1
|
Chen J, Chen W, Zhang J, Zhao H, Cui J, Wu J, Shi A. Dual effects of endogenous formaldehyde on the organism and drugs for its removal. J Appl Toxicol 2024; 44:798-817. [PMID: 37766419 DOI: 10.1002/jat.4546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Endogenous formaldehyde (FA) is produced in the human body via various mechanisms to preserve healthy energy metabolism and safeguard the organism. However, endogenous FA can have several negative effects on the body through epigenetic alterations, including cancer growth promotion; neuronal, hippocampal and endothelial damages; atherosclerosis acceleration; haemopoietic stem cell destruction and haemopoietic cell production reduction. Certain medications with antioxidant effects, such as glutathione, vitamin E, resveratrol, alpha lipoic acid and polyphenols, lessen the detrimental effects of endogenous FA by reducing oxidative stress, directly scavenging endogenous FA or promoting its degradation. This study offers fresh perspectives for managing illnesses associated with endogenous FA exposure.
Collapse
Affiliation(s)
- Jiaxin Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Wenhui Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinjia Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Huanhuan Zhao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Ji Cui
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| | - Anhua Shi
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
2
|
Abunimye DA, Okafor IM, Okorowo H, Obeagu EI. The role of GATA family transcriptional factors in haematological malignancies: A review. Medicine (Baltimore) 2024; 103:e37487. [PMID: 38518015 PMCID: PMC10956995 DOI: 10.1097/md.0000000000037487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/13/2024] [Indexed: 03/24/2024] Open
Abstract
GATA transcriptional factors are zinc finger DNA binding proteins that regulate transcription during development and cell differentiation. The 3 important GATA transcription factors GATA1, GATA2 and GATA3 play essential role in the development and maintenance of hematopoietic systems. GATA1 is required for the erythroid and Megakaryocytic commitment during hematopoiesis. GATA2 is crucial for the proliferation and survival of early hematopoietic cells, and is also involved in lineage specific transcriptional regulation as the dynamic partner of GATA1. GATA3 plays an essential role in T lymphoid cell development and immune regulation. As a result, mutations in gene encoding the GATA transcription factor or alteration in the protein expression level or their function have been linked to a variety of human haematological malignancies. This review presents a summary of recent understanding of how the disrupted biological function of GATA may contribute to hematologic diseases.
Collapse
Affiliation(s)
- Dennis Akongfe Abunimye
- Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria
| | - Ifeyinwa Maryanne Okafor
- Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria
| | - Henshew Okorowo
- Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria
| | | |
Collapse
|
3
|
Hou S, Wang X, Guo T, Lan Y, Yuan S, Yang S, Zhao F, Fang A, Liu N, Yang W, Chu Y, Jiang E, Cheng T, Sun X, Yuan W. PHF6 maintains acute myeloid leukemia via regulating NF-κB signaling pathway. Leukemia 2023; 37:1626-1637. [PMID: 37393343 PMCID: PMC10400421 DOI: 10.1038/s41375-023-01953-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Acute myeloid leukemia (AML) is a major hematopoietic malignancy characterized by the accumulation of immature and abnormally differentiated myeloid cells in bone marrow. Here with in vivo and in vitro models, we demonstrate that the Plant homeodomain finger gene 6 (PHF6) plays an important role in apoptosis and proliferation in myeloid leukemia. Phf6 deficiency could delay the progression of RUNX1-ETO9a and MLL-AF9-induced AML in mice. PHF6 depletion inhibited the NF-κB signaling pathways by disrupting the PHF6-p50 complex and partially inhibiting the nuclear translocation of p50 to suppress the expression of BCL2. Treating PHF6 over-expressed myeloid leukemia cells with NF-κB inhibitor (BAY11-7082) significantly increased their apoptosis and decreased their proliferation. Taken together, in contrast to PHF6 as a tumor suppressor in T-ALL as reported, we found that PHF6 also plays a pro-oncogenic role in myeloid leukemia, and thus potentially to be a therapeutic target for treating myeloid leukemia patients.
Collapse
Affiliation(s)
- Shuaibing Hou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of lymphoma, Peking University Cancer Hospital & Institute, Beijing, 100039, China.
