1
|
Weiner SP, Vasquez C, Song S, Zhao K, Ali O, Rosenkilde D, Froemke RC, Carr KD. Sex difference in the effect of environmental enrichment on food restriction-induced persistence of cocaine conditioned place preference and mechanistic underpinnings. ADDICTION NEUROSCIENCE 2024; 10:100142. [PMID: 38323217 PMCID: PMC10843874 DOI: 10.1016/j.addicn.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Psychosocial and environmental factors, including loss of natural reward, contribute to the risk of drug abuse. Reward loss has been modeled in animals by removal from social or sexual contact, transfer from enriched to impoverished housing, or restriction of food. We previously showed that food restriction increases the unconditioned rewarding effects of abused drugs and the conditioned incentive effects of drug-paired environments. Mechanistic studies provided evidence of decreased basal dopamine (DA) transmission, adaptive upregulation of signaling downstream of D1 DA receptor stimulation, synaptic upscaling and incorporation of calcium-permeable AMPA receptors (CP-AMPARs) in medium spiny neurons (MSNs) of nucleus accumbens (NAc). These findings align with the still evolving 'reward deficiency' hypothesis of drug abuse. The present study tested whether a compound natural reward that is known to increase DA utilization, environmental enrichment, would prevent the persistent expression of cocaine conditioned place preference (CPP) otherwise observed in food restricted rats, along with the mechanistic underpinnings. Because nearly all prior investigations of both food restriction and environmental enrichment effects on cocaine CPP were conducted in male rodents, both sexes were included in the present study. Results indicate that environmental enrichment curtailed the persistence of CPP expression, decreased signaling downstream of the D1R, and decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) in NAc MSNs of food restricted male, but not female, rats. The failure of environmental enrichment to significantly decrease food restriction-induced synaptic insertion of CP-AMPARs, and how this may accord with previous pharmacological findings that blockade of CP-AMPARs reverses behavioral effects of food restriction is discussed. In addition, it is speculated that estrous cycle-dependent fluctuations in DA release, receptor density and MSN excitability may obscure the effect of increased DA signaling during environmental enrichment, thereby interfering with development of the cellular and behavioral effects that enrichment produced in males.
Collapse
Affiliation(s)
- Sydney P. Weiner
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Carolina Vasquez
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Diabetes Research Program, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Soomin Song
- Department of Pathology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Kaiyang Zhao
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Omar Ali
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Danielle Rosenkilde
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Robert C. Froemke
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Otolaryngology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Kenneth D. Carr
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| |
Collapse
|
2
|
Koesters AG, Rich MM, Engisch KL. Diverging from the Norm: Reevaluating What Miniature Excitatory Postsynaptic Currents Tell Us about Homeostatic Synaptic Plasticity. Neuroscientist 2024; 30:49-70. [PMID: 35904350 DOI: 10.1177/10738584221112336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The idea that the nervous system maintains a set point of network activity and homeostatically returns to that set point in the face of dramatic disruption-during development, after injury, in pathologic states, and during sleep/wake cycles-is rapidly becoming accepted as a key plasticity behavior, placing it alongside long-term potentiation and depression. The dramatic growth in studies of homeostatic synaptic plasticity of miniature excitatory synaptic currents (mEPSCs) is attributable, in part, to the simple yet elegant mechanism of uniform multiplicative scaling proposed by Turrigiano and colleagues: that neurons sense their own activity and globally multiply the strength of every synapse by a single factor to return activity to the set point without altering established differences in synaptic weights. We have recently shown that for mEPSCs recorded from control and activity-blocked cultures of mouse cortical neurons, the synaptic scaling factor is not uniform but is close to 1 for the smallest mEPSC amplitudes and progressively increases as mEPSC amplitudes increase, which we term divergent scaling. Using insights gained from simulating uniform multiplicative scaling, we review evidence from published studies and conclude that divergent synaptic scaling is the norm rather than the exception. This conclusion has implications for hypotheses about the molecular mechanisms underlying synaptic scaling.
