1
|
Walter W, Iacobucci I, Meggendorfer M. Diagnosis of acute lymphoblastic leukaemia: an overview of the current genomic classification, diagnostic approaches, and future directions. Histopathology 2025; 86:134-145. [PMID: 39403021 DOI: 10.1111/his.15338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
B-acute lymphoblastic leukaemia (B-ALL) is a haematological disease resulting from haematopoietic system dysfunction, leading to the unchecked growth of immature B lymphoblasts. The disease's complexity is underscored by the spectrum of genetic aberrations that underlie B-ALL entities, necessitating advanced genetic analyses for precise classification and risk determination. Prior to the adoption of next-generation sequencing into standard diagnostic practices, up to 30% of B-ALL cases were not assigned to specific entities due to the limitations of traditional diagnostic methods. The advent of comprehensive genomic analysis, especially whole-genome transcriptome sequencing, has significantly enhanced our understanding of B-ALL's molecular heterogeneity, paving the way for the exploration of novel, tailored treatment strategies. Furthermore, recent technological innovations, such as optical genome mapping, methylation profiling, and single-cell sequencing, have propelled forward the fields of cancer research and B-ALL management. These innovations introduce novel diagnostic approaches and prognostic markers, facilitating a deeper, more nuanced understanding of individual patient disease profiles. This review focuses on the latest diagnostic standards and assays for B-ALL, the importance of new technologies and biomarkers in enhancing diagnostic accuracy, and the expected role of innovative advancements in the future diagnosis and treatment of B-ALL.
Collapse
Affiliation(s)
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
2
|
López-Carrasco A, Parra-Haro K, Vieco-Martí I, Granados-Aparici S, Díaz-Martín J, Salguero-Aranda C, Acevedo-León D, de Álava E, Navarro S, Noguera R. Characterization of Vitronectin Effect in 3D Ewing Sarcoma Models: A Digital Microscopic Analysis of Two Cell Lines. Cancers (Basel) 2024; 16:3347. [PMID: 39409975 PMCID: PMC11476106 DOI: 10.3390/cancers16193347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Ewing sarcoma (ES) is an aggressive bone and soft-tissue pediatric cancer. High vitronectin (VN) expression has been associated with poor prognosis in other cancers, and we aimed to determine the utility of this extracellular matrix glycoprotein as a biomarker of aggressiveness in ES. Silk fibroin plus gelatin-tyramine hydrogels (HGs) were fabricated with and without cross-linked VN and cultivated with A673 and PDX73 ES cell lines for two and three weeks. VN secretion to culture media was assessed using ELISA. Morphometric analysis was applied for phenotypic characterization. VN release to culture media was higher in 3D models than in monolayer cultures, and intracellular, intercellular, and pericluster presence was also observed. A673-HGs showed lower density of clusters but a proportion of larger clusters than PDX73-HGs, which presented low cluster circularity. The cluster density of A673-HGs without added VN was higher than with added VN and slightly lower in the case of PDX73-HGs. Furthermore, a culture time of three weeks provided no benefits in cluster growth compared to two weeks, especially in A673-HGs. These advances in 3D modeling and digital quantification pave the way for future studies in ES and other cancers to deepen understanding about intra- and intercellular heterogeneity and anti-adhesion VN therapies.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (I.V.-M.); (S.G.-A.); (S.N.)
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (C.S.-A.); (E.d.Á.)
| | - Karina Parra-Haro
- Pathology Department, Medical School, University of Valencia, 46010 Valencia, Spain;
| | - Isaac Vieco-Martí
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (I.V.-M.); (S.G.-A.); (S.N.)
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (C.S.-A.); (E.d.Á.)
| | - Sofía Granados-Aparici
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (I.V.-M.); (S.G.-A.); (S.N.)
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (C.S.-A.); (E.d.Á.)
| | - Juan Díaz-Martín
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (C.S.-A.); (E.d.Á.)
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain
| | - Carmen Salguero-Aranda
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (C.S.-A.); (E.d.Á.)
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain
| | | | - Enrique de Álava
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (C.S.-A.); (E.d.Á.)
- Instituto de Biomedicina de Sevilla, Department of Pathology, Hospital Universitario Virgen del Rocío, CSIC-Universidad de Sevilla, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Samuel Navarro
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (I.V.-M.); (S.G.-A.); (S.N.)
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (C.S.-A.); (E.d.Á.)
- Pathology Department, Medical School, University of Valencia, 46010 Valencia, Spain;
| | - Rosa Noguera
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (I.V.-M.); (S.G.-A.); (S.N.)
- Centro de Investigación Biomédica en Red de Cáncer, Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.D.-M.); (C.S.-A.); (E.d.Á.)
- Pathology Department, Medical School, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
3
|
López-Carrasco A, Vieco-Martí I, Granados-Aparici S, Acevedo-León D, Estañ-Capell N, Portugal R, Huerta-Aragonés J, Cañete A, Navarro S, Noguera R. Vitronectin Levels in the Plasma of Neuroblastoma Patients and Culture Media of 3D Models: A Prognostic Circulating Biomarker? Int J Mol Sci 2024; 25:8733. [PMID: 39201421 PMCID: PMC11354570 DOI: 10.3390/ijms25168733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Vitronectin is a glycoprotein present in plasma and the extracellular matrix that is implicated in cell migration. The high amount of vitronectin found in neuroblastoma biopsies has been associated with poor prognosis. Moreover, increased vitronectin levels have been described in the plasma of patients with different cancers. Our aim was to assess vitronectin as a potential circulating biomarker of neuroblastoma prognosis. Vitronectin concentration was quantified using ELISA in culture media of four neuroblastoma cell lines grown in a monolayer and in 3D models, and in the plasma of 114 neuroblastoma patients. Three of the neuroblastoma cell lines secreted vitronectin to culture media when cultured in a monolayer and 3D models. Vitronectin release was higher by neuroblastoma cells cultured in 3D models than in the monolayer and was still elevated when cells were grown in 3D scaffolds with cross-linked vitronectin. Vitronectin secretion occurred independently of cell numbers in cultures. Its concentration in the plasma of neuroblastoma patients ranged between 52.4 and 870 µg/mL (median, 218 µg/mL). A ROC curve was used to establish a cutoff of 361 µg/mL, above which patients over 18 months old had worse prognosis (p = 0.0018). Vitronectin could be considered a new plasma prognostic biomarker in neuroblastoma and warrants confirmation in collaborative studies. Drugs inhibiting vitronectin interactions with cells and/or the extracellular matrix could represent a significant improvement in survival for neuroblastoma patients.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Isaac Vieco-Martí
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
| | - Sofía Granados-Aparici
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
| | | | | | | | | | - Adela Cañete
- Politechnic and University Hospital La Fe, 46026 Valencia, Spain
| | - Samuel Navarro
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
- Pathology Department, Medical School, University of Valencia, 46010 Valencia, Spain
| | - Rosa Noguera
- Incliva Biomedical Health Research Institute, 46010 Valencia, Spain; (A.L.-C.); (S.G.-A.); (S.N.)
- CIBER of Cancer (CIBERONC), 28029 Madrid, Spain
- Pathology Department, Medical School, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
4
|
Jiménez C, Garrote-de-Barros A, López-Portugués C, Hernández-Sánchez M, Díez P. Characterization of Human B Cell Hematological Malignancies Using Protein-Based Approaches. Int J Mol Sci 2024; 25:4644. [PMID: 38731863 PMCID: PMC11083628 DOI: 10.3390/ijms25094644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The maturation of B cells is a complex, multi-step process. During B cell differentiation, errors can occur, leading to the emergence of aberrant versions of B cells that, finally, constitute a malignant tumor. These B cell malignancies are classified into three main groups: leukemias, myelomas, and lymphomas, the latter being the most heterogeneous type. Since their discovery, multiple biological studies have been performed to characterize these diseases, aiming to define their specific features and determine potential biomarkers for diagnosis, stratification, and prognosis. The rise of advanced -omics approaches has significantly contributed to this end. Notably, proteomics strategies appear as promising tools to comprehensively profile the final molecular effector of these cells. In this narrative review, we first introduce the main B cell malignancies together with the most relevant proteomics approaches. Then, we describe the core studies conducted in the field and their main findings and, finally, we evaluate the advantages and drawbacks of flow cytometry, mass cytometry, and mass spectrometry for the profiling of human B cell disorders.
Collapse
Affiliation(s)
- Cristina Jiménez
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain;
| | - Alba Garrote-de-Barros
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-d.-B.); (M.H.-S.)
