1
|
Escobar I, Xu J, Jackson CW, Stegelmann SD, Fagerli EA, Dave KR, Perez-Pinzon MA. Resveratrol Preconditioning Protects Against Ischemia-Induced Synaptic Dysfunction and Cofilin Hyperactivation in the Mouse Hippocampal Slice. Neurotherapeutics 2023; 20:1177-1197. [PMID: 37208551 PMCID: PMC10457274 DOI: 10.1007/s13311-023-01386-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2023] [Indexed: 05/21/2023] Open
Abstract
Perturbations in synaptic function are major determinants of several neurological diseases and have been associated with cognitive impairments after cerebral ischemia (CI). Although the mechanisms underlying CI-induced synaptic dysfunction have not been well defined, evidence suggests that early hyperactivation of the actin-binding protein, cofilin, plays a role. Given that synaptic impairments manifest shortly after CI, prophylactic strategies may offer a better approach to prevent/mitigate synaptic damage following an ischemic event. Our laboratory has previously demonstrated that resveratrol preconditioning (RPC) promotes cerebral ischemic tolerance, with many groups highlighting beneficial effects of resveratrol treatment on synaptic and cognitive function in other neurological conditions. Herein, we hypothesized that RPC would mitigate hippocampal synaptic dysfunction and pathological cofilin hyperactivation in an ex vivo model of ischemia. Various electrophysiological parameters and synaptic-related protein expression changes were measured under normal and ischemic conditions utilizing acute hippocampal slices derived from adult male mice treated with resveratrol (10 mg/kg) or vehicle 48 h prior. Remarkably, RPC significantly increased the latency to anoxic depolarization, decreased cytosolic calcium accumulation, prevented aberrant increases in synaptic transmission, and rescued deficits in long-term potentiation following ischemia. Additionally, RPC upregulated the expression of the activity-regulated cytoskeleton associated protein, Arc, which was partially required for RPC-mediated attenuation of cofilin hyperactivation. Taken together, these findings support a role for RPC in mitigating CI-induced excitotoxicity, synaptic dysfunction, and pathological over-activation of cofilin. Our study provides further insight into mechanisms underlying RPC-mediated neuroprotection against CI and implicates RPC as a promising strategy to preserve synaptic function after ischemia.
Collapse
Affiliation(s)
- Iris Escobar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
| | - Jing Xu
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
| | - Charles W Jackson
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
| | - Samuel D Stegelmann
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
| | - Eric A Fagerli
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA.
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33101, USA.
| |
Collapse
|
2
|
Ferrara NC, Trask S, Pullins SE, Helmstetter FJ. Regulation of learned fear expression through the MgN-amygdala pathway. Neurobiol Learn Mem 2021; 185:107526. [PMID: 34562619 DOI: 10.1016/j.nlm.2021.107526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 01/14/2023]
Abstract
Heightened fear responding is characteristic of fear- and anxiety-related disorders, including post-traumatic stress disorder. Neural plasticity in the amygdala is essential for both initial fear learning and fear expression, and strengthening of synaptic connections between the medial geniculate nucleus (MgN) and amygdala is critical for auditory fear learning. However, very little is known about what happens in the MgN-amygdala pathway during fear recall and extinction, in which conditional fear decreases with repeated presentations of the auditory stimulus alone. In the present study, we found that optogenetic inhibition of activity in the MgN-amygdala pathway during fear retrieval and extinction reduced expression of conditional fear. While this effect persisted for at least two weeks following pathway inhibition, it was specific to the context in which optogenetic inhibition occurred, linking MgN-BLA inhibition to facilitation of extinction-like processes. Reduced fear expression through inhibition of the MgN-amygdala pathway was further characterized by similar synaptic expression of GluA1 and GluA2 AMPA receptor subunits compared to what was seen in controls. Inhibition also decreased CREB phosphorylation in the amygdala, similar to what has been reported following auditory fear extinction. We then demonstrated that this effect was reduced by inhibition of GluN2B-containing NMDA receptors. These results demonstrate a new and important role for the MgN-amygdala pathway in extinction-like processes, and show that suppressing activity in this pathway results in a persistent decrease in fear behavior.
