to sustain malaria elimination, suggesting the importance of cross-regional initiatives together with local vector control.
Collapse
Affiliation(s)
- Wataru Kagaya
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Jesse Gitaka
- Department of Clinical Medicine, Mount Kenya University, PO Box 342-01000, Thika, Kenya
| | - Chim W Chan
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.,Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Solna, Stockholm, Sweden.,Department of Anthropology, Binghamton University, Binghamton, NY, 13905, USA
| | - James Kongere
- Nairobi Research Station, Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute (NUITM-KEMRI) Project, Institute of Tropical Medicine (NEKKEN), Nagasaki University, PO Box 19993-00202, Nairobi, Kenya
| | - Zulkarnain Md Idris
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Solna, Stockholm, Sweden.,Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Changsheng Deng
- Science and Technology Park, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Akira Kaneko
- Department of Parasitology & Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan. .,Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Solna, Stockholm, Sweden. .,Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
9
|
Antimalarial bednet protection of children disappears when shared by three or more people in a high transmission setting of western Kenya. Parasitology 2018; 146:363-371. [PMID: 30198452 DOI: 10.1017/s003118201800149x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A sizeable proportion of households is forced to share single long-lasting insecticide treated net (LLIN). However, the relationship between increasing numbers of people sharing a net and the risk for Plasmodium infection is unclear. This study revealed whether risk for Plasmodium falciparum infection is associated with the number of people sharing a LLIN in a holoendemic area of Kenya. Children ⩽5 years of age were tested for P. falciparum infection using polymerase chain reaction. Of 558 children surveyed, 293 (52.5%) tested positive for parasitaemia. Four hundred and fifty-eight (82.1%) reported sleeping under a LLIN. Of those, the number of people sharing a net with the sampled child ranged from 1 to 5 (median = 2). Children using a net alone or with one other person were at lower risk than non-users (OR = 0.29, 95% CI 0.10-0.82 and OR = 0.47, 95% CI 0.22-0.97, respectively). On the other hand, there was no significant difference between non-users and children sharing a net with two (OR = 0.88, 95% CI 0.44-1.77) or more other persons (OR = 0.75, 95% CI 0.32-1.72). LLINs are effective in protecting against Plasmodium infection in children when used alone or with one other person compared with not using them. Public health professionals should inform caretakers of the risks of too many people sharing a net.
Collapse
|
10
|
Naturally acquired antibody response to Plasmodium falciparum describes heterogeneity in transmission on islands in Lake Victoria. Sci Rep 2017; 7:9123. [PMID: 28831122 PMCID: PMC5567232 DOI: 10.1038/s41598-017-09585-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/25/2017] [Indexed: 11/09/2022] Open
Abstract
As markers of exposure anti-malaria antibody responses can help characterise heterogeneity in malaria transmission. In the present study antibody responses to Plasmodium falciparum AMA-1, MSP-119 and CSP were measured with the aim to describe transmission patterns in meso-endemic settings in Lake Victoria. Two cross-sectional surveys were conducted in Lake Victoria in January and August 2012. The study area comprised of three settings: mainland (Ungoye), large island (Mfangano) and small islands (Takawiri, Kibuogi, Ngodhe). Individuals provided a finger-blood sample to assess malaria infection by microscopy and PCR. Antibody response to P. falciparum was determined in 4,112 individuals by ELISA using eluted dried blood from filter paper. The overall seroprevalence was 64.0% for AMA-1, 39.5% for MSP-119, and 12.9% for CSP. Between settings, seroprevalences for merozoite antigens were similar between Ungoye and Mfangano, but higher when compared to the small islands. For AMA-1, the seroconversion rates (SCRs) ranged from 0.121 (Ngodhe) to 0.202 (Ungoye), and were strongly correlated to parasite prevalence. We observed heterogeneity in serological indices across study sites in Lake Victoria. These data suggest that AMA-1 and MSP-119 sero-epidemiological analysis may provide further evidence in assessing variation in malaria exposure and evaluating malaria control efforts in high endemic area.