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, 28029 Madrid, Spain
| | - Carlos López-Portugués
- Department of Physical and Analytical Chemistry Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - María Hernández-Sánchez
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-d.-B.); (M.H.-S.)
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, 28029 Madrid, Spain
| | - Paula Díez
- Department of Physical and Analytical Chemistry Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Faculty of Medicine and Health Science, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
5
|
Dong W, Zou M, Sheng J, Zhou W, Wang Y, Zhang Y, Li J, Qian Y, Yu H, Lu T, Pan J, Zhu Y, Qu S, Yang Z, Lin Q, Zhao L, Cong W, Xu B, Zhang C, Liu H, Dong H. ACTB may serve as a predictive marker for the efficacy of lenvatinib in patients with HBV-related early-stage hepatocellular carcinoma following partial hepatectomy: a retrospective cohort study. J Gastrointest Oncol 2023; 14:2479-2499. [PMID: 38196518 PMCID: PMC10772687 DOI: 10.21037/jgo-23-942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024] Open
Abstract
Background The lack of effective biomarkers for the treatment of postoperative recurrence in hepatocellular carcinoma (HCC) persists despite lenvatinib therapy. This study aims to identify beta-actin (ACTB) as a predictive biomarker for lenvatinib that can facilitate individualized treatment for HCC. Methods This retrospective study included a subset of patients with HCC who underwent partial hepatectomy, with some receiving postoperative lenvatinib treatment and others not receiving lenvatinib treatment. A propensity score matching (PSM) analysis of patients who underwent treatment with or without lenvatinib following HCC partial hepatectomy was performed. Immunohistochemistry was employed to determine the levels of ACTB expression in HCC samples obtained from matched patients (n=225) enrolled in this study. The X-Tile was employed to determine the optimal cut-off point of ACTB levels for predicting time to recurrence (TTR). To assess the correlation between ACTB levels and lenvatinib efficacy, a subgroup analysis of TTR was conducted. A Cox regression model with an interaction term was utilized to assess the predictive significance of the model. Subsequently, a nomogram was developed and its discriminative ability and predictive accuracy were assessed using the concordance index (C-index) and calibration curve. For the investigation of the ACTB expression, HCC and para-tumoral normal tissues were employed. The patient-derived xenograft (PDX) model was utilized to validate the correlation between ACTB levels and lenvatinib responsiveness. Results After PSM, a total of 76 patients who underwent postoperative lenvatinib treatment were included in the analysis, with a median TTR of 24.35 months. Early-stage HCC patients with lower levels of ACTB exhibited a more favorable response to lenvatinib therapy compared to those with higher levels. The reduced expression of ACTB was indicative of the benefits of lenvatinib, as opposed to higher levels {hazard ratio (HR) =0.243 [95% confidence interval (CI): 0.096-0.619], P<0.001, P value for interaction =0.014}. In approximately 81.8% of cases involving HCC patients, there was an observed increase in the expression of ACTB. Multivariate analysis of the lenvatinib cohort revealed Child-Pugh [HR =5.416 (95% CI: 1.390-21.104), P=0.015], Barcelona Clinic Liver Cancer (BCLC) stage [HR =2.508 (95% CI: 1.116-5.639), P=0.026], and ACTB [HR =5.879 (95% CI: 2.424-14.259), P<0.001] score as independent factors for TTR, and all were included in the nomogram. The survival probability based on the calibration curve showed that the prediction of the nomogram was in good agreement with the actual observation. The C-index of the nomogram for predicting survival was 0.76 (95% CI: 0.71-0.84). Moreover, the PDXs derived from tumors exhibiting low levels of ACTB expression demonstrated a heightened sensitivity to lenvatinib treatment. Conclusions In patients with tumors treated with lenvatinib, low ACTB expression can predict a lower risk of recurrence. The validation of this potential biomarker in independent cohorts is necessary prior to its implementation for precision treatment stratification in patients undergoing partial hepatectomy for early-stage HCC.
Collapse
Affiliation(s)
- Wei Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Minghao Zou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Jie Sheng
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Wenxuan Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Yizhou Wang
- The Fourth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Yuchan Zhang
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Jutang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Youwen Qian
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Hua Yu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Tao Lu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Jianqiang Pan
- Department of Pathology, Deqing County People’s Hospital, Huzhou, China
| | - Yuyao Zhu
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Shuping Qu
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Zhao Yang
- The Second Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Qingyuan Lin
- Department of Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linghao Zhao
- The Fourth Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Wenming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Bo Xu
- Department of Anesthesiology, Huashan Hospital of Fudan University, Shanghai, China
| | - Chengjing Zhang
- Department of Nutrition, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| | - Hui Dong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Naval Medical University, Shanghai, China
| |
Collapse
|
6
|
Kourti M, Aivaliotis M, Hatzipantelis E. Proteomics in Childhood Acute Lymphoblastic Leukemia: Challenges and Opportunities. Diagnostics (Basel) 2023; 13:2748. [PMID: 37685286 PMCID: PMC10487225 DOI: 10.3390/diagnostics13172748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children and one of the success stories in cancer therapeutics. Risk-directed therapy based on clinical, biologic and genetic features has played a significant role in this accomplishment. Despite the observed improvement in survival rates, leukemia remains one of the leading causes of cancer-related deaths. Implementation of next-generation genomic and transcriptomic sequencing tools has illustrated the genomic landscape of ALL. However, the underlying dynamic changes at protein level still remain a challenge. Proteomics is a cutting-edge technology aimed at deciphering the mechanisms, pathways, and the degree to which the proteome impacts leukemia subtypes. Advances in mass spectrometry enable high-throughput collection of global proteomic profiles, representing an opportunity to unveil new biological markers and druggable targets. The purpose of this narrative review article is to provide a comprehensive overview of studies that have utilized applications of proteomics in an attempt to gain insight into the pathogenesis and identification of biomarkers in childhood ALL.
Collapse
Affiliation(s)
- Maria Kourti
- Third Department of Pediatrics, School of Medicine, Aristotle University and Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Aivaliotis
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Emmanouel Hatzipantelis
- Children & Adolescent Hematology-Oncology Unit, Second Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
7
|
Álvarez-Zúñiga CD, Garza-Veloz I, Martínez-Rendón J, Ureño-Segura M, Delgado-Enciso I, Martinez-Fierro ML. Circulating Biomarkers Associated with the Diagnosis and Prognosis of B-Cell Progenitor Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:4186. [PMID: 37627214 PMCID: PMC10453581 DOI: 10.3390/cancers15164186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a hematological disease characterized by the dysfunction of the hematopoietic system that leads to arrest at a specific stage of stem cells development, suppressing the average production of cellular hematologic components. BCP-ALL is a neoplasm of the B-cell lineage progenitor. BCP-ALL is caused and perpetuated by several mechanisms that provide the disease with its tumor potential and genetic and cytological characteristics. These pathological features are used for diagnosis and the prognostication of BCP-ALL. However, most of these paraclinical tools can only be obtained by bone marrow aspiration, which, as it is an invasive study, can delay the diagnosis and follow-up of the disease, in addition to the anesthetic risk it entails for pediatric patients. For this reason, it is crucial to find noninvasive and accessible ways to supply information concerning diagnosis, prognosis, and the monitoring of the disease, such as circulating biomarkers. In oncology, a biomarker is any measurable indicator that demonstrates the presence of malignancy, tumoral behavior, prognosis, or responses to treatments. This review summarizes circulating molecules associated with BCP-ALL with potential diagnostic value, classificatory capacity during monitoring specific clinic features of the disease, and/or capacity to identify each BCP-ALL stage regarding its evolution and outcome of the patients with BCP-ALL. In the same way, we provide and classify biomarkers that may be used in further studies focused on clinical approaches or therapeutic target identification for BCP-ALL.