Collapse
Affiliation(s)
- Nicole C Ferrara
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Sydney Trask
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Shane E Pullins
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Nomura H. [Histamine signaling restores retrieval of forgotten memories]. Nihon Yakurigaku Zasshi 2021; 156:292-296. [PMID: 34470934 DOI: 10.1254/fpj.21049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Histamine is a biological amine that functions as a neurotransmitter in the brain to regulate arousal, appetite, and cognitive functions. Many pharmacological studies using histamine receptor agonists and antagonists have found that histamine promotes memory consolidation and retrieval. More recently, we have revealed that the activation of the brain histaminergic system by H3R antagonists/inverse agonists restores retrieval of forgotten long-term memory in mice and humans. The recovery of memory retrieval may involve histamine-induced excitatory effects. Histamine may increase neuronal excitability throughout the neural circuit, including both neurons that are and are not recruited into the memory trace, similar to noise added to the neural circuits for memory retrieval. Stochastic resonance can explain how adding noise to the circuit enhances memory retrieval. Memory is processed not only by consolidation and retrieval, but also by various processes such as maintenance, reconsolidation, extinction, and reinstatement. Further studies that separately analyze the memory processes are needed to elucidate the whole picture of the effects of histamine on learning and memory. Regarding the human histaminergic system, alterations in histamine signaling have been reported in several neuropsychiatric disorders, and these changes have been suggested to be involved in cognitive dysfunction in patients with the neuropsychiatric disorders. Therefore, the drugs that modulate histamine signaling, including H3R antagonists/inverse agonists, may be effective in the treatment of cognitive dysfunction, including Alzheimer's disease.
Collapse
Affiliation(s)
- Hiroshi Nomura
- Department of Cognitive Function and Pathology, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
4
|
Penrod RD, Thomsen M, Taniguchi M, Guo Y, Cowan CW, Smith LN. The activity-regulated cytoskeleton-associated protein, Arc/Arg3.1, influences mouse cocaine self-administration. Pharmacol Biochem Behav 2020; 188:172818. [PMID: 31682894 PMCID: PMC7202920 DOI: 10.1016/j.pbb.2019.172818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/01/2019] [Accepted: 10/30/2019] [Indexed: 01/04/2023]
Abstract
The activity-regulated cytoskeleton-associated protein (Arc, also known as Arg3.1), an immediate early gene and synaptic regulator, is upregulated following a single cocaine exposure. However, there is not much known regarding Arc/Arg3.1's potential contribution to addiction-relevant behaviors. Despite known learning and memory deficits in contextual fear and water-maze reversal learning tasks, we find that mice lacking Arc/Arg3.1 perform conditioned place preference and operant conditioning involving positive reinforcers (food and cocaine) with little-to-no impairment. However, following normal saline-extinction, wild type (WT) mice show a classic inverted-U dose-response function, while Arc/Arg3.1 knockout (KO) mice fail to adjust their intake across multiple doses. Importantly, Arc/Arg3.1 KO and WT mice behave comparably on an increasing cost task (FR1-FR3; acquisition dose), providing evidence that both groups find cocaine reinforcing. Differences in individuals that drive variations in use patterns and particularly, drug intake levels, are critical as they influence the likelihood of developing dependence. Our data suggest that Arc/Arg3.1 may contribute to addiction as a regulator of drug-taking vulnerability under different drug availability conditions.
Collapse
Affiliation(s)
- Rachel D Penrod
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America
| | - Morgane Thomsen
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America
| | - Makoto Taniguchi
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America
| | - Yuhong Guo
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States of America; Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America
| | - Christopher W Cowan
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America
| | - Laura N Smith
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX 77807, United States of America; Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA 02478, United States of America.
| |
Collapse
|
5
|
The Arc gene: Retroviral heritage in cognitive functions. Neurosci Biobehav Rev 2019; 99:275-281. [PMID: 30772431 DOI: 10.1016/j.neubiorev.2019.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/29/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Stabilization of neuronal plastic changes is mediated by transient gene expression, including transcription of the activity-regulated cytoskeleton-associated gene (Arc), also known as Arg 3.1. Arc is implicated in several types of synaptic plasticity, including synaptic scaling, long-term potentiation, and long-term depression. However, the precise mechanisms by which Arc mediates these forms of long-term plasticity are unclear. It was recently found that Arc protein is capable of forming capsid-like structures and of transferring its own mRNA to neighboring cells. Moreover, Arc mRNA undergoes activity-dependent translation in these "transfected" cells. These new data raise unexpected possibilities for the mechanisms of the Arc action, and many intriguing questions concerning the role of Arc transcellular traffic in neuronal plasticity. In this mini-review, we discuss a possible link between the role of Arc in learning and memory and the virus-like properties of this protein. Additionally, we highlight some of the emerging questions for future neurobiological studies and translational applications of Arc transsynaptic effects.