Collapse
Affiliation(s)
- Andrew G Koesters
- Department of Behavior, Cognition, and Neurophysiology, Environmental Health Effects Laboratory, Naval Medical Research Unit-Dayton, Wright-Patterson AFB, OH, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Kathrin L Engisch
- Department of Neuroscience, Cell Biology, and Physiology, College of Science and Mathematics, and Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
3
|
Canovi A, Orlacchio R, Poulletier de Gannes F, Lévêque P, Arnaud-Cormos D, Lagroye I, Garenne A, Percherancier Y, Lewis N. In vitro exposure of neuronal networks to the 5G-3.5 GHz signal. Front Public Health 2023; 11:1231360. [PMID: 37608978 PMCID: PMC10441122 DOI: 10.3389/fpubh.2023.1231360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction The current deployment of the fifth generation (5G) of wireless communications raises new questions about the potential health effects of exposure to radiofrequency (RF) fields. So far, most of the established biological effects of RF have been known to be caused by heating. We previously reported inhibition of the spontaneous electrical activity of neuronal networks in vitro when exposed to 1.8 GHz signals at specific absorption rates (SAR) well above the guidelines. The present study aimed to assess the effects of RF fields at 3.5 GHz, one of the frequencies related to 5G, on neuronal activity in-vitro. Potential differences in the effects elicited by continuous-wave (CW) and 5G-modulated signals were also investigated. Methods Spontaneous activity of neuronal cultures from embryonic cortices was recorded using 60-electrode multi-electrode arrays (MEAs) between 17 and 27 days in vitro. The neuronal cultures were subjected to 15 min RF exposures at SAR of 1, 3, and 28 W/kg. Results At SAR close to the guidelines (1 and 3 W/kg), we found no conclusive evidence that 3.5 GHz RF exposure impacts the activity of neurons in vitro. On the contrary, CW and 5G-modulated signals elicited a clear decrease in bursting and total firing rates during RF exposure at high SAR levels (28 W/kg). Our experimental findings extend our previous results, showing that RF, at 1.8 to 3.5 GHz, inhibits the electrical activity of neurons in vitro at levels above environmental standards.
Collapse
Affiliation(s)
- Anne Canovi
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Rosa Orlacchio
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
- Paris Sciences et Lettres Research University, École Pratique des Hautes Études (EPHE), Paris, France
| | | | | | - Delia Arnaud-Cormos
- Univ. Limoges, CNRS, XLIM, UMR 7252, Limoges, France
- Institut Universitaire de France (IUF), Paris, France
| | - Isabelle Lagroye
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
- Paris Sciences et Lettres Research University, École Pratique des Hautes Études (EPHE), Paris, France
| | - André Garenne
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | | | - Noëlle Lewis
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| |
Collapse
|
4
|
Khodaei S, Wang DS, Orser BA. Reduced excitatory neurotransmission in the hippocampus after inflammation and sevoflurane anaesthesia. BJA OPEN 2023; 6:100143. [PMID: 37588178 PMCID: PMC10430808 DOI: 10.1016/j.bjao.2023.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 08/18/2023]
Abstract
Background Inflammation and general anaesthesia likely contribute to perioperative neurocognitive disorders, possibly by causing a neuronal imbalance of excitation and inhibition. We showed previously that treatment with lipopolysaccharide (LPS) and sevoflurane causes a sustained increase in a tonic inhibitory conductance in the hippocampus; however, whether excitatory neurotransmission is also altered remains unknown. The goal of this study was to examine excitatory synaptic currents in the hippocampus after treatment with LPS and sevoflurane. Synaptic plasticity in the hippocampus, a cellular correlate of learning and memory, was also studied. Methods Mice were injected with vehicle or LPS (1 mg kg-1 i.p.), and after 24 h they were then exposed to vehicle or sevoflurane (2.3%; 2 h). Hippocampal slices were prepared 48 h later. Excitatory synaptic currents were recorded from pyramidal neurones. Long-term potentiation (LTP) and long-term depression (LTD) were studied in the Schaffer collateral-cornu ammonis 1 pathway. Results The amplitude of miniature excitatory postsynaptic currents (EPSCs) was reduced after LPS+sevoflurane (P<0.001), whereas that of spontaneous EPSCs was unaltered, as evidenced by cumulative distribution plots. The frequency, area, and kinetics of both miniature and spontaneous EPSCs were unchanged, as were LTP and LTD. Conclusions The reduced amplitude of miniature EPSCs, coupled with the previously reported increase in tonic inhibition, indicates that the combination of LPS and sevoflurane markedly disrupts the balance of excitation and inhibition. Restoring this balance by pharmacologically enhancing excitatory neurotransmission and inhibiting the tonic current may represent an effective therapeutic option for perioperative neurocognitive disorders.