Collapse
|
11
|
Idris ZM, Chan CW, Kongere J, Gitaka J, Logedi J, Omar A, Obonyo C, Machini BK, Isozumi R, Teramoto I, Kimura M, Kaneko A. High and Heterogeneous Prevalence of Asymptomatic and Sub-microscopic Malaria Infections on Islands in Lake Victoria, Kenya. Sci Rep 2016; 6:36958. [PMID: 27841361 PMCID: PMC5107902 DOI: 10.1038/srep36958] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/24/2016] [Indexed: 11/17/2022] Open
Abstract
Kenya is intensifying its national efforts in malaria control to achieve malaria elimination. Detailed characterization of malaria infection among populations living in the areas where the disease is endemic in Kenya is a crucial priority, especially for planning and evaluating future malaria elimination strategy. This study aimed to investigate the distribution and extent of malaria infection on islands in Lake Victoria of Kenya to aid in designing new interventions for malaria elimination. Five cross-sectional surveys were conducted between January 2012 and August 2014 on four islands (Mfangano, Takawiri, Kibuogi and Ngodhe) in Lake Victoria and a coastal mainland (Ungoye). Malaria prevalence varied significantly among settings: highest in Ungoye, followed by the large island of Mfangano and lowest in the three remaining small islands. Of the 3867 malaria infections detected by PCR, 91.8% were asymptomatic, 50.3% were sub-microscopic, of which 94% were also asymptomatic. We observed geographical differences and age dependency in both proportion of sub-microscopic infections and asymptomatic parasite carriage. Our findings highlighted the local heterogeneity in malaria prevalence on islands and a coastal area in Lake Victoria, and provided support for the inclusion of mass drug administration as a component of the intervention package to eliminate malaria on islands.
Collapse
Affiliation(s)
- Zulkarnain Md Idris
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden.,Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, 56000, Malaysia
| | - Chim W Chan
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden
| | - James Kongere
- Nagasaki University Nairobi Research Station, NUITM-KEMRI Project, Nairobi, 00202, Kenya
| | - Jesse Gitaka
- Department of Clinical Medicine, Mount Kenya University, Thika, 01000, Kenya
| | - John Logedi
- National Malaria Control Programme, Ministry of Public Health and Sanitation, Nairobi, 00100, Kenya
| | - Ahmeddin Omar
- National Malaria Control Programme, Ministry of Public Health and Sanitation, Nairobi, 00100, Kenya
| | - Charles Obonyo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research, Kisumu, 40100, Kenya
| | - Beatrice Kemunto Machini
- National Malaria Control Programme, Ministry of Public Health and Sanitation, Nairobi, 00100, Kenya
| | - Rie Isozumi
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, 558-8585, Japan
| | - Isao Teramoto
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, 558-8585, Japan
| | - Masatsugu Kimura
- Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, 558-8585, Japan
| | - Akira Kaneko
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 17177, Sweden.,Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, 558-8585, Japan.,Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8102, Japan
| |
Collapse
|
12
|
Yssouf A, Almeras L, Raoult D, Parola P. Emerging tools for identification of arthropod vectors. Future Microbiol 2016; 11:549-66. [PMID: 27070074 DOI: 10.2217/fmb.16.5] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rapid and reliable identification of arthropod vector species is an essential component of the fight against vector-borne diseases. However, owing to the lack of entomological expertise required for the morphological identification method, development of alternative and complementary tools is needed. This review describes the main methods used for arthropod identification, focusing on the emergence of protein profiling using MALDI-TOF MS technology. Sample preparation, analysis of reproducibility, database creation and blind tests for controlling accuracy of this tool for arthropod identification are described. The advantages and limitations of the MALDI-TOF MS method are illustrated by emphasizing different hematophagous arthropods, including mosquitoes and ticks, the top two main vectors of infectious diseases.