Collapse
|
6
|
Cahill EN, Milton AL. Neurochemical and molecular mechanisms underlying the retrieval-extinction effect. Psychopharmacology (Berl) 2019; 236:111-132. [PMID: 30656364 PMCID: PMC6373198 DOI: 10.1007/s00213-018-5121-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022]
Abstract
Extinction within the reconsolidation window, or 'retrieval-extinction', has received much research interest as a possible technique for targeting the reconsolidation of maladaptive memories with a behavioural intervention. However, it remains to be determined whether the retrieval-extinction effect-a long-term reduction in fear behaviour, which appears resistant to spontaneous recovery, renewal and reinstatement-depends specifically on destabilisation of the original memory (the 'reconsolidation-update' account) or represents facilitation of an extinction memory (the 'extinction-facilitation' account). We propose that comparing the neurotransmitter systems, receptors and intracellular signalling pathways recruited by reconsolidation, extinction and retrieval-extinction will provide a way of distinguishing between these accounts.
Collapse
Affiliation(s)
- Emma N Cahill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK.
| |
Collapse
|
7
|
Lingawi NW, Laurent V, Westbrook RF, Holmes NM. The role of the basolateral amygdala and infralimbic cortex in (re)learning extinction. Psychopharmacology (Berl) 2019; 236:303-312. [PMID: 29959461 DOI: 10.1007/s00213-018-4957-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/19/2018] [Indexed: 11/25/2022]
Abstract
The basolateral amygdala complex (BLA) and infralimbic region of the prefrontal cortex (IL) play distinct roles in the extinction of Pavlovian conditioned fear in laboratory rodents. In the past decade, research in our laboratory has examined the roles of these brain regions in the re-extinction of conditioned fear: i.e., extinction of fear that is restored through re-conditioning of the conditioned stimulus (CS) or changes in the physical and temporal context of extinction training (i.e., extinction of renewed or spontaneously recovered fear). This paper reviews this research. It has revealed two major findings. First, in contrast to the acquisition of fear extinction, which usually requires neuronal activity in the BLA but not IL, the acquisition of fear re-extinction requires neuronal activity in the IL but can occur independently of neuronal activity in the BLA. Second, the role of the IL in fear extinction is determined by the training history of the CS: i.e., if the CS was novel prior to its fear conditioning (i.e., it had not been trained), the acquisition of fear extinction does not require the IL; if, however, the prior training of the CS included a series of CS-alone exposures (e.g., if the CS had been pre-exposed), the acquisition of fear extinction was facilitated by pharmacological stimulation of the IL. Together, these results were taken to imply that a memory of CS-alone exposures is stored in the IL, survives fear conditioning of the CS, and can be retrieved and strengthened during extinction or re-extinction of that CS (regardless of whether the extinction is first- or second-learned). Hence, under these circumstances, the initial extinction of fear to the CS can be facilitated by pharmacological stimulation of the IL, and re-extinction of fear to the CS can occur in the absence of a functioning BLA.
Collapse
Affiliation(s)
- Nura W Lingawi
- School of Psychology, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Vincent Laurent
- School of Psychology, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - R Fredrick Westbrook
- School of Psychology, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Nathan M Holmes
- School of Psychology, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia.
