1
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
2
|
Li Z, Ying Y, Zeng X, Liu J, Xie Y, Deng Z, Hu Z, Yang J. DNMT1/DNMT3a-mediated promoter hypermethylation and transcription activation of ICAM5 augments thyroid carcinoma progression. Funct Integr Genomics 2024; 24:12. [PMID: 38228798 DOI: 10.1007/s10142-024-01293-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Promoter methylation is one of the most studied epigenetic modifications and it is highly relevant to the onset and progression of thyroid carcinoma (THCA). This study investigates the promoter methylation and expression pattern of intercellular adhesion molecule 5 (ICAM5) in THCA. CpG islands with aberrant methylation pattern in THCA, and the expression profiles of the corresponding genes in THCA, were analyzed using bioinformatics. ICAM5 was suggested to have a hypermethylation status, and it was highly expressed in THCA tissues and cells. Its overexpression promoted proliferation, mobility, and tumorigenic activity of THCA cells. As for the downstream signaling, ICAM5 was found to activate the MAPK/ERK and MAPK/JNK signaling pathways. Either inhibition of ERK or JNK blocked the oncogenic effects of ICAM5. DNA methyltransferases 1 (DNMT1) and DNMT3a were found to induce promoter hypermethylation of ICAM5 in THCA cells. Knockdown of DNMT1 or DNMT3a decreased the ICAM5 expression and suppressed malignant properties of THCA cells in vitro and in vivo, which were, however, restored by further artificial ICAM5 overexpression. Collectively, this study reveals that DNMT1 and DNMT3a mediates promoter hypermethylation and transcription activation of ICAM5 in THCA, which promotes malignant progression of THCA through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Zanbin Li
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Yong Ying
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xiangtai Zeng
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Jiafeng Liu
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Yang Xie
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Zefu Deng
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Zhiqiang Hu
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Junjie Yang
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical College, No. 128, Jinling West Road, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
3
|
Wu D, Liu X, Jin Z. Placental mesenchymal stem cells-secreted proenkephalin suppresses the p38 MAPK signaling to block hyperproliferation of keloid fibroblasts. Tissue Cell 2023; 85:102218. [PMID: 37913601 DOI: 10.1016/j.tice.2023.102218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Thanks to their multi-potency and secretory functions, mesenchymal stem cells (MSCs) have long been established as an ideal cell type for skin wound healing and a candidate therapeutic strategy for excessive pathological scarring in the meantime. This study focuses on the effect of placental MSCs (PMSCs) on the activity of keloid fibroblasts (KFs) and the potential involvement of proenkephalin (PENK). METHODS Secretory protein of PMSC that are lowly expressed in KFs were predicted by bioinformatics analyses. The expression of PENK in KFs was detected by RT-qPCR and western blot analysis. PMSCs were co-cultured with KFs and dermal fibroblasts (DFs) to examine their effect on proliferation, migration, invasion, and apoptosis of the distinct cell types. PENK secretion by PMSCs and its uptake by KFs were examined by ELISA, WB, and immunofluorescence staining. Loss-of-functions of PENK and p38-MAPK were induced to examine the activity of KFs in vitro and in mice. RESULTS PENK, a secretory protein of PMSCs, was conspicuously downregulated in KFs compared to normal DFs. PMSC stimulation suppressed proliferation, migration, invasion, and resistance to apoptosis of the co-cultured KFs but not DFs, which was ascribed to the upregulation of PENK protein in KFs. PMSCs-secreted PENK suppressed p38 phosphorylation in KFs. The proliferative and aggressive properties of KFs in vitro and the nodule-forming capacity of KFs in vivo were promoted upon PENK downregulation but suppressed by the p38 MAPK inhibitor SB202190. CONCLUSION This work unravels that PMSCs-secreted PENK suppresses the p38 MAPK signaling to block hyperproliferation of KFs.
Collapse
Affiliation(s)
- Di Wu
- Department of Dermtology, Jilin Central Hospital, Jilin 132001, Jilin, PR China; Department of Dermtology, Affiliated Hospital of Yanbian University, Yanji 133000, Jilin, PR China
| | - Xiao Liu
- Department of Dermtology, Jilin Central Hospital, Jilin 132001, Jilin, PR China
| | - Zhehu Jin
- Department of Dermtology, Affiliated Hospital of Yanbian University, Yanji 133000, Jilin, PR China.