Collapse
Affiliation(s)
- Claudia Daniela Álvarez-Zúñiga
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| | - Jacqueline Martínez-Rendón
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| | - Misael Ureño-Segura
- Hematology Service, Hospital General Zacatecas “Luz González Cosío”, Servicios de Salud de Zacatecas, Zacatecas 98160, Mexico;
| | - Iván Delgado-Enciso
- Cancerology State Institute, Colima State Health Services, Colima 28085, Mexico;
- School of Medicine, University of Colima, Colima 28040, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y C.S, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (C.D.Á.-Z.); (I.G.-V.); (J.M.-R.)
| |
Collapse
|
8
|
Agostini M, Traldi P, Hamdan M. Mass Spectrometry Contribution to Pediatric Cancers Research. Medicina (B Aires) 2023; 59:medicina59030612. [PMID: 36984613 PMCID: PMC10053507 DOI: 10.3390/medicina59030612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
For over four decades, mass spectrometry-based methods have provided a wealth of information relevant to various challenges in the field of cancers research. These challenges included identification and validation of novel biomarkers for various diseases, in particular for various forms of cancer. These biomarkers serve various objectives including monitoring patient response to the various forms of therapy, differentiating subgroups of the same type of cancer, and providing proteomic data to complement datasets generated by genomic, epigenetic, and transcriptomic methods. The same proteomic data can be used to provide prognostic information and could guide scientists and medics to new and innovative targeted therapies The past decade has seen a rapid emergence of epigenetics as a major contributor to carcinogenesis. This development has given a fresh momentum to MS-based proteomics, which demonstrated to be an unrivalled tool for the analyses of protein post-translational modifications associated with chromatin modifications. In particular, high-resolution mass spectrometry has been recently used for systematic quantification of chromatin modifications. Data generated by this approach are central in the search for new therapies for various forms of cancer and will help in attempts to decipher antitumor drug resistance. To appreciate the contribution of mass spectrometry-based proteomics to biomarkers discovery and to our understanding of mechanisms behind the initiation and progression of various forms of cancer, a number of recent investigations are discussed. These investigations also include results provided by two-dimensional gel electrophoresis combined with mass spectrometry.
Collapse
|
9
|
Sun JR, Kong CF, Qu XK, Sun AT, Zhao KP, Sun JH. An immune-related prognostic signature associated with immune landscape and therapeutic responses in gastric cancer. Aging (Albany NY) 2023; 15:1074-1106. [PMID: 36812479 PMCID: PMC10008502 DOI: 10.18632/aging.204534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Immune-related genes (IRGs) have attracted attention in recent years as therapeutic targets in various tumors. However, the role of IRGs in gastric cancer (GC) has not been clearly elucidated. This study presents a comprehensive analysis exploring the clinical, molecular, immune, and drug response features characterizing the IRGs in GC. Data were acquired from the TCGA and GEO databases. The Cox regression analyses were performed to develop a prognostic risk signature. The genetic variants, immune infiltration, and drug responses associated with the risk signature were explored using bioinformatics methods. Lastly, the expression of the IRS was verified by qRT-PCR in cell lines. In this manner, an immune-related signature (IRS) was established based on 8 IRGs. According to the IRS, patients were divided into the low-risk group (LRG) and high-risk group (HRG). Compared with the HRG, the LRG was characterized by a better prognosis, high genomic instability, more CD8+ T cell infiltration, greater sensitivity to chemotherapeutic drugs, and greater likelihood of benefiting from the immunotherapy. Moreover, the expression result showed good consistency between the qRT-PCR and TCGA cohort. Our findings provide insights into the specific clinical and immune features underlying the IRS, which may be important for patient treatment.
Collapse
Affiliation(s)
- Jian-Rong Sun
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chen-Fan Kong
- School of Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiang-Ke Qu
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - An-Tao Sun
- Department of Hematology, Guang’anmen Hospital, Beijing 100053, China
| | - Kun-Peng Zhao
- School of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Jin-Hui Sun
- Department of Gastroenterology, Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing 100700, China
| |
Collapse
|
10
|
Bagheralmoosavi S, Gholami P, Amini M, Alizadeh M, Yaghmaei M, Tavakkoli S, Salari S, Jeddi-Tehrani M, Ghasempour A, Gilany K, Shabani M. Proteome Analysis of Adult Acute Lymphoblastic Leukemia by Two-dimensional Blue Native/Sodium Dodecyl Sulfate Gel Electrophoresis. Avicenna J Med Biotechnol 2023; 15:21-27. [PMID: 36789118 PMCID: PMC9895978 DOI: 10.18502/ajmb.v15i1.11421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/26/2022] [Indexed: 12/27/2022] Open
Abstract
Background Despite the significant progress in the treatment of Acute Lymphoblastic Leukemia (ALL) in children, it still remains as one of the most challenging malignancies in adults. Identification of new biomarkers may improve the management of adult ALL. Proteins expressed on the cell surface can be considered as disease-associated biomarkers with potential for diagnosis and targeted therapies. Thus, membrane proteome studies give essential information about the disease-related biomarkers. Methods We applied 2-dimensional blue-native SDS-PAGE technique followed by MALDI-TOF/TOF-mass spectrometry to study the cell membrane proteome of peripheral blood mononuclear cells of adult B-ALL patients in comparison to that of the healthy controls. Results Sixty seven differentially expressed protein spots were detected, among them 52 proteins were found to be up-regulated but the other 15 proteins were down-regulated in B-ALL. Five differentially expressed proteins, involved in energy metabolism pathways, were detected in B-ALL patients compared to the healthy control group. Conclusion Differentially expressed proteins provide an insight into the molecular biology of B-ALL. Further studies must be done to confirm our data to be considered as potential targets for detection and treatment of B-ALL.
Collapse
Affiliation(s)
- Servin Bagheralmoosavi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastou Gholami
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Amini
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mahdi Alizadeh
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Marjan Yaghmaei
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Tavakkoli
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- HSCT Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Alireza Ghasempour
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Brum da Silva Nunes V, Kehl Dias C, Nathali Scholl J, Nedel Sant'Ana A, de Fraga Dias A, Granero Farias M, Alegretti AP, Sosnoski M, Esteves Daudt L, Bohns Michalowski M, Oliveira Battastini AM, Paz AA, Figueiró F. Lymphocytes from B-acute lymphoblastic leukemia patients present differential regulation of the adenosinergic axis depending on risk stratification. Discov Oncol 2022; 13:143. [PMID: 36581667 PMCID: PMC9800668 DOI: 10.1007/s12672-022-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Although risk-stratified chemotherapy regimens improve B-cell acute lymphoblastic leukemia (B-ALL) clinical outcome, relapse occurs in a significant number of cases. The identification of new therapeutic targets as well as prognostic and diagnostic biomarkers can improve B-ALL patients' clinical outcomes. Purinergic signaling is an important pathway in cancer progression, however the expression of ectonucleotidases and their impact on immune cells in B-ALL lacks exploration. We aimed to analyze the expression of ectonucleotidases in B-ALL patients' lymphocyte subpopulations. METHODS Peripheral blood samples from 15 patients diagnosed with B-ALL were analyzed. Flow cytometry was used to analyze cellularity, expression level of CD38, CD39, and CD73, and frequency of [Formula: see text], and [Formula: see text] in lymphocyte subpopulations. Plasma was used for cytokines (by CBA kit) and adenine nucleosides/nucleotides detection (by HPLC). RESULTS Comparing B-ALL patients to health donors, we observed an increase of CD4 + and CD8 + T-cells. In addition, a decrease in CD38 expression in B and Treg subpopulations and an increase in CD39+ CD73+ frequency in Breg and CD8+ T-cells. Analyzing cytokines and adenine nucleosides/nucleotides, we found a decrease in TNF, IL-1β, and ADO concentrations, together with an increase in AMP in B-ALL patients' plasma. CONCLUSION As immunomodulators, the expression of ectonucleotidases might be associated with activation states, as well as the abundance of different cellular subsets. We observed a pro-tumor immunity expression profile in B-ALL patients at diagnosis, being associated with cell exhaustion and immune evasion in B-ALL.