| |
Collapse
|
8
|
Adolescent conditioning affects rate of adult fear, safety and reward learning during discriminative conditioning. Sci Rep 2018; 8:17315. [PMID: 30470766 PMCID: PMC6251908 DOI: 10.1038/s41598-018-35678-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Fear and reward memories formed in adulthood are influenced by prior experiences. Experiences that occur during sensitive periods, such as adolescence, can have an especially high impact on later learning. Fear and reward memories form when aversive or appetitive events co-occur with initially neutral stimuli, that then gain negative or positive emotional load. Fear and reward seeking behaviours are influenced by safety cues, signalling the non-occurrence of a threat. It is unclear how adolescent fear or reward pre-conditioning influences later dynamics of these conditioned emotions, and conditioned safety. In this study, we presented male rats with adolescent fear or reward pre-conditioning, followed by discriminative conditioning in adulthood. In this discriminative task, rats are simultaneously conditioned to reward, fear and safety cues. We show that adolescent reward pre-conditioning did not affect the rate of adult reward conditioning, but instead accelerated adult safety conditioning. Adolescent fear pre-conditioning accelerated adult fear and reward seeking behaviours but delayed adult safety expression. Together, our results suggest that the dynamics of safety conditioning can be influenced by adolescent priming of different valences. Taking adolescent experiences into consideration can have implications on how we approach therapy options for later learned fear disorders where safety learning is compromised.
Collapse
|
9
|
Memory reconsolidation and extinction of fear conditioning induced different Arc/Arg3.1 expression. Neuroreport 2018; 29:1036-1045. [DOI: 10.1097/wnr.0000000000001069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Kramer EE, Steadman PE, Epp JR, Frankland PW, Josselyn SA. Assessing Individual Neuronal Activity Across the Intact Brain: Using Hybridization Chain Reaction (HCR) to DetectArcmRNA Localized to the Nucleus in Volumes of Cleared Brain Tissue. ACTA ACUST UNITED AC 2018; 84:e49. [DOI: 10.1002/cpns.49] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Emily E. Kramer
- Program in Neurosciences and Mental Health, Hospital for Sick Children; Toronto Ontario Canada
- Institute of Medical Sciences, University of Toronto; Toronto Ontario Canada
| | - Patrick E. Steadman
- Program in Neurosciences and Mental Health, Hospital for Sick Children; Toronto Ontario Canada
- Institute of Medical Sciences, University of Toronto; Toronto Ontario Canada
| | - Jonathan R. Epp
- Program in Neurosciences and Mental Health, Hospital for Sick Children; Toronto Ontario Canada
- Department of Cell Biology and Anatomy, University of Calgary; Calgary Alberta Canada
- Current address: Hotchkiss Brain Institute, Cumming School of Medicine; Calgary Alberta Canada
| | - Paul W. Frankland
- Program in Neurosciences and Mental Health, Hospital for Sick Children; Toronto Ontario Canada
- Institute of Medical Sciences, University of Toronto; Toronto Ontario Canada
- Department of Psychology, University of Toronto; Toronto Ontario Canada
- Department of Physiology, University of Toronto; Toronto Ontario Canada
- Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research; Toronto Ontario Canada. Child & Brain Development Program, Canadian Institute for Advanced Research; Toronto Ontario Canada
| | - Sheena A. Josselyn
- Program in Neurosciences and Mental Health, Hospital for Sick Children; Toronto Ontario Canada
- Institute of Medical Sciences, University of Toronto; Toronto Ontario Canada
- Department of Psychology, University of Toronto; Toronto Ontario Canada
- Department of Physiology, University of Toronto; Toronto Ontario Canada
- Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research; Toronto Ontario Canada. Child & Brain Development Program, Canadian Institute for Advanced Research; Toronto Ontario Canada
| |
Collapse
|
11
|
Serine Racemase and D-serine in the Amygdala Are Dynamically Involved in Fear Learning. Biol Psychiatry 2018; 83:273-283. [PMID: 29025687 PMCID: PMC5806199 DOI: 10.1016/j.biopsych.2017.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND The amygdala is a central component of the neural circuitry that underlies fear learning. N-methyl-D-aspartate receptor-dependent plasticity in the amygdala is required for pavlovian fear conditioning and extinction. N-methyl-D-aspartate receptor activation requires the binding of a coagonist, D-serine, which is synthesized from L-serine by the neuronal enzyme serine racemase (SR). However, little is known about SR and D-serine function in the amygdala. METHODS We used immunohistochemical methods to characterize the cellular localization of SR and D-serine in the mouse and human amygdala. Using biochemical and molecular techniques, we determined whether trace fear conditioning and extinction engages the SR/D-serine system in the brain. D-serine was administered systemically to mice to evaluate its effect on fear extinction. Finally, we investigated whether the functional single nucleotide polymorphism rs4523957, which is an expression quantitative trait locus of the human serine racemase (SRR) gene, was associated with fear-related phenotypes in a highly traumatized human cohort. RESULTS We demonstrate that approximately half of the neurons in the amygdala express SR, including both excitatory and inhibitory neurons. We find that the acquisition and extinction of fear memory engages the SR/D-serine system in the mouse amygdala and that D-serine administration facilitates fear extinction. We also demonstrate that the SRR single nucleotide polymorphism, rs4523957, is associated with posttraumatic stress disorder in humans, consistent with the facilitatory effect of D-serine on fear extinction. CONCLUSIONS These new findings have important implications for understanding D-serine-mediated N-methyl-D-aspartate receptor plasticity in the amygdala and how this system could contribute to disorders with maladaptive fear circuitry.