Collapse
Affiliation(s)
- Amina Yssouf
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Lionel Almeras
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Didier Raoult
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| | - Philippe Parola
- Aix Marseille Université, Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198 (Dakar, Sénégal), Inserm 1095, Faculté de Médecine, 27 bd Jean Moulin, 13385 Marseille cedex 5, France
| |
Collapse
|
13
|
Acheson ES, Plowright AA, Kerr JT. Where have all the mosquito nets gone? Spatial modelling reveals mosquito net distributions across Tanzania do not target optimal Anopheles mosquito habitats. Malar J 2015; 14:322. [PMID: 26283538 PMCID: PMC4539722 DOI: 10.1186/s12936-015-0841-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background Malaria remains the deadliest vector-borne disease despite long-term, costly control efforts. The United Republic of Tanzania has implemented countrywide anti-malarial interventions over more than a decade, including national insecticide-treated net (ITN) rollouts and subsequent monitoring. While previous analyses have compared spatial variation in malaria endemicity with ITN distributions, no study has yet compared Anopheles habitat suitability to determine proper allocation of ITNs. This study assesses where mosquitoes were most likely to thrive before implementation of large-scale ITN interventions in Tanzania and determine if ITN distributions successfully targeted those areas. Methods Using Maxent, a species distribution model was constructed relating anopheline mosquito occurrences for 1999–2003 to high resolution environmental observations. A 2011–2012 layer of mosquito net ownership was created using georeferenced data across Tanzania from the Demographic and Health Surveys. The baseline mosquito habitat suitability was compared to subsequent ITN ownership using (1) the average ITN numbers per house and (2) the proportion of households with ≥1 net to test whether national ITN ownership targets have been met and have tracked malaria risk. Results Elevation, land cover, and human population distribution outperformed variants of temperature and Normalized Difference Vegetation Index (NDVI) in anopheline distribution models. The spatial distribution of ITN ownership across Tanzania was near-random spatially (Moran’s I = 0.07). Householders reported owning 2.488 ITNs on average and 93.41 % of households had ≥1 ITN. Mosquito habitat suitability was statistically unrelated to reported ITN ownership and very weakly to the proportion of households with ≥1 ITN (R2 = 0.051). Proportional ITN ownership/household varied relative to mosquito habitat suitability (Levene’s test F = 3.0037). Quantile regression was used to assess trends in ITN ownership among households with the highest and lowest 10 % of ITN ownership. ITN ownership declined significantly toward areas with the highest vector habitat suitability among households with lowest ITN ownership (t = −3.38). In areas with lowest habitat suitability, ITN ownership was consistently higher. Conclusions Insecticide-treated net ownership is critical for malaria control. While Tanzania-wide efforts to distribute ITNs has reduced malaria impacts, gaps and variance in ITN ownership are unexpectedly large in areas where malaria risk is highest. Supplemental ITN distributions targeting prime Anopheles habitats are likely to have disproportionate human health benefits. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0841-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily S Acheson
- Department of Biology, University of Ottawa, Gendron 352, 30 Marie Curie, Ottawa, ON, K1N6N5, Canada.
| | - Andrew A Plowright
- Department of Biology, University of Ottawa, Gendron 352, 30 Marie Curie, Ottawa, ON, K1N6N5, Canada.
| | - Jeremy T Kerr
- Department of Biology, University of Ottawa, Gendron 352, 30 Marie Curie, Ottawa, ON, K1N6N5, Canada.