Collapse
Affiliation(s)
- Vitória Brum da Silva Nunes
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Camila Kehl Dias
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Juliete Nathali Scholl
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Alexia Nedel Sant'Ana
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Amanda de Fraga Dias
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | | | - Ana Paula Alegretti
- Hospital de Clínicas de Porto Alegre/HCPA, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Monalisa Sosnoski
- Hospital de Clínicas de Porto Alegre/HCPA, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Liane Esteves Daudt
- Hospital de Clínicas de Porto Alegre/HCPA, Porto Alegre, RS, CEP 90035-903, Brazil
| | - Mariana Bohns Michalowski
- Hospital de Clínicas de Porto Alegre/HCPA, Porto Alegre, RS, CEP 90035-903, Brazil
- Programa de Pós-Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, UFRGS, Porto Alegre, RS, 90035-003, Brazil
| | - Ana Maria Oliveira Battastini
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil
| | | | - Fabrício Figueiró
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
12
|
Moura AA, Bezerra MJB, Martins AMA, Borges DP, Oliveira RTG, Oliveira RM, Farias KM, Viana AG, Carvalho GGC, Paier CRK, Sousa MV, Fontes W, Ricart CAO, Moraes MEA, Magalhães SMM, Furtado CLM, Moraes-Filho MO, Pessoa C, Pinheiro RF. Global Proteomics Analysis of Bone Marrow: Establishing Talin-1 and Centrosomal Protein of 55 kDa as Potential Molecular Signatures for Myelodysplastic Syndromes. Front Oncol 2022; 12:833068. [PMID: 35814389 PMCID: PMC9257025 DOI: 10.3389/fonc.2022.833068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a hematological disorder characterized by abnormal stem cell differentiation and a high risk of acute myeloid leukemia transformation. Treatment options for MDS are still limited, making the identification of molecular signatures for MDS progression a vital task. Thus, we evaluated the proteome of bone marrow plasma from patients (n = 28) diagnosed with MDS with ring sideroblasts (MDS-RS) and MDS with blasts in the bone marrow (MDS-EB) using label-free mass spectrometry. This strategy allowed the identification of 1,194 proteins in the bone marrow plasma samples. Polyubiquitin-C (UBC), moesin (MSN), and Talin-1 (TLN1) showed the highest abundances in MDS-EB, and centrosomal protein of 55 kDa (CEP55) showed the highest relative abundance in the bone marrow plasma of MDS-RS patients. In a follow-up, in the second phase of the study, expressions of UBC, MSN, TLN1, and CEP55 genes were evaluated in bone marrow mononuclear cells from 45 patients by using qPCR. This second cohort included only seven patients from the first study. CEP55, MSN, and UBC expressions were similar in mononuclear cells from MDS-RS and MDS-EB individuals. However, TLN1 gene expression was greater in mononuclear cells from MDS-RS (p = 0.049) as compared to MDS-EB patients. Irrespective of the MDS subtype, CEP55 expression was higher (p = 0.045) in MDS patients with abnormal karyotypes, while MSN, UBC, and TALIN1 transcripts were similar in MDS with normal vs. abnormal karyotypes. In conclusion, proteomic and gene expression approaches brought evidence of altered TLN1 and CEP55 expressions in cellular and non-cellular bone marrow compartments of patients with low-risk (MDS-RS) and high-risk (MDS-EB) MDSs and with normal vs. abnormal karyotypes. As MDS is characterized by disrupted apoptosis and chromosomal alterations, leading to mitotic slippage, TLN1 and CEP55 represent potential markers for MDS prognosis and/or targeted therapy.
Collapse
Affiliation(s)
- Arlindo A. Moura
- Graduate Program in Animal Science, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Biotechnology (Renorbio), Federal University of Ceará, Fortaleza, Brazil
- *Correspondence: Arlindo A. Moura, ; Claudia Pessoa, ; Ronald F. Pinheiro,
| | - Maria Julia B. Bezerra
- Graduate Program in Animal Science, Federal University of Ceará, Fortaleza, Brazil
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Aline M. A. Martins
- Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasília, Brazil
| | - Daniela P. Borges
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Medical Sciences, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Roberta T. G. Oliveira
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Medical Sciences, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Raphaela M. Oliveira
- Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasília, Brazil
| | - Kaio M. Farias
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Biotechnology (Renorbio), Federal University of Ceará, Fortaleza, Brazil
| | - Arabela G. Viana
- Graduate Program in Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Guilherme G. C. Carvalho
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | - Carlos R. K. Paier
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Translational Medicine, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Marcelo V. Sousa
- Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasília, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasília, Brazil
| | - Carlos A. O. Ricart
- Laboratory of Protein Chemistry and Biochemistry, The University of Brasília, Brasília, Brazil
| | - Maria Elisabete A. Moraes
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Translational Medicine, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Silvia M. M. Magalhães
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Medical Sciences, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Cristiana L. M. Furtado
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Translational Medicine, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Experimental Biology Center, NUBEX, The University of Fortaleza (Unifor), Fortaleza, Brazil
| | - Manoel O. Moraes-Filho
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Translational Medicine, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Pessoa
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Biotechnology (Renorbio), Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Pharmacology, Federal University of Ceará, Fortaleza, Brazil
- *Correspondence: Arlindo A. Moura, ; Claudia Pessoa, ; Ronald F. Pinheiro,
| | - Ronald F. Pinheiro
- Drug Research and Development Center (NPDM), The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Graduate Program in Medical Sciences, The School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- *Correspondence: Arlindo A. Moura, ; Claudia Pessoa, ; Ronald F. Pinheiro,
| |
Collapse
|
13
|
Kaushik A, Bandyopadhyay S, Porwal C, Srinivasan A, Rukmangadachar LA, Hariprasad G, Kola S, Kataria J, Singh UB. 2D-DIGE based urinary proteomics and functional enrichment studies to reveal novel Mycobacterium tuberculosis and human protein biomarker candidates for pulmonary tuberculosis. Biochem Biophys Res Commun 2022; 619:15-21. [PMID: 35728279 DOI: 10.1016/j.bbrc.2022.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
In the absence of a sensitive and specific diagnostic modality capable of detecting all forms of tuberculosis (TB), proteomics may identify specific Mycobacterium tuberculosis (M.tb) proteins in urine, with a potential as biomarkers. To identify candidate biomarkers for TB, proteome profile of urine from pulmonary TB patients was compared with non-disease controls (NDC) and disease controls (DC, Streptococcus pneumonia infected patients) using a combination of two-dimensional difference gel electrophoresis (2D-DIGE) and liquid chromatography tandem mass spectrometry (LCMS/MS). Eleven differentially expressed host proteins and Eighteen high abundant M.tb proteins were identified. Protein-protein interactome (PPI) and functional enrichment analyses like Gene Ontologies, Reactome pathway etc. demonstrated that the human proteins mainly belong to extracellular space and show physiological pathways for immune response and hematological disorders. Whereas, M.tb proteins belong to the cell periphery, plasma membrane and cell wall, and demonstrated catalytic, nucleotide binding and ATPase activities along with other functional processes. The study findings provide valuable inputs about the biomarkers of TB and shed light on the probable disease consequences as an outcome of the bacterial pathogenicity.
Collapse
Affiliation(s)
- Amit Kaushik
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Chhavi Porwal
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alagiri Srinivasan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Srujana Kola
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jitender Kataria
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Urvashi B Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
14
|
Pathogenic Roles of S100A8 and S100A9 Proteins in Acute Myeloid and Lymphoid Leukemia: Clinical and Therapeutic Impacts. Molecules 2021; 26:molecules26051323. [PMID: 33801279 PMCID: PMC7958135 DOI: 10.3390/molecules26051323] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Deregulations of the expression of the S100A8 and S100A9 genes and/or proteins, as well as changes in their plasma levels or their levels of secretion in the bone marrow microenvironment, are frequently observed in acute myeloblastic leukemias (AML) and acute lymphoblastic leukemias (ALL). These deregulations impact the prognosis of patients through various mechanisms of cellular or extracellular regulation of the viability of leukemic cells. In particular, S100A8 and S100A9 in monomeric, homodimeric, or heterodimeric forms are able to modulate the survival and the sensitivity to chemotherapy of leukemic clones through their action on the regulation of intracellular calcium, on oxidative stress, on the activation of apoptosis, and thanks to their implications, on cell death regulation by autophagy and pyroptosis. Moreover, biologic effects of S100A8/9 via both TLR4 and RAGE on hematopoietic stem cells contribute to the selection and expansion of leukemic clones by excretion of proinflammatory cytokines and/or immune regulation. Hence, the therapeutic targeting of S100A8 and S100A9 appears to be a promising way to improve treatment efficiency in acute leukemias.
Collapse
|
15
|
Zhang H, Deng Y, Liu X, Sun J, Ma L, Ding Y, Zhan Z, Zhang H, Yang Y, Gu Y, Iliuk AB, Yang C, Tao WA. Glass Fiber-Supported Hybrid Monolithic Spin Tip for Enrichment of Phosphopeptides from Urinary Extracellular Vesicles. Anal Chem 2020; 92:14790-14797. [PMID: 33074658 PMCID: PMC8281360 DOI: 10.1021/acs.analchem.0c03557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles (EVs) are attracting increasing interest with their intriguing role in intercellular communications. Protein phosphorylation in EVs is of great importance for understanding intercellular signaling processes. However, the study of EV phosphoproteomics is impeded by their relatively low amount in limited clinical sample volumes, and it is necessary to have a sensitive and efficient enrichment method for EV phosphopeptides. Herein, a novel Ti(IV)-functionalized and glass fiber-supported hybrid monolithic spin tip, termed PhosTip, was prepared for enriching phosphopeptides from urinary EVs. Glass fiber as the stationary phase positions the hybrid monolith in a standard pipet tip and prevents the monolith from distortion during experiments. The preparation procedure for the new PhosTip is simple and time-saving. The hybrid monolithic PhosTip provides excellent enrichment efficiency of low-abundance phosphopeptides from cell digests and urinary EVs with minimum contamination and sample loss. Using the PhosTip, we demonstrate that 5373 and 336 unique phosphopeptides were identified from 100 and 1 μg of cell lysates, while 3919 and 217 unique phosphopeptides were successfully identified from 10 and 1 mL of urinary samples, respectively. The PhosTip was finally applied to enrich phosphopeptides in urine EVs from prostate cancer patients and healthy controls and quantify 118 up-regulated proteins with phosphosites in prostate cancer samples. These results demonstrated that the PhosTip could be a simple and convenient tool for enriching phosphopeptides from clinical samples and for broader applications in biomarker discovery.