| |
Collapse
|
4
|
Gandla K, Babu AK, Unnisa A, Sharma I, Singh LP, Haque MA, Dashputre NL, Baig S, Siddiqui FA, Khandaker MU, Almujally A, Tamam N, Sulieman A, Khan SL, Emran TB. Carotenoids: Role in Neurodegenerative Diseases Remediation. Brain Sci 2023; 13:brainsci13030457. [PMID: 36979267 PMCID: PMC10046158 DOI: 10.3390/brainsci13030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Numerous factors can contribute to the development of neurodegenerative disorders (NDs), such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Oxidative stress (OS), a fairly common ND symptom, can be caused by more reactive oxygen species being made. In addition, the pathological state of NDs, which includes a high number of protein aggregates, could make chronic inflammation worse by activating microglia. Carotenoids, often known as "CTs", are pigments that exist naturally and play a vital role in the prevention of several brain illnesses. CTs are organic pigments with major significance in ND prevention. More than 600 CTs have been discovered in nature, and they may be found in a wide variety of creatures. Different forms of CTs are responsible for the red, yellow, and orange pigments seen in many animals and plants. Because of their unique structure, CTs exhibit a wide range of bioactive effects, such as anti-inflammatory and antioxidant effects. The preventive effects of CTs have led researchers to find a strong correlation between CT levels in the body and the avoidance and treatment of several ailments, including NDs. To further understand the connection between OS, neuroinflammation, and NDs, a literature review has been compiled. In addition, we have focused on the anti-inflammatory and antioxidant properties of CTs for the treatment and management of NDs.
Collapse
Affiliation(s)
- Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to be University), Hanamakonda 506001, Telangana, India
| | - Ancha Kishore Babu
- School of Pharmacy, KPJ Healthcare University, Persiaran Seriemas, Nilai 71800, Negeri Sembilan, Malaysia
| | - Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha'il, Ha'il 55476, Saudi Arabia
| | - Indu Sharma
- Department of Physics, Career Point University, Hamirpur 176041, Himachal Pradesh, India
| | - Laliteshwar Pratap Singh
- Department of Pharmaceutical Chemistry, Narayan Institute of Pharmacy, Gopal Narayan Singh University, Jamuhar, Sasaram 821305, Bihar, India
| | - Mahammad Akiful Haque
- Department of Pharmaceutical Analysis, School of Pharmacy, Anurag University, Hyderabad 500088, Telangana, India
| | - Neelam Laxman Dashputre
- Department of Pharmacology, METs, Institute of Pharmacy Bhujbal Knowledge City, Adgaon, Nashik 422003, Maharashtra, India
| | - Shahajan Baig
- Clinical Research Associate, Clinnex, Ahmedabad 380054, Gujarat, India
| | - Falak A Siddiqui
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| | - Abdullah Almujally
- Department of Biomedical Physics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Nissren Tamam
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdelmoneim Sulieman
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, P.O. Box 422, Alkharj 11942, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
5
|
Aydemir D, Surucu S, Basak AN, Ulusu NN. Evaluation of the Hematological and Serum Biochemistry Parameters in the Pre-Symptomatic and Symptomatic Stages of ALS Disease to Support Early Diagnosis and Prognosis. Cells 2022; 11:cells11223569. [PMID: 36428998 PMCID: PMC9688239 DOI: 10.3390/cells11223569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. Since there are no pathognomonic tests for ALS prognoses; clinical diagnoses of the disease take time and are usually difficult. Prognostic biomarkers are urgently needed for rapid and effective ALS prognoses. Male albino rats were divided into ten groups based on age: 0 (40-45 days old), A (70-75 days old), B (90-95 days old), C (110-115 days old), and D (130-135 days old). Each group was divided into two subgroups according to its mutation status: wild type (SOD1WT) or mutated (SOD1G93A). Serum biochemistry and hematological parameters were measured in 90 rats to evaluate possible biomarkers for faster ALS diagnoses and prognoses. Weight loss, cholesterol, creatinine, glucose, total bilirubin (TBIL), blood urine nitrogen (BUN), c-peptide, glucagon, PYY, white blood cell (WBC), lymphocyte (LYM), monocyte (MID), granulocyte (GRAN), red cell distribution width with standard deviation (RDW-SD), red cell distribution width with the coefficient of variation (RDW-CV), platelet (PLT), mean platelet volume (MPV), platelet distribution width (PDW), and procalcitonin (PCT) levels were changed in the SOD1G93A rats compared to the SOD1WT rats independently from aging. For the first time in the literature, we showed promising hematological and serum biochemistry parameters in the pre-symptomatic and symptomatic stages of ALS by eliminating the effects of aging. Our results can be used for early diagnoses and prognoses of ALS, improving the quality of life and survival time of ALS patients.