Collapse
|
12
|
Molecular Mechanisms in Perirhinal Cortex Selectively Necessary for Discrimination of Overlapping Memories, but Independent of Memory Persistence. eNeuro 2017; 4:eN-NWR-0293-17. [PMID: 29085903 PMCID: PMC5659266 DOI: 10.1523/eneuro.0293-17.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 12/02/2022] Open
Abstract
Successful memory involves not only remembering over time but also keeping memories distinct. The ability to separate similar experiences into distinct memories is a main feature of episodic memory. Discrimination of overlapping representations has been investigated in the dentate gyrus of the hippocampus (DG), but little is known about this process in other regions such as the perirhinal cortex (Prh). We found in male rats that perirhinal brain-derived neurotrophic factor (BDNF) is required for separable storage of overlapping, but not distinct, object representations, which is identical to its role in the DG for spatial representations. Also, activity-regulated cytoskeletal-associated protein (Arc) is required for disambiguation of object memories, as measured by infusion of antisense oligonucleotides. This is the first time Arc has been implicated in the discrimination of objects with overlapping features. Although molecular mechanisms for object memory have been shown previously in Prh, these have been dependent on delay, suggesting a role specifically in memory duration. BDNF and Arc involvement were independent of delay-the same demand for memory persistence was present in all conditions-but only when discrimination of similar objects was required were these mechanisms recruited and necessary. Finally, we show that BDNF and Arc participate in the same pathway during consolidation of overlapping object memories. We provide novel evidence regarding the proteins involved in disambiguation of object memories outside the DG and suggest that, despite the anatomical differences, similar mechanisms underlie this process in the DG and Prh that are engaged depending on the similarity of the stimuli.
Collapse
|
13
|
Yasuno K, Takahashi E, Igarashi I, Iguchi T, Tsuchiya Y, Kai K, Mori K. Gene expression analysis of Arc mRNA as a neuronal cell activity marker in the hippocampus and amygdala in two-way active avoidance test in rats. J Pharmacol Toxicol Methods 2017; 88:140-146. [PMID: 28962918 DOI: 10.1016/j.vascn.2017.09.255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/01/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Immediate early genes are widely used as neuronal cell activity markers in neuroscience. The present study investigated the relationship between their expression and abnormality in context fear conditioning. METHODS The learning test (two-way active avoidance test) was conducted in male rats administered with nonselective muscarinic antagonist scopolamine or selective dopamine D1-like receptor antagonist SCH 23390 at a dose level of 2.0 or 0.1mg/kg, respectively, for 4days. Expression levels of Arc and Fos mRNA in the hippocampus and amygdala were also evaluated on the second day of dosing by fluorescent in situ hybridization (FISH) and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). RESULTS Scopolamine had no effect on avoidance rate, but decreased freezing in the two-way active avoidance test. SCH 23390 decreased avoidance rate and increased freezing. In FISH and RT-qPCR assays, scopolamine decreased Arc mRNA in the hippocampus and amygdala, whereas SCH 23390 increased Arc mRNA in the hippocampus. By contrast, scopolamine and SCH 23390 did not change Fos mRNA expression compared to Arc mRNA expression. DISCUSSION The results of the learning test indicated that scopolamine or SCH 23390 respectively inhibited fear or context conditioning in rats. Furthermore, alteration of the expression of Arc mRNA but not of Fos mRNA in the hippocampus and amygdala of the brain was suggested to be a sensitive neuronal cell activity marker to detect behavioral abnormality in the two-way active avoidance test.