Collapse
Affiliation(s)
- Haiyang Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Yuanyuan Deng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Xinyi Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Jie Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Leyao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Yajie Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Zhen Zhan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Hao Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - Yuchen Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 68, Changle Road, Nanjing 210009, China
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, No. 68, Changle Road, Nanjing 210009, China
| | - Anton B Iliuk
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chenxi Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210009, China
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Center of Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Fu Y, Zhang Y, Khoo BL. Liquid biopsy technologies for hematological diseases. Med Res Rev 2020; 41:246-274. [PMID: 32929726 DOI: 10.1002/med.21731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Since the discovery of circulating tumor cells in 1869, technological advances in studying circulating biomarkers from patients' blood have made the diagnosis of nonhematologic cancers less invasive. Technological advances in the detection and analysis of biomarkers provide new opportunities for the characterization of other disease types. When compared with traditional biopsies, liquid biopsy markers, such as exfoliated bladder cancer cells, circulating cell-free DNA (cfDNA), and extracellular vesicles (EV), are considered more convenient than conventional biopsies. Liquid biopsy markers undoubtedly have the potential to influence disease management and treatment dynamics. Our main focuses of this review will be the cell-based, gene-based, and protein-based key liquid biopsy markers (including EV and cfDNA) in disease detection, and discuss the research progress of these biomarkers used in conjunction with liquid biopsy. First, we highlighted the key technologies that have been broadly adopted used in hematological diseases. Second, we introduced the latest technological developments for the specific detection of cardiovascular disease, leukemia, and coronavirus disease. Finally, we concluded with perspectives on these research areas, focusing on the role of microfluidic technology and artificial intelligence in point-of-care medical applications. We believe that the noninvasive capabilities of these technologies have great potential in the development of diagnostics and can influence treatment options, thereby advancing precision disease management.
Collapse
Affiliation(s)
- Yatian Fu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Yiyuan Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| |
Collapse
|
17
|
Aberuyi N, Rahgozar S, Ghodousi ES, Ghaedi K. Drug Resistance Biomarkers and Their Clinical Applications in Childhood Acute Lymphoblastic Leukemia. Front Oncol 2020; 9:1496. [PMID: 32010613 PMCID: PMC6978753 DOI: 10.3389/fonc.2019.01496] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Biomarkers are biological molecules found in body fluids or tissues, which can be considered as indications of a normal or abnormal process, or of a condition or disease. There are various types of biomarkers based on their application and molecular alterations. Treatment-sensitivity or drug resistance biomarkers include prognostic and predictive molecules with utmost importance in selecting appropriate treatment protocols and improving survival rates. Acute lymphoblastic leukemia (ALL) is the most prevalent hematological malignancy diagnosed in children with nearly 80% cure rate. Despite the favorable survival rates of childhood ALL (chALL), resistance to chemotherapeutic agents and, as a consequence, a dismal prognosis develops in a significant number of patients. Therefore, there are urgent needs to have robust, sensitive, and disease-specific molecular prognostic and predictive biomarkers, which could allow better risk classification and then better clinical results. In this article, we review the currently known drug resistance biomarkers, including somatic or germ line nucleic acids, epigenetic alterations, protein expressions and metabolic variations. Moreover, biomarkers with potential clinical applications are discussed.
Collapse
Affiliation(s)
- Narges Aberuyi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Soheila Rahgozar
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Elaheh Sadat Ghodousi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
18
|
Qazi AS, Akbar S, Saeed RF, Bhatti MZ. Translational Research in Oncology. 'ESSENTIALS OF CANCER GENOMIC, COMPUTATIONAL APPROACHES AND PRECISION MEDICINE 2020:261-311. [DOI: 10.1007/978-981-15-1067-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
19
|
Nikonorova IA, Zhu Q, Signore CC, Mirek ET, Jonsson WO, Kong B, Guo GL, Belden WJ, Anthony TG. Age modulates liver responses to asparaginase-induced amino acid stress in mice. J Biol Chem 2019; 294:13864-13875. [PMID: 31413113 DOI: 10.1074/jbc.ra119.009864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/06/2019] [Indexed: 11/06/2022] Open
Abstract
Asparaginase is an amino acid-depleting agent used to treat blood cancers. Metabolic complications due to asparaginase affect liver function in humans. To examine how the liver response to asparaginase changes during maturity to adulthood, here we treated juvenile (2-week), young adult (8-week), and mature adult (16-week) mice with drug or excipient for 1 week and conducted RNA-Seq and functional analyses. Asparaginase reduced body growth and liver mass in juveniles but not in the adult animals. Unbiased exploration of the effect of asparaginase on the liver transcriptome revealed that the integrated stress response (ISR) was the only molecular signature shared across the ages, corroborating similar eukaryotic initiation factor 2 phosphorylation responses to asparaginase at all ages. Juvenile livers exhibited steatosis and iron accumulation following asparaginase exposure along with a hepatic gene signature indicating that asparaginase uniquely affects lipid, cholesterol, and iron metabolism in juvenile mice. In contrast, asparaginase-treated adult mice displayed greater variability in liver function, which correlated with an acute-phase inflammatory response gene signature. Asparaginase-exposed adults also had a serine/glycine/one-carbon metabolism gene signature in liver that corresponded with reduced circulating glycine and serine levels. These results establish the ISR as a conserved response to asparaginase-mediated amino acid deprivation and provide new insights into the relationship between the liver transcriptome and hepatic function upon asparaginase exposure.
Collapse
Affiliation(s)
- Inna A Nikonorova
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Qiaoqiao Zhu
- Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Christina C Signore
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Emily T Mirek
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - William O Jonsson
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - William J Belden
- Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey 08901
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901
| |
Collapse
|
20
|
Guo L, Ren H, Zeng H, Gong Y, Ma X. Proteomic analysis of cerebrospinal fluid in pediatric acute lymphoblastic leukemia patients: a pilot study. Onco Targets Ther 2019; 12:3859-3868. [PMID: 31190885 PMCID: PMC6527054 DOI: 10.2147/ott.s193616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Involvement of central nervous system in acute lymphoblastic leukemia (CNSL) remains one of the major causes of pediatric acute lymphoblastic leukemia (ALL) treatment failure. However, the current understanding of the pathological process of CNSL is still limited. This study aimed to better understand the protein expression in cerebrospinal fluid (CSF) of ALL and discover valuable prognostic biomarkers. Materials and methods CSF samples were obtained from ALL patients and healthy controls. Comparative proteomic profiling using label-free liquid chromatography-tandem mass spectrometry was performed to detect differentially expressed proteins. Results In the present study, 51 differentially expressed proteins were found. Among them, two core clusters including ten proteins (TIMP1, LGALS3BP, A2M, FN1, AHSG, HRG, ITIH4, CF I, C2, and C4a) might be crucial for tumorigenesis and progression of ALL and can be potentially valuable indicators of CNSL. Conclusion These differentially expressed proteins of ALL children with central nervous system involvement and normal children may work as diagnostic and prognostic factors of ALL patients.
Collapse
Affiliation(s)
- Linghong Guo
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, People's Republic of China, .,West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Honghong Ren
- West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Hao Zeng
- West China School of Medicine, Sichuan University, Chengdu, People's Republic of China
| | - Yanqiu Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, People's Republic of China,
| |
Collapse
|
21
|
Abstract
INTRODUCTION Plasma proteomics has been extensively utilized for studies that investigate various disease settings (e.g. cardiovascular disease), as well as to monitor the effect of pharmaceuticals on the plasma proteome (e.g. chemotherapy). However, plasma proteomic studies focusing on children represent a very small proportion of the plasma proteomic studies completed to date. Early disease detection and prevention is critical in pediatrics, as children must live with the disease outcomes for many years and often carry negative outcomes into adulthood. Pediatrics represents an area of plasma proteomics that is about to undergo a significant expansion. Areas covered: This review is based on a PubMed search focusing on five keywords that are plasma, biomarkers, pediatric, proteomics, and children. It is a comprehensive summary of plasma proteomic studies specific to the pediatric patient and discusses aspects such as the clinical setting, sample size, methodological approaches and outlines the significance of the findings. Expert commentary: Plasma proteomics is expanding significantly as a result of major advancements in proteomic technology. This is in synergy with the growing focus on true early disease detection and prevention in early life. We are about to see a new era of advanced medical science built from pediatric proteomics.