Collapse
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul 34450, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul 34450, Turkey
| | - Selcuk Surucu
- Department of Anatomy, School of Medicine, Koc University, Sariyer, Istanbul 34450, Turkey
| | - Ayse Nazli Basak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory, NDAL-KUTTAM, School of Medicine, Koç University, Istanbul 34010, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul 34450, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul 34450, Turkey
- Correspondence:
| |
Collapse
|
6
|
Rai SN, Singh P, Steinbusch HW, Vamanu E, Ashraf G, Singh MP. The Role of Vitamins in Neurodegenerative Disease: An Update. Biomedicines 2021; 9:1284. [PMID: 34680401 PMCID: PMC8533313 DOI: 10.3390/biomedicines9101284] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Acquiring the recommended daily allowance of vitamins is crucial for maintaining homeostatic balance in humans and other animals. A deficiency in or dysregulation of vitamins adversely affects the neuronal metabolism, which may lead to neurodegenerative diseases. In this article, we discuss how novel vitamin-based approaches aid in attenuating abnormal neuronal functioning in neurodegeneration-based brain diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and Prion disease. Vitamins show their therapeutic activity in Parkinson's disease by antioxidative and anti-inflammatory activity. In addition, different water- and lipid-soluble vitamins have also prevented amyloid beta and tau pathology. On the other hand, some results also show no correlation between vitamin action and the prevention of neurodegenerative diseases. Some vitamins also exhibit toxic activity too. This review discusses both the beneficial and null effects of vitamin supplementation for neurological disorders. The detailed mechanism of action of both water- and lipid-soluble vitamins is addressed in the manuscript. Hormesis is also an essential factor that is very helpful to determine the effective dose of vitamins. PubMed, Google Scholar, Web of Science, and Scopus were employed to conduct the literature search of original articles, review articles, and meta-analyses.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India;
| | - Payal Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi 221005, India;
| | - Harry W.M. Steinbusch
- Department of Cellular Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands;
- Department of Cognitive Neuroscience, DGIST, Daegu 42988, Korea
| | - Emanuel Vamanu
- Faculty of Biotechnology, The University of Agronomic Science and Veterinary Medicine, 59 Marasti blvd, 1 District, 011464 Bucharest, Romania
| | - Ghulam Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohan Prasad Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India;
| |
Collapse
|
7
|
Lanznaster D, Bejan-Angoulvant T, Gandía J, Blasco H, Corcia P. Is There a Role for Vitamin D in Amyotrophic Lateral Sclerosis? A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:697. [PMID: 32849187 PMCID: PMC7411408 DOI: 10.3389/fneur.2020.00697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/09/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative condition characterized by the progressive loss of motor neurons. Patients usually die 3–5 years after diagnosis from respiratory failure. Several studies investigated the role of vitamin D as a biomarker or a therapeutic option for ALS patients. To clarify the scientific evidence, we performed a systematic review and different meta-analyses regarding the potential role of vitamin D in ALS. Methods: We performed a systematic review of clinical trials, cohorts, and case–control studies retrieved from PubMed, EMBASE, and Cochrane databases reporting vitamin D levels as a putative biomarker for ALS diagnosis or prognosis or the effect of vitamin D supplementation in ALS patients. Whenever possible, data were pooled using a random-effects model, with an assessment of heterogeneity. Results: Out of 2,996 articles retrieved, we finally included 13 research articles, 12 observational studies (50% prospective), and 1 clinical trial. We found that ALS patients had slightly lower levels of vitamin D than controls (mean difference −6 ng/ml, 95% CI [−10.8; −1.3]), but important confounding factors were not considered in the studies analyzed. We found no relationship between vitamin D levels and ALS functional rate score—revised (ALSFRS-R), with highly heterogeneous results. Discordant results were reported in three studies regarding survival. Finally, five studies reported the effects of vitamin D supplementation with discordant results. Two of them showed a small improvement, whereas two others showed a deleterious effect on ALSFRS-R. One very small clinical trial with important methodological limitations showed some improvement in ALSFRS-R with high doses of vitamin D compared with normal doses. Conclusions: Our review did not find evidence to support the role of vitamin D on ALS diagnosis, prognosis, or treatment. Most studies had important limitations, mostly regarding the risk of bias for not considering confounding factors. Vitamin D supplementation should be offered to ALS patients to avoid other health issues related to vitamin D deficiency, but there is not enough evidence to support the use of vitamin D as a therapy for ALS.