Collapse
Affiliation(s)
- Shahin Khodaei
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dian-Shi Wang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Beverley A. Orser
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anesthesiology & Pain Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
5
|
Mecca CM, Chao D, Yu G, Feng Y, Segel I, Zhang Z, Rodriguez-Garcia DM, Pawela CP, Hillard CJ, Hogan QH, Pan B. Dynamic Change of Endocannabinoid Signaling in the Medial Prefrontal Cortex Controls the Development of Depression After Neuropathic Pain. J Neurosci 2021; 41:7492-7508. [PMID: 34244365 PMCID: PMC8412994 DOI: 10.1523/jneurosci.3135-20.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/15/2023] Open
Abstract
Many patients with chronic pain conditions suffer from depression. The mechanisms underlying pain-induced depression are still unclear. There are critical links of medial prefrontal cortex (mPFC) synaptic function to depression, with signaling through the endocannabinoid (eCB) system as an important contributor. We hypothesized that afferent noxious inputs after injury compromise activity-dependent eCB signaling in the mPFC, resulting in depression. Depression-like behaviors were tested in male and female rats with traumatic neuropathy [spared nerve injury (SNI)], and neuronal activity in the mPFC was monitored using the immediate early gene c-fos and in vivo electrophysiological recordings. mPFC eCB Concentrations were determined using mass spectrometry, and behavioral and electrophysiological experiments were used to evaluate the role of alterations in eCB signaling in depression after pain. SNI-induced pain induced the development of depression phenotypes in both male and female rats. Pyramidal neurons in mPFC showed increased excitability followed by reduced excitability in the onset and prolonged phases of pain, respectively. Concentrations of the eCBs, 2-arachidonoylglycerol (2-AG) in the mPFC, were elevated initially after SNI, and our results indicate that this resulted in a loss of CB1R function on GABAergic interneurons in the mPFC. These data suggest that excessive release of 2-AG as a result of noxious stimuli triggers use-dependent loss of function of eCB signaling leading to excessive GABA release in the mPFC, with the final result being behavioral depression.SIGNIFICANCE STATEMENT Pain has both somatosensory and affective components, so the complexity of mechanisms underlying chronic pain is best represented by a biopsychosocial model that includes widespread CNS dysfunction. Many patients with chronic pain conditions develop depression. The mechanism by which pain causes depression is unclear. Although manipulation of the eCB signaling system as an avenue for providing analgesia per se has not shown much promise in previous studies. An important limitation of past research has been inadequate consideration of the dynamic nature of the connection between pain and depression as they develop. Here, we show that activity-dependent synthesis of eCBs during the initial onset of persistent pain is the critical link leading to depression when pain is persistent.