Collapse
Affiliation(s)
- Kyohei Yasuno
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Erika Takahashi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Isao Igarashi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Takuma Iguchi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Yoshimi Tsuchiya
- Global Quantitative Clinical Pharmacology and Translational Sciences, Daiichi Sankyo Pharma Development, 211 Mt. Airy Road, Basking Ridge, NJ 07920, USA.
| | - Kiyonori Kai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| | - Kazuhiko Mori
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo 134-8630, Japan.
| |
Collapse
|
14
|
Functional and structural underpinnings of neuronal assembly formation in learning. Nat Neurosci 2016; 19:1553-1562. [PMID: 27749830 DOI: 10.1038/nn.4418] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/14/2016] [Indexed: 02/07/2023]
Abstract
Learning and memory are associated with the formation and modification of neuronal assemblies: populations of neurons that encode what has been learned and mediate memory retrieval upon recall. Functional studies of neuronal assemblies have progressed dramatically thanks to recent technological advances. Here we discuss how a focus on assembly formation and consolidation has provided a powerful conceptual framework to relate mechanistic studies of synaptic and circuit plasticity to behaviorally relevant aspects of learning and memory. Neurons are likely recruited to particular learning-related assemblies as a function of their relative excitabilities and synaptic activation, followed by selective strengthening of pre-existing synapses, formation of new connections and elimination of outcompeted synapses to ensure memory formation. Mechanistically, these processes involve linking transcription to circuit modification. They include the expression of immediate early genes and specific molecular and cellular events, supported by network-wide activities that are shaped and modulated by local inhibitory microcircuits.
Collapse
|
15
|
Mellström B, Kastanauskaite A, Knafo S, Gonzalez P, Dopazo XM, Ruiz-Nuño A, Jefferys JGR, Zhuo M, Bliss TVP, Naranjo JR, DeFelipe J. Specific cytoarchitectureal changes in hippocampal subareas in daDREAM mice. Mol Brain 2016; 9:22. [PMID: 26928278 PMCID: PMC4772309 DOI: 10.1186/s13041-016-0204-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/22/2016] [Indexed: 11/20/2022] Open
Abstract
Background Transcriptional repressor DREAM (downstream regulatory element antagonist modulator) is a Ca2+-binding protein that regulates Ca2+ homeostasis through gene regulation and protein-protein interactions. It has been shown that a dominant active form (daDREAM) is implicated in learning-related synaptic plasticity such as LTP and LTD in the hippocampus. Neuronal spines are reported to play important roles in plasticity and memory. However, the possible role of DREAM in spine plasticity has not been reported. Results Here we show that potentiating DREAM activity, by overexpressing daDREAM, reduced dendritic basal arborization and spine density in CA1 pyramidal neurons and increased spine density in dendrites in dentate gyrus granule cells. These microanatomical changes are accompanied by significant modifications in the expression of specific genes encoding the cytoskeletal proteins Arc, Formin 1 and Gelsolin in daDREAM hippocampus. Conclusions Our results strongly suggest that DREAM plays an important role in structural plasticity in the hippocampus. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0204-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Britt Mellström
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,National Biotechnology Center. CSIC, Darwin, 3. E-28049, Madrid, Spain.
| | - Asta Kastanauskaite
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,Cajal Institute, CSIC Madrid, Av Dr. Arce,37 E-28006, Madrid, Spain. .,Biomedical Technology Center, Politecnica University Madrid, Madrid, Spain.
| | - Shira Knafo
- Cajal Institute, CSIC Madrid, Av Dr. Arce,37 E-28006, Madrid, Spain. .,Present address: IkerBasque Basque Foundation for Science and BioCruces, Health Research Institute, Bizkaia, Spain.
| | - Paz Gonzalez
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,National Biotechnology Center. CSIC, Darwin, 3. E-28049, Madrid, Spain.
| | - Xose M Dopazo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,National Biotechnology Center. CSIC, Darwin, 3. E-28049, Madrid, Spain.
| | - Ana Ruiz-Nuño
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK.
| | - John G R Jefferys
- Neuronal Networks Group, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, UK.