Collapse
Affiliation(s)
- Conor McCafferty
- a Haematology Research Laboratory, Murdoch Children's Research Institute , Melbourne , Australia
| | - Jessica Chaaban
- a Haematology Research Laboratory, Murdoch Children's Research Institute , Melbourne , Australia
| | - Vera Ignjatovic
- a Haematology Research Laboratory, Murdoch Children's Research Institute , Melbourne , Australia.,b Department of Paediatrics , The University of Melbourne , Melbourne , Australia
| |
Collapse
|
22
|
Yu T. Nonlinear variable selection with continuous outcome: A fully nonparametric incremental forward stagewise approach. Stat Anal Data Min 2018; 11:188-197. [DOI: 10.1002/sam.11381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tianwei Yu
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health; Emory University; Atlanta Georgia
| |
Collapse
|
23
|
Shores DR, Everett AD. Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers. J Pediatr 2018; 193:14-20.e31. [PMID: 29031860 PMCID: PMC5794519 DOI: 10.1016/j.jpeds.2017.08.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Darla R Shores
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
24
|
Aguirre-Guillén WA, Angeles-Floriano T, López-Martínez B, Reyes-Morales H, Zlotnik A, Valle-Rios R. Omics techniques and biobanks to find new biomarkers for the early detection of acute lymphoblastic leukemia in middle-income countries: a perspective from Mexico. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2018; 74:227-232. [PMID: 29382491 DOI: 10.1016/j.bmhimx.2017.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/17/2017] [Indexed: 10/19/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) affects the quality of life of many children in the world and particularly in Mexico, where a high incidence has been reported. With a proper financial investment and with well-organized institutions caring for those patients, together with solid platforms to perform high-throughput analyses, we propose the creation of a Mexican repository system of serum and cells from bone marrow and blood samples derived from tissues of pediatric patients with ALL diagnosis. This resource, in combination with omics technologies, particularly proteomics and metabolomics, would allow longitudinal studies, offering an opportunity to design and apply personalized ALL treatments. Importantly, it would accelerate the development of translational science and will lead us to further discoveries, including the identification of new biomarkers for the early detection of leukemia.
Collapse
Affiliation(s)
- William Alejandro Aguirre-Guillén
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; Unidad Biológica y de Ciencias de la Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Tania Angeles-Floriano
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; Departamento de Laboratorio Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Briceida López-Martínez
- Sub-Dirección de Diagnóstico Clínico, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Hortensia Reyes-Morales
- Departamento de Investigación, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Albert Zlotnik
- Department of Physiology and Biophysics and Institute for Immunology, University of California Irvine, Irvine, CA, USA
| | - Ricardo Valle-Rios
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; Unidad de investigación Escuela de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
25
|
Domain retention in transcription factor fusion genes and its biological and clinical implications: a pan-cancer study. Oncotarget 2017; 8:110103-110117. [PMID: 29299133 PMCID: PMC5746368 DOI: 10.18632/oncotarget.22653] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/25/2017] [Indexed: 12/31/2022] Open
Abstract
Genomic rearrangements involving transcription factors (TFs) can form fusion proteins resulting in either enhanced, weakened, or even loss of TF activity. Functional domain (FD) retention is a critical factor in the activity of transcription factor fusion genes (TFFGs). A systematic investigation of FD retention in TFFGs and their outcome (e.g. expression changes) in a pan-cancer study has not yet been completed. Here, we examined the FD retention status in 386 TFFGs across 13 major cancer types and identified 83 TFFGs involving 67 TFs that retained FDs. To measure the potential biological relevance of TFs in TFFGs, we introduced a Major Active Isofusion Index (MAII) and built a prioritized TFFG network using MAII scores and the observed frequency of fusion positive samples. Interestingly, the four TFFGs (PML-RARA, RUNX1-RUNX1T1, TMPRSS2-ERG, and SFPQ-TFE3) with the highest MAII scores showed 50 differentially expressed target genes (DETGs) in fusion-positive versus fusion-negative cancer samples. DETG analysis revealed that they were involved in tumorigenesis-related processes in each cancer type. PLAU, which encodes plasminogen activator urokinase and serves as a biomarker for tumor invasion, was found to be consistently activated in the samples with the highest MAII scores. Among the 50 DETGs, 21 were drug targetable genes. Fourteen of these 21 DETGs were expressed in acute myeloid leukemia (AML) samples. Accordingly, we constructed an AML-specific TFFG network, which included 38 DETGs in RUNX1-RUNX1T1 or PML-RARA positive samples. In summary, this study revealed several TFFGs and their potential target genes, and provided insights into the clinical implications of TFFGs.
Collapse
|
26
|
Xu G, Li Z, Wang L, Chen F, Chi Z, Gu M, li S, Wu D, Miao J, Zhang Y, Hao L, Fan Y. Label-free quantitative proteomics reveals differentially expressed proteins in high risk childhood acute lymphoblastic leukemia. J Proteomics 2017; 150:1-8. [DOI: 10.1016/j.jprot.2016.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 12/28/2022]
|
27
|
Faa G, Messana I, Fanos V, Cabras T, Manconi B, Vento G, Iavarone F, Martelli C, Desiderio C, Castagnola M. Proteomics applied to pediatric medicine: opportunities and challenges. Expert Rev Proteomics 2016; 13:883-94. [DOI: 10.1080/14789450.2016.1221764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
28
|
Cavalcante MDS, Torres-Romero JC, Lobo MDP, Moreno FBMB, Bezerra LP, Lima DS, Matos JC, Moreira RDA, Monteiro-Moreira ACDO. A panel of glycoproteins as candidate biomarkers for early diagnosis and treatment evaluation of B-cell acute lymphoblastic leukemia. Biomark Res 2016; 4:1. [PMID: 26823978 PMCID: PMC4730630 DOI: 10.1186/s40364-016-0055-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia is the most common malignant cancer in childhood. The signs and symptoms of childhood cancer are difficult to recognize, as it is not the first diagnosis to be considered for nonspecific complaints, leading to potential uncertainty in diagnosis. The aim of this study was to perform proteomic analysis of serum from pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL) to identify candidate biomarker proteins, for use in early diagnosis and evaluation of treatment. METHODS Serum samples were obtained from ten patients at the time of diagnosis (B-ALL group) and after induction therapy (AIT group). Sera from healthy children were used as controls (Control group). The samples were subjected to immunodepletion, affinity chromatography with α-d-galactose-binding lectin (from Artocarpus incisa seeds) immobilized on a Sepharose(TM) 4B gel, concentration, and digestion for subsequent analysis with nano-UPLC tandem nano-ESI-MS(E). The program Expression (E) was used to quantify differences in protein expression between groups. RESULTS A total of 96 proteins were identified. Leucine-rich alpha-2-glycoprotein 1 (LRG1), Clusterin (CLU), thrombin (F2), heparin cofactor II (SERPIND1), alpha-2-macroglobulin (A2M), alpha-2-antiplasmin (SERPINF2), Alpha-1 antitrypsin (SERPINA1), Complement factor B (CFB) and Complement C3 (C3) were identified as candidate biomarkers for early diagnosis of B-ALL, as they were upregulated in the B-ALL group relative to the control and AIT groups. Expression levels of the candidate biomarkers did not differ significantly between the AIT and control groups, providing further evidence that the candidate biomarkers are present only in the disease state, as all patients achieved complete remission after treatment. CONCLUSION A panel of protein biomarker candidates has been developed for pre-diagnosis of B-ALL and also provided information that would indicate a favorable response to treatment after induction therapy.