Collapse
Affiliation(s)
| | | | - Jorge Gandía
- UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Helene Blasco
- UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| | - Philippe Corcia
- UMR 1253, iBrain, University of Tours, Inserm, Tours, France
| |
Collapse
|
8
|
Wang M, Liu Z, Sun W, Yuan Y, Jiao B, Zhang X, Shen L, Jiang H, Xia K, Tang B, Wang J. Association Between Vitamins and Amyotrophic Lateral Sclerosis: A Center-Based Survey in Mainland China. Front Neurol 2020; 11:488. [PMID: 32625160 PMCID: PMC7314934 DOI: 10.3389/fneur.2020.00488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
To date, conflicting results about the role of vitamins in amyotrophic lateral sclerosis (ALS) have been reported along with a lack of systematic studies on all types of serum vitamins in patients with ALS. Moreover, extensive studies have been conducted on vitamins in other neurodegenerative diseases; however, whether serum vitamin alterations in ALS are similar to those in other neurodegenerative diseases remains unclear. Therefore, we performed a study involving a large Chinese cohort of patients with ALS to address this gap. In this study, 202 patients with ALS, 214 with a neurodegenerative disease that mimicked ALS (mimics), and 208 healthy controls were enrolled. Serum vitamins of all subjects were examined under fasting state in Clinical Laboratory. As a result, we found that higher vitamin A and E levels and lower vitamin B2, B9, and C levels were in patients with ALS compared to healthy controls, and that high vitamin A and E levels, and low vitamin B2, B9, and C levels were associated with an increased risk for ALS. In addition, serum vitamin C was lower in early-onset ALS patients compared to those in late-onset ALS patients; however, there was no significant correlation between serum vitamins and age at onset, sites at onset, disease duration, or disease severity of ALS. We also found that patients with ALS showed similar vitamin alterations to mimics, with the exception of vitamin E. In summary, our study adds information to the literature on the role of vitamins in ALS and provides support for clinical guidance regarding dietary changes and vitamin supplements in patients with ALS.
Collapse
Affiliation(s)
- Mengli Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weining Sun
- General Practice, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuewei Zhang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xia
- Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Laboratory of Medical Genetics, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
9
|
Kuraszkiewicz B, Goszczyńska H, Podsiadły-Marczykowska T, Piotrkiewicz M, Andersen P, Gromicho M, Grosskreutz J, Kuźma-Kozakiewicz M, Petri S, Stubbendorf B, Szacka K, Uysal H, de Carvalho M. Potential Preventive Strategies for Amyotrophic Lateral Sclerosis. Front Neurosci 2020; 14:428. [PMID: 32528241 PMCID: PMC7264408 DOI: 10.3389/fnins.2020.00428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
It may seem useless to propose preventive measures for a disease without established pathogenesis and successful therapy, such as amyotrophic lateral sclerosis (ALS). However, we will show that ALS shares essential molecular mechanisms with aging and that established anti-aging strategies, such as healthy diet or individually adjusted exercise, may be successfully applied to ameliorate the condition of ALS patients. These strategies might be applied for prevention if persons at ALS risk could be identified early enough. Recent research advances indicate that this may happen soon.
Collapse
Affiliation(s)
- B Kuraszkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - H Goszczyńska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - T Podsiadły-Marczykowska
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - M Piotrkiewicz
- Department of Methods of Brain Imaging and Functional Research of Nervous System, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - P Andersen
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - M Gromicho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - J Grosskreutz
- Department of Neurology, University Hospital Jena, Jena, Germany.,Jena Centre for Healthy Aging, University Hospital Jena, Jena, Germany
| | | | - S Petri
- Clinic for Neurology, Hannover Medical School, Hanover, Germany
| | - B Stubbendorf
- Department of Neurology, University Hospital Jena, Jena, Germany
| | - K Szacka
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - H Uysal
- Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - M de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
10
|
Narayanasamy K, Karthick R, Raj AK. High Prevalent Hypovitaminosis D Is Associated with Dysregulation of Calcium-parathyroid Hormone-vitamin D Axis in Patients with Chronic Liver Diseases. J Clin Transl Hepatol 2019; 7:15-20. [PMID: 30944814 PMCID: PMC6441643 DOI: 10.14218/jcth.2018.00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022] Open
Abstract
Background and Aims: Although hypovitaminosis D is common among patients with chronic liver disease (CLD), the data are inconsistent on its prevalence and its relationship with CLD. This study aimed to estimate the prevalence of hypovitaminosis D among patients with CLD and to determine the relationship between hypovitaminosis D and severity of liver dysfunction, and calcium (Ca), phosphate (PO4) and parathyroid hormone (PTH) levels in CLD. Methods: The study included 236 CLD patients attending the Department of Hepatology, Rajiv Gandhi Government General Hospital (Chennai, India). Serum levels of 25-hydroxyvitamin D (25(OH)D), PTH, Ca, and PO4 were estimated. Severity of liver dysfunction was graded using the Child-Turcotte-Pugh (CTP) score. Results: The first report from our population showed that 162 of 236 (68.6%) CLD patients had hypovitaminosis D (25(OH)D levels of <30 ng/mL), with higher frequency (124/162) 76.5% among CTP B, C patients. Significant negative correlation (r = -0.288, p = 0.0001) between 25(OH)D and CTP scores was noted in hypovitaminosis D conditions. Level of 25(OH)D was correlated negatively with PTH (r = -0.537, p = 0.0001), positively with Ca (r = 0.657, p = 0.0001), and positively with PO4 (r = 0.477, p = 0.0001) in sufficient vitamin D conditions. Conclusions: Hypovitaminosis D is associated with higher CTP scores and is strongly associated with dysregulation of the Ca-PTH-vitamin D axis in CLD. Timely measurement of vitamin D levels is essential, along with levels of PTH, Ca and PO4, to manage CLD patients.