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada. .,Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Tim V P Bliss
- MRC National Institutes for Medical Research, Mill Hill, London, UK.
| | - Jose R Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,National Biotechnology Center. CSIC, Darwin, 3. E-28049, Madrid, Spain.
| | - Javier DeFelipe
- Spanish Network for Biomedical Research in Neurodegenerative Diseases, CIBERNED, Madrid, Spain. .,Cajal Institute, CSIC Madrid, Av Dr. Arce,37 E-28006, Madrid, Spain. .,Biomedical Technology Center, Politecnica University Madrid, Madrid, Spain.
| |
Collapse
|
16
|
Late Arc/Arg3.1 expression in the basolateral amygdala is essential for persistence of newly-acquired and reactivated contextual fear memories. Sci Rep 2016; 6:21007. [PMID: 26880136 PMCID: PMC4754630 DOI: 10.1038/srep21007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/12/2016] [Indexed: 12/18/2022] Open
Abstract
A feature of fear memory is its persistence, which could be a factor for affective disorders. Memory retrieval destabilizes consolidated memories, and then rapid molecular cascades contribute to early stabilization of reactivated memories. However, persistence of reactivated memories has been poorly understood. Here, we discover that late Arc (also known as Arg3.1) expression in the mouse basolateral amygdala (BLA) is involved in persistence of newly-acquired and reactivated fear memories. After both fear learning and retrieval, Arc levels increased at 2 h, returned to basal levels at 6 h but increased again at 12 h. Inhibiting late Arc expression impaired memory retention 7 d, but not 2 d, after fear learning and retrieval. Moreover, blockade of NR2B-containing N-methyl-D-aspartate receptors (NMDARs) prevented memory destabilization and inhibited late Arc expression. These findings indicate that NR2B-NMDAR and late Arc expression plays a critical role in the destabilization and persistence of reactivated memories.
Collapse
|
17
|
New Insights on Retrieval-Induced and Ongoing Memory Consolidation: Lessons from Arc. Neural Plast 2015; 2015:184083. [PMID: 26380114 PMCID: PMC4561316 DOI: 10.1155/2015/184083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 01/08/2023] Open
Abstract
The mainstream view on the neurobiological mechanisms underlying memory formation states that memory traces reside on the network of cells activated during initial acquisition that becomes active again upon retrieval (reactivation). These activation and reactivation processes have been called "conjunctive trace." This process implies that singular molecular events must occur during acquisition, strengthening the connection between the implicated cells whose synchronous activity must underlie subsequent reactivations. The strongest experimental support for the conjunctive trace model comes from the study of immediate early genes such as c-fos, zif268, and activity-regulated cytoskeletal-associated protein. The expressions of these genes are reliably induced by behaviorally relevant neuronal activity and their products often play a central role in long-term memory formation. In this review, we propose that the peculiar characteristics of Arc protein, such as its optimal expression after ongoing experience or familiar behavior, together with its versatile and central functions in synaptic plasticity could explain how familiarization and recognition memories are stored and preserved in the mammalian brain.
Collapse
|
18
|
Long-delayed expression of the immediate early gene Arc/Arg3.1 refines neuronal circuits to perpetuate fear memory. J Neurosci 2015; 35:819-30. [PMID: 25589774 DOI: 10.1523/jneurosci.2525-14.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fear memories typically persist for long time periods, and persistent fear memories contribute to post-traumatic stress disorder. However, little is known about the cellular and synaptic mechanisms that perpetuate long-term memories. Here, we find that mouse hippocampal CA1 neurons exhibit biphasic Arc (also known as Arg3.1) elevations after fear experience and that the late Arc expression regulates the perpetuation of fear memoires. An early Arc increase returned to the baseline after 6 h, followed by a second Arc increase after 12 h in the same neuronal subpopulation; these elevations occurred via distinct mechanisms. Antisense-induced blockade of late Arc expression disrupted memory persistence but not formation. Moreover, prolonged fear memories were associated with the delayed, specific elimination of dendritic spines and the reactivation of neuronal ensembles formed during fear experience, both of which required late Arc expression. We propose that late Arc expression refines functional circuits in a delayed fashion to prolong fear memory.
Collapse
|