Collapse
Affiliation(s)
- Christina M Mecca
- Departments of Anesthesiology
- Cell Biology, Neurobiology, and Anatomy
| | | | | | | | | | | | | | - Christopher P Pawela
- Departments of Anesthesiology
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Cecilia J Hillard
- Pharmacology and Toxicology
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Quinn H Hogan
- Departments of Anesthesiology
- Cell Biology, Neurobiology, and Anatomy
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Bin Pan
- Departments of Anesthesiology
- Cell Biology, Neurobiology, and Anatomy
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
6
|
O'Neil SD, Rácz B, Brown WE, Gao Y, Soderblom EJ, Yasuda R, Soderling SH. Action potential-coupled Rho GTPase signaling drives presynaptic plasticity. eLife 2021; 10:63756. [PMID: 34269176 PMCID: PMC8285108 DOI: 10.7554/elife.63756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 07/06/2021] [Indexed: 12/30/2022] Open
Abstract
In contrast to their postsynaptic counterparts, the contributions of activity-dependent cytoskeletal signaling to presynaptic plasticity remain controversial and poorly understood. To identify and evaluate these signaling pathways, we conducted a proteomic analysis of the presynaptic cytomatrix using in vivo biotin identification (iBioID). The resultant proteome was heavily enriched for actin cytoskeleton regulators, including Rac1, a Rho GTPase that activates the Arp2/3 complex to nucleate branched actin filaments. Strikingly, we find Rac1 and Arp2/3 are closely associated with synaptic vesicle membranes in adult mice. Using three independent approaches to alter presynaptic Rac1 activity (genetic knockout, spatially restricted inhibition, and temporal optogenetic manipulation), we discover that this pathway negatively regulates synaptic vesicle replenishment at both excitatory and inhibitory synapses, bidirectionally sculpting short-term synaptic depression. Finally, we use two-photon fluorescence lifetime imaging to show that presynaptic Rac1 activation is coupled to action potentials by voltage-gated calcium influx. Thus, this study uncovers a previously unrecognized mechanism of actin-regulated short-term presynaptic plasticity that is conserved across excitatory and inhibitory terminals. It also provides a new proteomic framework for better understanding presynaptic physiology, along with a blueprint of experimental strategies to isolate the presynaptic effects of ubiquitously expressed proteins.
Collapse
Affiliation(s)
| | - Bence Rácz
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| | - Walter Evan Brown
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Yudong Gao
- Department of Cell Biology, Duke University Medical Center, Durham, United States
| | - Erik J Soderblom
- Department of Cell Biology, Duke University Medical Center, Durham, United States.,Proteomics and Metabolomics Shared Resource and Center for Genomic and Computational Biology, Duke University Medical Center, Durham, United States
| | - Ryohei Yasuda
- Max Planck Florida Institute for Neuroscience, Jupiter, United States
| | - Scott H Soderling
- Department of Neurobiology, Duke University Medical Center, Durham, United States.,Department of Cell Biology, Duke University Medical Center, Durham, United States
| |
Collapse
|
7
|
Bhimreddy M, Rushton E, Kopke DL, Broadie K. Secreted C-type lectin regulation of neuromuscular junction synaptic vesicle dynamics modulates coordinated movement. J Cell Sci 2021; 134:261954. [PMID: 33973638 DOI: 10.1242/jcs.257592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/03/2021] [Indexed: 11/20/2022] Open
Abstract
The synaptic cleft manifests enriched glycosylation, with structured glycans coordinating signaling between presynaptic and postsynaptic cells. Glycosylated signaling ligands orchestrating communication are tightly regulated by secreted glycan-binding lectins. Using the Drosophila neuromuscular junction (NMJ) as a model glutamatergic synapse, we identify a new Ca2+-binding (C-type) lectin, Lectin-galC1 (LGC1), which modulates presynaptic function and neurotransmission strength. We find that LGC1 is enriched in motoneuron presynaptic boutons and secreted into the NMJ extracellular synaptomatrix. We show that LGC1 limits locomotor peristalsis and coordinated movement speed, with a specific requirement for synaptic function, but not NMJ architecture. LGC1 controls neurotransmission strength by limiting presynaptic active zone (AZ) and postsynaptic glutamate receptor (GluR) aligned synapse number, reducing both spontaneous and stimulation-evoked synaptic vesicle (SV) release, and capping SV cycling rate. During high-frequency stimulation (HFS), mutants have faster synaptic depression and impaired recovery while replenishing depleted SV pools. Although LGC1 removal increases the number of glutamatergic synapses, we find that LGC1-null mutants exhibit decreased SV density within presynaptic boutons, particularly SV pools at presynaptic active zones. Thus, LGC1 regulates NMJ neurotransmission to modulate coordinated movement.