Collapse
Affiliation(s)
- Krishnasamy Narayanasamy
- Department of Hepatology, Madras Medical College, Chennai, Tamil Nadu, India
- *Correspondence to: Krishnasamy Narayanasamy, Department of Hepatology, Madras Medical College, Chennai, Tamil Nadu 600003, India. Tel: +91-9841170145, E-mail: ; Rajendran Karthick, Multidisciplinary Research Unit (MRU), Madras Medical College, Chennai, Tamil Nadu 600003, India. Tel: +91-9790787578, E-mail:
| | - Rajendran Karthick
- Multidisciplinary Research Unit (MRU), Madras Medical College, Chennai, Tamil Nadu, India
- *Correspondence to: Krishnasamy Narayanasamy, Department of Hepatology, Madras Medical College, Chennai, Tamil Nadu 600003, India. Tel: +91-9841170145, E-mail: ; Rajendran Karthick, Multidisciplinary Research Unit (MRU), Madras Medical College, Chennai, Tamil Nadu 600003, India. Tel: +91-9790787578, E-mail:
| | - A. Koodal Raj
- Multidisciplinary Research Unit (MRU), Madras Medical College, Chennai, Tamil Nadu, India
| |
Collapse
|
11
|
Vitamin D and Neurological Diseases: An Endocrine View. Int J Mol Sci 2017; 18:ijms18112482. [PMID: 29160835 PMCID: PMC5713448 DOI: 10.3390/ijms18112482] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Vitamin D system comprises hormone precursors, active metabolites, carriers, enzymes, and receptors involved in genomic and non-genomic effects. In addition to classical bone-related effects, this system has also been shown to activate multiple molecular mediators and elicit many physiological functions. In vitro and in vivo studies have, in fact, increasingly focused on the "non-calcemic" actions of vitamin D, which are associated with the maintenance of glucose homeostasis, cardiovascular morbidity, autoimmunity, inflammation, and cancer. In parallel, growing evidence has recognized that a multimodal association links vitamin D system to brain development, functions and diseases. With vitamin D deficiency reaching epidemic proportions worldwide, there is now concern that optimal levels of vitamin D in the bloodstream are also necessary to preserve the neurological development and protect the adult brain. The aim of this review is to highlight the relationship between vitamin D and neurological diseases.
Collapse
|
12
|
Peters TL, Weibull CE, Fang F, Sandler DP, Lambert PC, Ye W, Kamel F. Association of fractures with the incidence of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2017; 18:419-425. [PMID: 28316249 DOI: 10.1080/21678421.2017.1300287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Elevated bone turnover observed in ALS patients suggests poor bone health and increased fracture risk. We therefore evaluated the relationship of fracture to subsequent ALS risk. METHODS We followed 4,529,460 Swedes from 1987 to 2010 and identified ALS and fractures from the Swedish National Patient Register. We examined associations of ALS risk with all fractures, osteoporotic and non-osteoporotic fractures, and traumatic and non-traumatic fractures among individuals aged 30-80 years. We used Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). We analysed the association of ALS with time since fracture using a Poisson regression model. RESULTS All fractures (HR: 1.51, 95% CI 1.39-1.65) as well as osteoporotic (HR: 1.59, 95% CI 1.41-1.79), non-osteoporotic (HR: 1.46, 95% CI 1.31-1.63), traumatic (HR: 1.50, 95% CI 1.37-1.63), and non-traumatic (HR: 1.80, 95% CI 1.35-2.40) fractures were associated with a higher incidence of ALS. Increased ALS incidence was associated with fractures occurring from one (HR: 2.33, 95% CI 2.04-2.66) to 18 (HR: 1.19, 95% CI 1.01-1.43) years before ALS diagnosis. CONCLUSIONS Poor bone health may be related to ALS. These findings may offer insight into ALS pathophysiology.