Collapse
Affiliation(s)
| | - José Camilo Torres-Romero
- />Center of Experimental Biology (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceará Brazil
- />Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará Brazil
| | - Marina Duarte Pinto Lobo
- />Center of Experimental Biology (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceará Brazil
- />Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará Brazil
| | | | - Leonardo Primo Bezerra
- />Center of Experimental Biology (NUBEX), University of Fortaleza (UNIFOR), Fortaleza, Ceará Brazil
| | - Diego Silva Lima
- />Development and Technological Innovation in Drug Program, Federal University of Ceará, Fortaleza, Ceará Brazil
| | - Jesamar Correia Matos
- />Reference Center at Children’s Cancer Diagnosis and Adolescents Dr. Murilo Martins, Albert Sabin Hospital, Fortaleza, Ceará Brazil
| | | | | |
Collapse
|
29
|
Nagy Z, Baghy K, Hunyadi-Gulyás É, Micsik T, Nyírő G, Rácz G, Butz H, Perge P, Kovalszky I, Medzihradszky KF, Rácz K, Patócs A, Igaz P. Evaluation of 9-cis retinoic acid and mitotane as antitumoral agents in an adrenocortical xenograft model. Am J Cancer Res 2015; 5:3645-3658. [PMID: 26885453 PMCID: PMC4731638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 11/07/2015] [Indexed: 06/05/2023] Open
Abstract
The available drug treatment options for adrenocortical carcinoma (ACC) are limited. In our previous studies, the in vitro activity of 9-cis retinoic acid (9-cisRA) on adrenocortical NCI-H295R cells was shown along with its antitumoral effects in a small pilot xenograft study. Our aim was to dissect the antitumoral effects of 9-cisRA on ACC in a large-scale xenograft study involving mitotane, 9-cisRA and their combination. 43 male SCID mice inoculated with NCI-H295R cells were treated in four groups (i. control, ii. 9-cisRA, iii. mitotane, iv. 9-cisRA + mitotane) for 28 days. Tumor size follow-up, histological and immunohistochemical (Ki-67) analysis, tissue gene expression microarray, quantitative real-time-PCR for the validation of microarray results and to detect circulating microRNAs were performed. Protein expression was studied by proteomics and Western-blot validation. Only mitotane alone and the combination of 9-cisRA and mitotane resulted in significant tumor size reduction. The Ki-67 index was significantly reduced in both 9-cisRA and 9-cisRA+mitotane groups. Only modest changes at the mRNA level were found: the 9-cisRA-induced overexpression of apolipoprotein A4 and down-regulation of phosphodiesterase 4A was validated. The expression of circulating hsa-miR-483-5p was significantly reduced in the combined treatment group. The SET protein was validated as being significantly down-regulated in the combined mitotane+9-cisRA group. 9-cisRA might be a helpful additive agent in the treatment of ACC in combination with mitotane. Circulating hsa-miR-483-5p could be utilized for monitoring the treatment efficacy in ACC patients, and the treatment-induced reduction in protein SET expression might raise its relevance in ACC biology.
Collapse
Affiliation(s)
- Zoltán Nagy
- The 2 Department of Medicine, Faculty of Medicine, Semmelweis UniversityH-1088 Budapest, Szentkirályi Str. 46., Hungary
| | - Kornélia Baghy
- The 1 Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis UniversityH-1088 Budapest, Üllői Str. 26., Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics, Biological Research CentreH-6726 Szeged, Temesvári Krt. 62., Hungary
| | - Tamás Micsik
- The 1 Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis UniversityH-1088 Budapest, Üllői Str. 26., Hungary
| | - Gábor Nyírő
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis UniversitySzentkirályi Str. 46., H-1088 Budapest, Hungary
| | - Gergely Rácz
- The 1 Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis UniversityH-1088 Budapest, Üllői Str. 26., Hungary
| | - Henriett Butz
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis UniversitySzentkirályi Str. 46., H-1088 Budapest, Hungary
| | - Pál Perge
- The 2 Department of Medicine, Faculty of Medicine, Semmelweis UniversityH-1088 Budapest, Szentkirályi Str. 46., Hungary
| | - Ilona Kovalszky
- The 1 Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis UniversityH-1088 Budapest, Üllői Str. 26., Hungary
| | - Katalin F Medzihradszky
- Laboratory of Proteomics, Biological Research CentreH-6726 Szeged, Temesvári Krt. 62., Hungary
| | - Károly Rácz
- The 2 Department of Medicine, Faculty of Medicine, Semmelweis UniversityH-1088 Budapest, Szentkirályi Str. 46., Hungary
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis UniversitySzentkirályi Str. 46., H-1088 Budapest, Hungary
| | - Attila Patócs
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis UniversitySzentkirályi Str. 46., H-1088 Budapest, Hungary
- “Lendület-2013” Research Group, Hungarian Academy of Sciences and Semmelweis UniversitySzentkirályi Str. 46., H-1088 Budapest, Hungary
| | - Peter Igaz
- The 2 Department of Medicine, Faculty of Medicine, Semmelweis UniversityH-1088 Budapest, Szentkirályi Str. 46., Hungary
| |
Collapse
|
30
|
Identifying dense subgraphs in protein–protein interaction network for gene selection from microarray data. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13721-015-0104-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Xu Y, Hu J, Wang X, Xuan L, Lai J, Xu L, Chen S, Yang L, Luo G, Zhu K, Wu X, Li Y. Overexpression of MALT1-A20-NF-κB in adult B-cell acute lymphoblastic leukemia. Cancer Cell Int 2015. [PMID: 26213496 PMCID: PMC4514975 DOI: 10.1186/s12935-015-0222-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background A20 is a dual inhibitor of NF-κB activation and apoptosis in the tumor necrosis factor receptor 1 signaling pathway, and both are related to tumorigenesis. A20 is frequently inactivated by deletions and/or mutations in several B and T cell lymphoma subtypes; however, knowledge of the role of A20 in B-cell acute lymphoblastic leukemia (B-ALL) remains limited. In this study, we characterized the A20 gene expression pattern, the expression level of its upstream regulating factor MALT1, and its downstream target NF-κB in adult B-ALL. Methods The expression level of MALT1, A20 and NF-κB1 was detected in peripheral blood mononuclear cells (PBMCs) from 20 patients with adult B-ALL (including 12 de novo B-ALL and 8 refractory/relapse B-ALL cases), and nine patients with B-ALL in complete remission (CR) using real-time PCR. Sixteen healthy individuals served as controls. Results Significant A20 overexpression was found in the B-ALL (median: 13.489) compared with B-ALL CR (median: 3.755) (P = 0.003) patients and healthy individuals (median: 8.748) (P = 0.002), while there was no significant difference in A20 expression between B-ALL CR patients and healthy individuals (P = 0.107). Interestingly, the A20 expression level in the B-ALL samples was relatively different with approximately 50% of the B-ALL cases showing a relatively high A20 expression level, while the remaining 50% cases demonstrated slight upregulation or a similar expression level as the healthy controls. However, there was no significant difference in the A20 expression level between de novo B-ALL (median 12.252) and refractory/relapse B-ALL patients (median 21.342) (P = 0.616). Similarly, a significantly higher expression level of NF-κB1 was found in the B-ALL (median 1.062) patients compared with healthy individuals (median 0.335) (P < 0.0001), while the NF-κB1 expression level was downregulated in the B-ALL CR group (median 0.339), which was significantly lower than that in those with B-ALL (P = 0.001). Moreover, the MALT1 expression level in B-ALL was upregulated (median 1.938) and significantly higher than that in healthy individuals (median 0.677) (P = 0.002) and B-ALL CR patients (median 0.153) (P = 0.008). The correlation of the expression levels of all three genes was lost in B-ALL. Conclusions We found that MALT1-A20-NF-κB is overexpressed in adult B-ALL, which may be related to the pathogenesis of B-ALL, and this pathway may be considered a potentially attractive target for the development of B-ALL therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s12935-015-0222-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Xu
- Institute of Hematology, Jinan University, Guangzhou, 510632 China
| | - Junyan Hu
- Institute of Hematology, Jinan University, Guangzhou, 510632 China.,Department of Emergency, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150 China
| | - Xu Wang
- Institute of Hematology, Jinan University, Guangzhou, 510632 China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632 China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jing Lai
- Institute of Hematology, Jinan University, Guangzhou, 510632 China
| | - Ling Xu
- Institute of Hematology, Jinan University, Guangzhou, 510632 China
| | - Shaohua Chen
- Institute of Hematology, Jinan University, Guangzhou, 510632 China
| | - Lijian Yang
- Institute of Hematology, Jinan University, Guangzhou, 510632 China
| | - Gengxin Luo
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632 China
| | - Kanger Zhu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632 China
| | - Xiuli Wu
- Institute of Hematology, Jinan University, Guangzhou, 510632 China
| | - Yangqiu Li
- Institute of Hematology, Jinan University, Guangzhou, 510632 China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632 China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
32
|
Arner P, Henjes F, Schwenk JM, Darmanis S, Dahlman I, Iresjö BM, Naredi P, Agustsson T, Lundholm K, Nilsson P, Rydén M. Circulating carnosine dipeptidase 1 associates with weight loss and poor prognosis in gastrointestinal cancer. PLoS One 2015; 10:e0123566. [PMID: 25898255 PMCID: PMC4405487 DOI: 10.1371/journal.pone.0123566] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/19/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer cachexia (CC) is linked to poor prognosis. Although the mechanisms promoting this condition are not known, several circulating proteins have been proposed to contribute. We analyzed the plasma proteome in cancer subjects in order to identify factors associated with cachexia. DESIGN/SUBJECTS Plasma was obtained from a screening cohort of 59 patients, newly diagnosed with suspected gastrointestinal cancer, with (n = 32) or without (n = 27) cachexia. Samples were subjected to proteomic profiling using 760 antibodies (targeting 698 individual proteins) from the Human Protein Atlas project. The main findings were validated in a cohort of 93 patients with verified and advanced pancreas cancer. RESULTS Only six proteins displayed differential plasma levels in the screening cohort. Among these, Carnosine Dipeptidase 1 (CNDP1) was confirmed by sandwich immunoassay to be lower in CC (p = 0.008). In both cohorts, low CNDP1 levels were associated with markers of poor prognosis including weight loss, malnutrition, lipid breakdown, low circulating albumin/IGF1 levels and poor quality of life. Eleven of the subjects in the discovery cohort were finally diagnosed with non-malignant disease but omitting these subjects from the analyses did not have any major influence on the results. CONCLUSIONS In gastrointestinal cancer, reduced plasma levels of CNDP1 associate with signs of catabolism and poor outcome. These results, together with recently published data demonstrating lower circulating CNDP1 in subjects with glioblastoma and metastatic prostate cancer, suggest that CNDP1 may constitute a marker of aggressive cancer and CC.