Collapse
Affiliation(s)
- Meghana Bhimreddy
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Emma Rushton
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Danielle L Kopke
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN 37235, USA.,Kennedy Center for Research on Human Development, Vanderbilt University and Medical Center, Nashville, TN 37235, USA.,Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| |
Collapse
|
8
|
Divergent Synaptic Scaling of Miniature EPSCs following Activity Blockade in Dissociated Neuronal Cultures. J Neurosci 2020; 40:4090-4102. [PMID: 32312887 DOI: 10.1523/jneurosci.1393-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 11/21/2022] Open
Abstract
Neurons can respond to decreased network activity with a homeostatic increase in the amplitudes of miniature EPSCs (mEPSCs). The prevailing view is that mEPSC amplitudes are uniformly multiplied by a single factor, termed "synaptic scaling." Deviations from purely multiplicative scaling have been attributed to biological differences, or to a distortion imposed by a detection threshold limit. Here, we demonstrate in neurons dissociated from cortices of male and female mice that the shift in mEPSC amplitudes observed in the experimental data cannot be reproduced by simulation of uniform multiplicative scaling, with or without the distortion caused by applying a detection threshold. Furthermore, we demonstrate explicitly that the scaling factor is not uniform but is close to 1 for small mEPSCs, and increases with increasing mEPSC amplitude across a substantial portion of the data. This pattern was also observed for previously published data from dissociated mouse hippocampal neurons and dissociated rat cortical neurons. The finding of "divergent scaling" shifts the current view of homeostatic plasticity as a process that alters all synapses on a neuron equally to one that must accommodate the differential effect observed for small versus large mEPSCs. Divergent scaling still accomplishes the essential homeostatic task of modifying synaptic strengths in the opposite direction of the activity change, but the consequences are greatest for those synapses which individually are more likely to bring a neuron to threshold.SIGNIFICANCE STATEMENT In homeostatic plasticity, the responses to chronic increases or decreases in network activity act in the opposite direction to restore normal activity levels. Homeostatic plasticity is likely to play a role in diseases associated with long-term changes in brain function, such as epilepsy and neuropsychiatric illnesses. One homeostatic response is the increase in synaptic strength following a chronic block of activity. Research is focused on finding a globally expressed signaling pathway, because it has been proposed that the plasticity is uniformly expressed across all synapses. Here, we show that the plasticity is not uniform. Our work suggests that homeostatic signaling molecules are likely to be differentially expressed across synapses.
Collapse
|
9
|
Xu C, Liu HJ, Qi L, Tao CL, Wang YJ, Shen Z, Tian CL, Lau PM, Bi GQ. Structure and plasticity of silent synapses in developing hippocampal neurons visualized by super-resolution imaging. Cell Discov 2020; 6:8. [PMID: 32133151 PMCID: PMC7039918 DOI: 10.1038/s41421-019-0139-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/09/2019] [Indexed: 01/26/2023] Open
Abstract
Excitatory synapses in the mammalian brain exhibit diverse functional properties in transmission and plasticity. Directly visualizing the structural correlates of such functional heterogeneity is often hindered by the diffraction-limited resolution of conventional optical imaging techniques. Here, we used super-resolution stochastic optical reconstruction microscopy (STORM) to resolve structurally distinct excitatory synapses formed on dendritic shafts and spines. The majority of these shaft synapses contained N-methyl-d-aspartate receptors (NMDARs) but not α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), suggesting that they were functionally silent. During development, as more spine synapses formed with increasing sizes and expression of AMPARs and NMDARs, shaft synapses exhibited moderate reduction in density with largely unchanged sizes and receptor expression. Furthermore, upon glycine stimulation to induce chemical long-term potentiation (cLTP), the previously silent shaft synapses became functional shaft synapses by recruiting more AMPARs than did spine synapses. Thus, silent shaft synapse may represent a synaptic state in developing neurons with enhanced capacity of activity-dependent potentiation.