| |
Collapse
|
14
|
Kweka EJ, Munga S, Himeidan Y, Githeko AK, Yan G. Assessment of mosquito larval productivity among different land use types for targeted malaria vector control in the western Kenya highlands. Parasit Vectors 2015; 8:356. [PMID: 26142904 PMCID: PMC4491214 DOI: 10.1186/s13071-015-0968-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 06/27/2015] [Indexed: 11/10/2022] Open
Abstract
Background Mosquito larval source management (LSM) is likely to be more effective when adequate information such as dominant species, seasonal abundance, type of productive habitat, and land use type are available for targeted sites. LSM has been an effective strategy for reducing malaria morbidity in both urban and rural areas in Africa where sufficient proportions of larval habitats can be targeted. In this study, we conducted longitudinal larval source surveillance in the western Kenya highlands, generating data which can be used to establish cost-effective targeted intervention tools. Methods One hundred and twenty-four (124) positive larval habitats were monitored weekly and sampled for mosquito larvae over the 85-week period from 28 July 2009 to 3 March 2011. Two villages in the western Kenya highlands, Mbale and Iguhu, were included in the study. After preliminary sampling, habitats were classified into four types: hoof prints (n = 21; 17 % of total), swamps (n = 32; 26 %), abandoned goldmines (n = 35; 28 %) and drainage ditches (n = 36; 29 %). Positive habitats occurred in two land use types: farmland (66) and pasture (58). No positive larval habitats occurred in shrub land or forest. Results A total of 46,846 larvae were sampled, of which 44.1 % (20,907) were from abandoned goldmines, 30.9 % (14,469) from drainage ditches, 22.4 % (10,499) from swamps and 2.1 % (971) from hoof prints. In terms of land use types, 57.2 % (26,799) of the sampled larvae were from pasture and 42.8 % (20,047) were from farmland. Of the specimens identified morphologically, 24,583 (52.5 %) were Anopheles gambiae s.l., 11,901 (25.4 %) were Culex quinquefasciatus, 5628 (12 %) were An. funestus s.l. and 4734 (10.1 %) were other anopheline species (An. coustani, An. squamosus, An. ziemanni or An. implexus). Malaria vector dynamics varied seasonally, with An.gambiae s.s. dominating during wet season and An.arabiensis during dry season. An increased proportion of An. arabiensis was observed compared to previous studies. Conclusion These results suggest that long-term monitoring of larval habitats can establish effective surveillance systems and tools. Additionally, the results suggest that larval control is most effective in the dry season due to habitat restriction, with abandoned goldmines, drainage ditches and swamps being the best habitats to target. Both farmland and pasture should be targeted for effective larval control. An increased proportion of An. arabiensis in the An. gambiae complex was noticed in this study for the very first time in the western Kenya highlands; hence, further control tools should be in place for effective control of An. arabiensis.
Collapse
Affiliation(s)
- Eliningaya J Kweka
- Division of Livestock and Human Health Disease Vector Control, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania. .,Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania. .,Pan African Mosquito Control Association (PAMCA), P.O. Box 9653, Dar es Salaam, Tanzania.
| | - Stephen Munga
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578, Kisumu, Kenya.
| | - Yousif Himeidan
- Pan African Mosquito Control Association (PAMCA), P.O. Box 9653, Dar es Salaam, Tanzania. .,Entomology Unit, Faculty of Agriculture and Natural Resources, University of Kassala, P.O. Box 71, New Halfa, Sudan.
| | - Andrew K Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578, Kisumu, Kenya.
| | - Guyuin Yan
- Program in Public Health, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
15
|
Olanga EA, Okombo L, Irungu LW, Mukabana WR. Parasites and vectors of malaria on Rusinga Island, Western Kenya. Parasit Vectors 2015; 8:250. [PMID: 25928743 PMCID: PMC4422414 DOI: 10.1186/s13071-015-0860-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/14/2015] [Indexed: 11/29/2022] Open
Abstract
Background There is a dearth of information on malaria endemicity in the islands of Lake Victoria in western Kenya. In this study malaria prevalence and Plasmodium sporozoite rates on Rusinga Island were investigated. The contribution of different Anopheles species to indoor and outdoor transmission of malaria was also determined. Methods Active case detection through microscopy was used to diagnose malaria in a 10% random sample of the human population on Rusinga Island and a longitudinal entomological survey conducted in Gunda village in 2012. Nocturnally active host-seeking mosquitoes were captured indoors and outdoors using odour-baited traps. Anopheles species were tested for the presence of Plasmodium parasites using an enzyme linked immunosorbent assay. All data were analyzed using generalized linear models. Results Single infections of Plasmodium falciparum (88.1%), P. malariae (3.96%) and P. ovale (0.79%) as well as multiple infections (7.14%) of these parasites were found on Rusinga Island. The overall malaria prevalence was 10.9%. The risk of contracting malaria was higher among dwellers of Rusinga West than Rusinga East locations (Odds Ratio [OR] = 1.5, 95% Confidence Interval [CI] 1.14 – 1.97, P = 0.003). Parasite positivity was significantly associated with individuals who did not use malaria protective measures (OR = 2.65, 95% CI 1.76 – 3.91, p < 0.001). A total of 1,684 mosquitoes, including 74 anophelines, were captured. Unlike Culex species, more of which were collected indoors than outdoors (P < 0.001), the females of An. gambiae s.l. (P = 0.477), An. funestus s.l. (P = 0.153) and Mansonia species captured indoors versus outdoors were not different. The 46 An. gambiae s.l. collected were mainly An. arabiensis (92.3%). Of the 62 malaria mosquitoes tested, 4, including 2 indoor and 2 outdoor-collected individuals had Plasmodium. Conclusion The rather significant and unexpected contribution of P. malariae and P. ovale to the overall malaria prevalence on Rusinga Island underscores the epidemiological importance of these species in the big push towards eliminating malaria. Although current entomological interventions mainly target indoor environments, additional strategies should be considered to prevent outdoor transmission of malaria.