Collapse
Affiliation(s)
- Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden
| | - Frauke Henjes
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| | - Jochen M. Schwenk
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| | - Spyros Darmanis
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| | - Ingrid Dahlman
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden
| | - Britt-Marie Iresjö
- Department of Surgery, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Peter Naredi
- Department of Surgery, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Thorhallur Agustsson
- Division of Surgery, Department for Clinical Science, Intervention and Technology (CLINTEC), Södersjukhuset, 118 83, Stockholm, Sweden
| | - Kent Lundholm
- Department of Surgery, Sahlgrenska Academy, University of Gothenburg, 413 45, Gothenburg, Sweden
| | - Peter Nilsson
- Affinity Proteomics, Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Box 1031, 171 21, Solna, Sweden
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
33
|
Abstract
Mass spectrometry (MS) is a complex analytical chemistry tool that allows qualitative and quantitative assessments of the components of complex chemical compounds. Applications of MS in medicine include the identification and quantification of drugs and metabolites; identification of proteins, biopolymers and disease markers and investigation of differential protein expression and proteins altered by mutations and/or post-translational changes. A variety of MS methods and technologies now play valuable and expanding roles in the diagnosis and monitoring of acute leukemia, as well as in identification of therapeutic targets and biomarkers, drug discovery, and other important areas of leukemia research. The objective of this review is to present a clinically oriented review of the roles of MS in the research, diagnosis and therapy of acute leukemia.
Collapse
Affiliation(s)
- John Roboz
- Department of Medicine, Division of Hematology/Oncology, Icahn School of Medicine of Mount Sinai, New York, NY, 10029, USA
| | | |
Collapse
|
34
|
López Villar E, Wang X, Madero L, Cho WC. Application of oncoproteomics to aberrant signalling networks in changing the treatment paradigm in acute lymphoblastic leukaemia. J Cell Mol Med 2015; 19:46-52. [PMID: 25537633 PMCID: PMC4288348 DOI: 10.1111/jcmm.12507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/04/2014] [Indexed: 11/27/2022] Open
Abstract
Oncoproteomics is an important innovation in the early diagnosis, management and development of personalized treatment of acute lymphoblastic leukaemia (ALL). As inherent factors are not completely known - e.g. age or family history, radiation exposure, benzene chemical exposure, certain viral exposures such as infection with the human T-cell lymphoma/leukaemia virus-1, as well as some inherited syndromes may raise the risk of ALL - each ALL patient may modify the susceptibility of therapy. Indeed, we consider these unknown inherent factors could be explained via coupling cytogenetics plus proteomics, especially when proteins are the ones which play function within cells. Innovative proteomics to ALL therapy may help to understand the mechanism of drug resistance and toxicities, which in turn will provide some leads to improve ALL management. Most important of these are shotgun proteomic strategies to unravel ALL aberrant signalling networks. Some shotgun proteomic innovations and bioinformatic tools for ALL therapies will be discussed. As network proteins are distinctive characteristics for ALL patients, unrevealed by cytogenetics, those network proteins are currently an important source of novel therapeutic targets that emerge from shotgun proteomics. Indeed, ALL evolution can be studied for each individual patient via oncoproteomics.
Collapse
Affiliation(s)
- Elena López Villar
- Department of Oncohematology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de MadridMadrid, Spain
| | - Xiangdong Wang
- Biomedical Research Centre, Fudan University Zhongshan HospitalShanghai, China
- Department of Respiratory Medicine, Zhongshan Hospital Fudan University School of Medicine, Shanghai Respiratory Research InstituteShanghai, China
| | - Luis Madero
- Department of Oncohematology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de MadridMadrid, Spain
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth HospitalHong Kong
| |
Collapse
|
35
|
Swarnkar T, Simoes SN, Martins DC, Anura A, Brentani H, Hashimoto RF, Mitra P. Multiview Clustering on PPI Network for Gene Selection and Enrichment from Microarray Data. 2014 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING 2014:15-22. [DOI: 10.1109/bibe.2014.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
36
|
Yip C, García A. Exploring the potential of platelet proteomics in children. Proteomics Clin Appl 2014; 8:807-12. [PMID: 25090967 DOI: 10.1002/prca.201400048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/04/2014] [Accepted: 07/31/2014] [Indexed: 01/04/2023]
Abstract
Proteomics is a rapidly evolving ''post-genomic'' science utilizing advanced technologies in protein separation, identification, quantitation and heavily relying on bioinformatics. Proteomic research in pediatrics is important and most of the successes thus far are seen in research that utilize samples that require less invasive procedures and focus on prevailing childhood diseases such as acute lymphoblastic leukaemia and neuroblastoma. Recent advances in proteomics are helping to elucidate platelet processes that are relevant to bleeding and clotting disorders, as well as other important roles of platelets such as in angiogenesis and inflammation. Nevertheless, most of platelet proteome data obtained to date are derived from the adult population and the potential of platelet proteomic application in children has not yet been explored. As it happens in all research fields, there are additional challenges in studying children such as procuring sufficient biological samples and access to less common disease cohorts as compared to in adults. Furthermore, many of the prevalent platelet-mediated diseases in adults, such as coronary heart disease and atherosclerotic lesions, are believed to have origins during childhood. Hence, platelet proteomic research in children may reveal some important information on how platelet plays a role in the pathogenesis of disease. In this article, we refer to the current knowledge from platelet proteomic research strategies in adults and address the specific concerns in the study of pediatric samples.
Collapse
Affiliation(s)
- Christina Yip
- Department of Laboratory Medicine, Division of Haematology, National University Hospital, Singapore
| | | |
Collapse
|
37
|
López Villar E, Wu D, Cho WC, Madero L, Wang X. Proteomics-based discovery of biomarkers for paediatric acute lymphoblastic leukaemia: challenges and opportunities. J Cell Mol Med 2014; 18:1239-46. [PMID: 24912534 PMCID: PMC4124009 DOI: 10.1111/jcmm.12319] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/04/2014] [Indexed: 01/06/2023] Open
Abstract
There are important breakthroughs in the treatment of paediatric acute lymphoblastic leukaemia (ALL) since 1950, by which the prognosis of the child majority suffered from ALL has been improved. However, there are urgent needs to have disease-specific biomarkers to monitor the therapeutic efficacy and predict the patient prognosis. The present study overviewed proteomics-based research on paediatric ALL to discuss important advances to combat cancer cells and search novel and real protein biomarkers of resistance or sensitivity to drugs which target the signalling networks. We highlighted the importance and significance of a proper phospho-quantitative design and strategy for paediatric ALL between relapse and remission, when human body fluids from cerebrospinal, peripheral blood, or bone-marrow were applied. The present article also assessed the schedule for the analysis of body fluids from patients at different states, importance of proteomics-based tools to discover ALL-specific and sensitive biomarkers, to stimulate paediatric ALL research via proteomics to ‘build’ the reference map of the signalling networks from leukemic cells at relapse, and to monitor significant clinical therapies for ALL-relapse.
Collapse
|