Collapse
Affiliation(s)
- Cheng Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027 China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Hui-Jing Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230027 China
| | - Lei Qi
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230027 China
| | - Chang-Lu Tao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Yu-Jian Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Zeyu Shen
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Chong-Li Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230027 China
| | - Pak-Ming Lau
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230027 China
| | - Guo-Qiang Bi
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230027 China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 China
- CAS Center for Excellence in Brain Science and Intelligence Technology, and Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, Anhui 230027 China
| |
Collapse
|
10
|
Dias RB, Rodrigues TM, Rombo DM, Ribeiro FF, Rodrigues J, McGarvey J, Orcinha C, Henley JM, Sebastião AM. Erythropoietin Induces Homeostatic Plasticity at Hippocampal Synapses. Cereb Cortex 2018; 28:2795-2809. [PMID: 29053799 PMCID: PMC6117472 DOI: 10.1093/cercor/bhx159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/10/2017] [Accepted: 06/08/2017] [Indexed: 01/30/2023] Open
Abstract
The cytokine erythropoietin (EPO) is the master regulator of erythropoiesis. Intriguingly, many studies have shown that the cognitive performance of patients receiving EPO for its hematopoietic effects is enhanced, which prompted the growing interest in the use of EPO-based strategies to treat neuropsychiatric disorders. EPO plays key roles in brain development and maturation, but also modulates synaptic transmission. However, the mechanisms underlying the latter have remained elusive. Here, we show that acute (40-60 min) exposure to EPO presynaptically downregulates spontaneous and afferent-evoked excitatory transmission, without affecting basal firing of action potentials. Conversely, prolonged (3 h) exposure to EPO, if followed by a recovery period (1 h), is able to elicit a homeostatic increase in excitatory spontaneous, but not in evoked, synaptic transmission. These data lend support to the emerging view that segregated pathways underlie spontaneous and evoked neurotransmitter release. Furthermore, we show that prolonged exposure to EPO facilitates a form of hippocampal long-term potentiation that requires noncanonical recruitment of calcium-permeable AMPA receptors for its maintenance. These findings provide important new insight into the mechanisms by which EPO enhances neuronal function, learning, and memory.
Collapse
Affiliation(s)
- Raquel B Dias
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Tiago M Rodrigues
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Diogo M Rombo
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Filipa F Ribeiro
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Joana Rodrigues
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| | - Jennifer McGarvey
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Catarina Orcinha
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | - Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
| |
Collapse
|
11
|
Tao CL, Liu YT, Zhou ZH, Lau PM, Bi GQ. Accumulation of Dense Core Vesicles in Hippocampal Synapses Following Chronic Inactivity. Front Neuroanat 2018; 12:48. [PMID: 29942253 PMCID: PMC6004418 DOI: 10.3389/fnana.2018.00048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/23/2018] [Indexed: 01/03/2023] Open
Abstract
The morphology and function of neuronal synapses are regulated by neural activity, as manifested in activity-dependent synapse maturation and various forms of synaptic plasticity. Here we employed cryo-electron tomography (cryo-ET) to visualize synaptic ultrastructure in cultured hippocampal neurons and investigated changes in subcellular features in response to chronic inactivity, a paradigm often used for the induction of homeostatic synaptic plasticity. We observed a more than 2-fold increase in the mean number of dense core vesicles (DCVs) in the presynaptic compartment of excitatory synapses and an almost 20-fold increase in the number of DCVs in the presynaptic compartment of inhibitory synapses after 2 days treatment with the voltage-gated sodium channel blocker tetrodotoxin (TTX). Short-term treatment with TTX and the N-methyl-D-aspartate receptor (NMDAR) antagonist amino-5-phosphonovaleric acid (AP5) caused a 3-fold increase in the number of DCVs within 100 nm of the active zone area in excitatory synapses but had no significant effects on the overall number of DCVs. In contrast, there were very few DCVs in the postsynaptic compartments of both synapse types under all conditions. These results are consistent with a role for presynaptic DCVs in activity-dependent synapse maturation. We speculate that these accumulated DCVs can be released upon reactivation and may contribute to homeostatic metaplasticity.