Collapse
Affiliation(s)
- Evelyn A Olanga
- International Centre of Insect Physiology and Ecology, P.O. Box 30772 GPO, Nairobi, Kenya. .,School of Biological Sciences, University of Nairobi, P.O. Box 30197 GPO, Nairobi, Kenya.
| | - Lawrence Okombo
- International Centre of Insect Physiology and Ecology, P.O. Box 30772 GPO, Nairobi, Kenya.
| | - Lucy W Irungu
- School of Biological Sciences, University of Nairobi, P.O. Box 30197 GPO, Nairobi, Kenya.
| | - Wolfgang R Mukabana
- International Centre of Insect Physiology and Ecology, P.O. Box 30772 GPO, Nairobi, Kenya. .,School of Biological Sciences, University of Nairobi, P.O. Box 30197 GPO, Nairobi, Kenya.
| |
Collapse
|
16
|
Kawada H, Dida GO, Ohashi K, Kawashima E, Sonye G, Njenga SM, Mwandawiro C, Minakawa N. A small-scale field trial of pyriproxyfen-impregnated bed nets against pyrethroid-resistant Anopheles gambiae s.s. in western Kenya. PLoS One 2014; 9:e111195. [PMID: 25333785 PMCID: PMC4205095 DOI: 10.1371/journal.pone.0111195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/29/2014] [Indexed: 11/19/2022] Open
Abstract
Pyrethroid resistance is becoming a major problem for vector control programs, because at present, there are few suitable chemical substitutes for pyrethroids, as when used on bed nets the insecticide must have low mammalian toxicity as well as high activity to mosquitoes. Pyriproxyfen (PPF) is one of the most active chemicals among the juvenile hormone mimic (JHM) group. Sterilizing mosquitoes by using PPF could be a potential control measure for pyrethroid-resistant malaria vectors. We investigated the sterilizing effects of two types of PPF-impregnated bed nets – a 1% PPF-impregnated net and a 1% PPF +2% permethrin-impregnated net (Olyset Duo) – to pyrethroid-resistant wild population of Anopheles gambiae s.s. in western Kenya. High mortality of blood-fed mosquitos was observed 3 days post-collection, in the houses where PPF-impregnated nets were used, indicating the effect of PPF on the longevity of mosquitos that came in contact with the net. Reduction in the number of ovipositing females, number of eggs, and number of progeny per female were also observed in the houses in which both Olyset Duo and PPF-impregnated nets were used. This is the first field study showing the high sterilizing efficacy of PPF against wild pyrethroid-resistant An. gambiae s.s. population. In addition, we recognized the necessity of combined use of permethrin with PPF, in order to reduce the risk of mosquito bites and provide a level of personal protection. Further studies on wild pyrethroid-resistant mosquito populations such as An. arabiensis and An. funestus s.s. would provide more information on the practical use of the PPF-impregnated bed nets.
Collapse
Affiliation(s)
- Hitoshi Kawada
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- * E-mail:
| | - Gabriel O. Dida
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- School of Public Health, Maseno University, Kisumu, Kenya
| | - Kazunori Ohashi
- Health and Crop Sciences Research Laboratory, Sumitomo Chemical Co. Ltd., Hyogo, Japan
| | - Emiko Kawashima
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | - Sammy M. Njenga
- Eastern and Southern Africa Centre of International Parasite Control, Nairobi, Kenya
| | | | - Noboru Minakawa
- Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- The Global Center of Excellence Program, Nagasaki University, Nagasaki, Japan
| |
Collapse
|