Collapse
Affiliation(s)
- Tracy L Peters
- a Department of Medical Epidemiology and Biostatistics , Karolinska Institutet , Stockholm , Sweden.,b Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park , NC , USA , and
| | - Caroline E Weibull
- a Department of Medical Epidemiology and Biostatistics , Karolinska Institutet , Stockholm , Sweden
| | - Fang Fang
- a Department of Medical Epidemiology and Biostatistics , Karolinska Institutet , Stockholm , Sweden
| | - Dale P Sandler
- b Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park , NC , USA , and
| | - Paul C Lambert
- a Department of Medical Epidemiology and Biostatistics , Karolinska Institutet , Stockholm , Sweden.,c Department of Health Sciences , University of Leicester , Leicester , UK
| | - Weimin Ye
- a Department of Medical Epidemiology and Biostatistics , Karolinska Institutet , Stockholm , Sweden
| | - Freya Kamel
- b Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park , NC , USA , and
| |
Collapse
|
13
|
Török N, Török R, Klivényi P, Engelhardt J, Vécsei L. Investigation of vitamin D receptor polymorphisms in amyotrophic lateral sclerosis. Acta Neurol Scand 2016; 133:302-8. [PMID: 26190642 DOI: 10.1111/ane.12463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) patients manifest aberrations in the vitamin D endocrine system, with a vitamin D deficiency. Genetic investigations have identified those proteins which link vitamin D to ALS pathology: major histocompatibility complex class II molecules, toll-like receptors, poly(ADP ribose) polymerase-1, haeme oxygenase-1, the reduced form of nicotinamide adenine dinucleotide phosphate and calcium-binding proteins. Vitamin D additionally impacts ALS through cell-signalling mechanisms: glutamate, matrix metalloproteinases, the Wnt/β-catenin signalling pathway, mitogen-activated protein kinase pathways, prostaglandins, reactive oxygen species and nitric oxide synthase, but its role has been only poorly investigated. OBJECTIVE Our aim was to investigate vitamin D receptor (VDR) gene single nucleotide polymorphisms (SNPs) in an ALS population. This gene encodes the nuclear hormone receptor for vitamin D3. MATERIALS AND METHODS A total of 75 consecutive sporadic ALS patients (~20% of the Hungarian ALS population) and 97 healthy controls were enrolled to investigate the possible effects of the different VDR alleles. A restriction fragment length polymorphism technique was utilized for allele discrimination. RESULTS One of the four investigated SNPs was associated with the disease, but none of the alleles of these SNPs influenced the age at disease onset. The ApaI A allele was more frequent in the ALS group than in the control group and may be an ALS risk factor. CONCLUSIONS This is the first verification of the genetic link between ALS and VDR. However, further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- N. Török
- Department of Neurology; Faculty of Medicine; Albert Szent-Györgyi Clinical Centre; University of Szeged; Szeged Hungary
| | - R. Török
- Department of Neurology; Faculty of Medicine; Albert Szent-Györgyi Clinical Centre; University of Szeged; Szeged Hungary
| | - P. Klivényi
- Department of Neurology; Faculty of Medicine; Albert Szent-Györgyi Clinical Centre; University of Szeged; Szeged Hungary
| | - J. Engelhardt
- Department of Neurology; Faculty of Medicine; Albert Szent-Györgyi Clinical Centre; University of Szeged; Szeged Hungary
| | - L. Vécsei
- Department of Neurology; Faculty of Medicine; Albert Szent-Györgyi Clinical Centre; University of Szeged; Szeged Hungary
- MTA-SZTE Neuroscience Research Group; Szeged Hungary
| |
Collapse
|
14
|
Seo JS, Choi J, Leem YH, Han PL. Rosmarinic Acid Alleviates Neurological Symptoms in the G93A-SOD1 Transgenic Mouse Model of Amyotrophic Lateral Sclerosis. Exp Neurobiol 2015; 24:341-50. [PMID: 26713081 PMCID: PMC4688333 DOI: 10.5607/en.2015.24.4.341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/29/2015] [Accepted: 08/21/2015] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons in the brain and spinal cord, resulting in paralysis of voluntary skeletal muscles and eventually death, usually within 2~3 years of symptom onset. The pathophysiology mechanism underlying ALS is not yet clearly understood. Moreover the available medication for treating ALS, riluzole, only modestly improves neurological symptoms and increases survival by a few months. Therefore, improved therapeutic strategies are urgently needed. In the present study, we investigated whether rosmarinic acid has a therapeutic potential to alleviate neurological deterioration in the G93A-SOD1 transgenic mouse model of ALS. Treatment of G93A-SOD1 transgenic mice with rosmarinic acid from 7 weeks of age at the dose of 400 mg/kg/day significantly extended survival, and relieved motor function deficits. Specifically, disease onset and symptom progression were delayed by more than one month. These symptomatic improvements were correlated with decreased oxidative stress and reduced neuronal loss in the ventral horns of G93A-SOD1 mice. These results support that rosmarinic acid is a potentially useful supplement for relieving ALS symptoms.