Collapse
Affiliation(s)
- Chang-Lu Tao
- Center for Integrative Imaging, National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Yun-Tao Liu
- Center for Integrative Imaging, National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Z Hong Zhou
- Center for Integrative Imaging, National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China.,The California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pak-Ming Lau
- Center for Integrative Imaging, National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Guo-Qiang Bi
- Center for Integrative Imaging, National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
Naro A, Bramanti A, Leo A, Bramanti P, Calabrò RS. Metaplasticity: A Promising Tool to Disentangle Chronic Disorders of Consciousness Differential Diagnosis. Int J Neural Syst 2017; 28:1750059. [PMID: 29370729 DOI: 10.1142/s0129065717500599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The extent of cortical reorganization after brain injury in patients with Vegetative State/Unresponsive Wakefulness Syndrome (UWS) and Minimally Conscious State (MCS) depends on the residual capability of modulating synaptic plasticity. Neuroplasticity is largely abnormal in patients with UWS, although the fragments of cortical activity may exist, while patients MCS show a better cortical organization. The aim of this study was to evaluate cortical excitability in patients with disorders of consciousness (DoC) using a transcranial direct current stimulation (TDCS) metaplasticity protocol. To this end, we tested motor-evoked potential (MEP) amplitude, short intracortical inhibition (SICI), and intracortical facilitation (ICF). These measures were correlated with the level of consciousness (by the Coma Recovery Scale-Revised, CRS-R). MEP amplitude, SICI, and ICF strength were significantly modulated following different metaplasticity TDCS protocols only in the patients with MCS. SICI modulations showed a significant correlation with the CRS-R score. Our findings demonstrate, for the first time, a partial preservation of metaplasticity properties in some patients with DoC, which correlates with the level of awareness. Thus, metaplasticity assessment may help the clinician in differentiating the patients with DoC, besides the clinical evaluation. Moreover, the responsiveness to metaplasticity protocols may identify the subjects who could benefit from neuromodulation protocols.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | | | - Antonino Leo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | | | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
- S.S. 113, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
13
|
Félix-Oliveira A, Dias RB, Colino-Oliveira M, Rombo DM, Sebastião AM. Homeostatic plasticity induced by brief activity deprivation enhances long-term potentiation in the mature rat hippocampus. J Neurophysiol 2014; 112:3012-22. [PMID: 25210161 DOI: 10.1152/jn.00058.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Different forms of plasticity occur concomitantly in the nervous system. Whereas homeostatic plasticity monitors and maintains neuronal activity within a functional range, Hebbian changes such as long-term potentiation (LTP) modify the relative strength of specific synapses after discrete changes in activity and are thought to provide the cellular basis for learning and memory. Here, we assessed whether homeostatic plasticity could influence subsequent LTP in acute hippocampal slices that had been briefly deprived of activity by blocking action potential generation and N-methyl-D-aspartate (NMDA) receptor activation for 3 h. Activity deprivation enhanced the frequency and the amplitude of spontaneous miniature excitatory postsynaptic currents and enhanced basal synaptic transmission in the absence of significant changes in intrinsic excitability. Changes in the threshold for Hebbian plasticity were evaluated by inducing LTP with stimulation protocols of increasing strength. We found that activity-deprived slices consistently showed higher LTP magnitude compared with control conditions even when using subthreshold theta-burst stimulation. Enhanced LTP in activity-deprived slices was also observed when picrotoxin was used to prevent the modulation of GABAergic transmission. Finally, we observed that consecutive LTP inductions attained a higher magnitude of facilitation in activity-deprived slices, suggesting that the homeostatic plasticity mechanisms triggered by a brief period of neuronal silencing can both lower the threshold and raise the ceiling for Hebbian modifications. We conclude that even brief periods of altered activity are able to shape subsequent synaptic transmission and Hebbian plasticity in fully developed hippocampal circuits.
Collapse
Affiliation(s)
- A Félix-Oliveira
- Instituto de Farmacologia e Neurociencias, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; and
| | - R B Dias
- Instituto de Farmacologia e Neurociencias, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; and Unidade de Neurociencias, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - M Colino-Oliveira
- Instituto de Farmacologia e Neurociencias, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; and Unidade de Neurociencias, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - D M Rombo
- Instituto de Farmacologia e Neurociencias, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; and Unidade de Neurociencias, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - A M Sebastião
- Instituto de Farmacologia e Neurociencias, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; and Unidade de Neurociencias, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|