Collapse
Affiliation(s)
- Ji-Seon Seo
- Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Juli Choi
- Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Yea-Hyun Leem
- Department of Chemistry & Nano Science, Ewha Womans University, Seoul 03760, Korea. ; Brain Disease Research Institute, Ewha Womans University, Seoul 03760, Korea
| | - Pyung-Lim Han
- Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea. ; Department of Chemistry & Nano Science, Ewha Womans University, Seoul 03760, Korea. ; Brain Disease Research Institute, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
15
|
Yuste JE, Tarragon E, Campuzano CM, Ros-Bernal F. Implications of glial nitric oxide in neurodegenerative diseases. Front Cell Neurosci 2015; 9:322. [PMID: 26347610 PMCID: PMC4538301 DOI: 10.3389/fncel.2015.00322] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS) that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jose Enrique Yuste
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain
| | - Ernesto Tarragon
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain ; Département des Sciences Biomédicales et Précliniques/Biochimie et Physiologie du Système Nerveux, Centre de Recherche du Cyclotron, Université de Liège Liège, Belgium
| | - Carmen María Campuzano
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain
| | - Francisco Ros-Bernal
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain
| |
Collapse
|
16
|
Moghimi E, Solomon JA, Gianforcaro A, Hamadeh MJ. Dietary Vitamin D3 Restriction Exacerbates Disease Pathophysiology in the Spinal Cord of the G93A Mouse Model of Amyotrophic Lateral Sclerosis. PLoS One 2015; 10:e0126355. [PMID: 26020962 PMCID: PMC4447353 DOI: 10.1371/journal.pone.0126355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/22/2015] [Indexed: 12/11/2022] Open
Abstract
Background Dietary vitamin D3 (D3) restriction reduces paw grip endurance and motor performance in G93A mice, and increases inflammation and apoptosis in the quadríceps of females. ALS, a neuromuscular disease, causes progressive degeneration of motor neurons in the brain and spinal cord. Objective We analyzed the spinal cords of G93A mice following dietary D3 restriction at 2.5% the adequate intake (AI) for oxidative damage (4-HNE, 3-NY), antioxidant enzymes (SOD2, catalase, GPx1), inflammation (TNF-α, IL-6, IL-10), apoptosis (bax/bcl-2 ratio, cleaved/pro-caspase 3 ratio), neurotrophic factor (GDNF) and neuron count (ChAT, SMI-36/SMI-32 ratio). Methods Beginning at age 25 d, 42 G93A mice were provided food ad libitum with either adequate (AI;1 IU D3/g feed; 12 M, 11 F) or deficient (DEF; 0.025 IU D3/g feed; 10 M, 9 F) D3. At age 113 d, the spinal cords were analyzed for protein content. Differences were considered significant at P ≤ 0.10, since this was a pilot study. Results DEF mice had 16% higher 4-HNE (P = 0.056), 12% higher GPx1 (P = 0.057) and 23% higher Bax/Bcl2 ratio (P = 0.076) vs. AI. DEF females had 29% higher GPx1 (P = 0.001) and 22% higher IL-6 (P = 0.077) vs. AI females. DEF males had 23% higher 4-HNE (P = 0.066) and 18% lower SOD2 (P = 0.034) vs. AI males. DEF males had 27% lower SOD2 (P = 0.004), 17% lower GPx1 (P = 0.070), 29% lower IL-6 (P = 0.023) and 22% lower ChAT (P = 0.082) vs. DEF females. Conclusion D3 deficiency exacerbates disease pathophysiology in the spinal cord of G93A mice, the exact mechanisms are sex-specific. This is in accord with our previous results in the quadriceps, as well as functional and disease outcomes.
Collapse
Affiliation(s)
- Elnaz Moghimi
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Jesse A. Solomon
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Alexandro Gianforcaro
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Mazen J. Hamadeh
- School of Kinesiology and Health Science, Faculty of Health, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
17
|
Vitamin D deficiency in patients with primary immune-mediated peripheral neuropathies. J Neurol Sci 2014; 345:184-8. [DOI: 10.1016/j.jns.2014.07.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 12/14/2022]
|
18
|
Sedighi M, Haghnegahdar A. Role of vitamin D3 in treatment of lumbar disc herniation--pain and sensory aspects: study protocol for a randomized controlled trial. Trials 2014; 15:373. [PMID: 25257359 PMCID: PMC4190421 DOI: 10.1186/1745-6215-15-373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/04/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Vitamin D receptors have been identified in the spinal cord, nerve roots, dorsal root ganglia and glial cells, and its genetic polymorphism association with the development of lumbar disc degeneration and herniation has been documented. Metabolic effects of active vitamin D metabolites in the nucleus pulposus and annulus fibrosus cells have been studied. Lumbar disc herniation is a process that involves immune and inflammatory cells and processes that are targets for immune regulatory actions of vitamin D as a neurosteroid hormone. In addition to vitamin D's immune modulatory properties, its receptors have been identified in skeletal muscles. It also affects sensory neurons to modulate pain. In this study, we aim to study the role of vitamin D3 in discogenic pain and related sensory deficits. Additionally, we will address how post-treatment 25-hydroxy vitamin D3 level influences pain and sensory deficits severity. The cut-off value for serum 25-hydroxy vitamin D3 that would be efficacious in improving pain and sensory deficits in lumbar disc herniation will also be studied. METHODS/DESIGN We will conduct a randomized, placebo-controlled, double-blind clinical trial. Our study population will include 380 cases with one-level and unilateral lumbar disc herniation with duration of discogenic pain less than 8 weeks. Individuals who do not have any contraindications, will be divided into three groups based on serum 25-hydroxy vitamin D3 level, and each group will be randomized to receive either a single-dose 300,000-IU intramuscular injection of vitamin D3 or placebo. All patients will be under conservative treatment. Pre-treatment and post-treatment assessments will be performed with the McGill Pain Questionnaire and a visual analogue scale. For the 15-day duration of this study, questionnaires will be filled out during telephone interviews every 3 days (a total of five times). The initial and final interviews will be scheduled at our clinic. After 15 days, serum 25-hydroxy vitamin D3 levels will be measured for those who have received vitamin D3 (190 individuals). TRIAL REGISTRATION Iranian Registry for Clinical Trials ID: IRCT2014050317534N1 (trial registration: 5 June 2014).
Collapse
Affiliation(s)
- Mahsa Sedighi
- Department of Neurosurgery, Shiraz Medical School, Shiraz University of Medical Sciences, PO Box 71345-1536, Shiraz, Iran.
| | | |
Collapse
|
19
|
Increased IL-17, a Pathogenic Link between Hepatosplenic Schistosomiasis and Amyotrophic Lateral Sclerosis: A Hypothesis. Case Reports Immunol 2014; 2014:804761. [PMID: 25379310 PMCID: PMC4207377 DOI: 10.1155/2014/804761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/15/2014] [Indexed: 01/05/2023] Open
Abstract
The immune system protects the organism from foreign invaders and foreign substances and is involved in physiological functions that range from tissue repair to neurocognition. However, an excessive or dysregulated immune response can cause immunopathology and disease. A 39-year-old man was affected by severe hepatosplenic schistosomiasis mansoni and by amyotrophic lateral sclerosis. One question that arose was, whether there was a relation between the parasitic and the neurodegenerative disease. IL-17, a proinflammatory cytokine, is produced mainly by T helper-17 CD4 cells, a recently discovered new lineage of effector CD4 T cells. Experimental mouse models of schistosomiasis have shown that IL-17 is a key player in the immunopathology of schistosomiasis. There are also reports that suggest that IL-17 might have an important role in the pathogenesis of amyotrophic lateral sclerosis. It is hypothesized that the factors that might have led to increased IL-17 in the hepatosplenic schistosomiasis mansoni might also have contributed to the development of amyotrophic lateral sclerosis in the described patient. A multitude of environmental factors, including infections, xenobiotic substances, intestinal microbiota, and vitamin D deficiency, that are able to induce a proinflammatory immune response polarization, might favor the development of amyotrophic lateral sclerosis in predisposed individuals.
Collapse
|
20
|
RNA-Binding Proteins Associated Molecular Mechanisms of Motor Neuron Degeneration Pathogenesis. Mol Biotechnol 2014; 56:779-86. [DOI: 10.1007/s12033-014-9785-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
|