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Tengxiao Guo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yanjie Lan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Shengnan Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Shuang Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Fei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Aizhong Fang
- Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Na Liu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wanzhu Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Xiaojian Sun
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
4
|
Assem M, El-Araby RE, Al-Karmalawy AA, Nabil R, Kamal MAM, Belal A, Ghamry HI, Abourehab MAS, Ghoneim MM, Alshahrani MY, El Leithy AA. Promoter methylation might shift the balance of Galectin-3 & 12 expression in de novo adult acute myeloid leukemia patients. Front Genet 2023; 14:1122864. [PMID: 36861129 PMCID: PMC9968970 DOI: 10.3389/fgene.2023.1122864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Acute myeloid leukemia (AML) was reported as the most common type of leukemia among adults. Galectins constitute a family of galactose-binding proteins reported to play a critical role in many malignancies including AML. Galectin-3 and -12 are members of the mammalian galectin family. To understand the contribution of galectin-3 and -12 promoter methylation to their expression, we performed bisulfite methylation-specific (MSP)-PCR and bisulfite genomic sequencing (BGS) of primary leukemic cells in patients with de novo AML before receiving any therapy. Here, we show a significant loss of LGALS12 gene expression in association with promoter methylation. The lowest degree of expression was found in the methylated (M) group while the highest degree was in the unmethylated (U) group and the partially methylated (P) group expression lies in between. This was not the case with galectin-3 in our cohort unless the CpG sites analyzed were outside the frame of the studied fragment. We were also able to identify four CpG sites (CpG number 1, 5, 7& 8) in the promoter region of galectin-12; these sites must be unmethylated so that expression can be induced. As far as the authors know, these findings were not previously concluded in earlier studies.
Collapse
Affiliation(s)
- Magda Assem
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rady E. El-Araby
- Division of Oral Biology, Department of Periodontology, Tufts University School of Medicine, Boston, MA, United States,Central Lab, Theodor Bilharz Research Institute (TBRI), Ministry of Scientific Research, Cairo, Egypt
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt,*Correspondence: Ahmed A. Al-Karmalawy, ; Asmaa A. El Leithy,
| | - Reem Nabil
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed A. M. Kamal
- Clinical Pathology Department, El-Hussein University Hospital, Al-Azhar University, Cairo, Egypt
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt,Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Heba I. Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt,Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Asmaa A. El Leithy
- College of Biotechnology, Misr University for Science and Technology (MUST), Giza, Egypt,*Correspondence: Ahmed A. Al-Karmalawy, ; Asmaa A. El Leithy,
| |
Collapse
|
5
|
Al-Bulushi F, Al-Riyami R, Al-Housni Z, Al-Abri B, Al-Khabori M. Impact of mutations in epigenetic modifiers in acute myeloid leukemia: A systematic review and meta-analysis. Front Oncol 2022; 12:967657. [PMID: 36518313 PMCID: PMC9742486 DOI: 10.3389/fonc.2022.967657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/11/2022] [Indexed: 08/30/2023] Open
Abstract
This is a systematic review and meta-analysis evaluating the prognostic significance of epigenetic mutations on the overall survival (OS) in Acute Myeloid Leukemia (AML). We searched for studies evaluating epigenetic mutations in AML (up to November 2018) in PubMed, Trip database and Cochrane library. Hazard ratio (HR) of outcomes were extracted, and random-effects model was used to pool the results. A total of 10,002 citations were retrieved from the search strategy; 42 articles were identified for the meta-analysis (ASXL1 = 7, TET2 = 8, DNMT3A = 12, IDH =15), with fair to good-quality studies. The pooled HR was 1.88 (95% CI: 1.49-2.36) for ASXL1 mutation, 1.39 (95% CI: 1.18-1.63) for TET2 mutation, 1.35 (95% CI 1.16-1.56) for DNMT3a and 1.54 (95% CI: 1.15-2.06) for IDH mutation. However, there was a substantial heterogeneity in the DNMT3a and IDH studies. In conclusion epigenetic mutations in ASXL1, TET2, DNMT3a and IDH adversely impact OS in patients with AML albeit with considerable heterogeneity and possibly publication bias. Further studies are required to address these limitations.
Collapse
Affiliation(s)
- Fatma Al-Bulushi
- Hematopathology, Oman Medical Specialty Board, Muscat, Oman
- Hematology Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Rahma Al-Riyami
- Internal Medicine, Oman Medical Specialty Board, Muscat, Oman
| | - Zainab Al-Housni
- Hematology Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Bushra Al-Abri
- Hematopathology, Oman Medical Specialty Board, Muscat, Oman
| | - Murtadha Al-Khabori
- Hematology Department, Sultan Qaboos University Hospital, Muscat, Oman
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
6
|
Chen Y, Li J, Xu L, Găman MA, Zou Z. The genesis and evolution of acute myeloid leukemia stem cells in the microenvironment: From biology to therapeutic targeting. Cell Death Discov 2022; 8:397. [PMID: 36163119 PMCID: PMC9513079 DOI: 10.1038/s41420-022-01193-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by cytogenetic and genomic alterations. Up to now, combination chemotherapy remains the standard treatment for leukemia. However, many individuals diagnosed with AML develop chemotherapeutic resistance and relapse. Recently, it has been pointed out that leukemic stem cells (LSCs) are the fundamental cause of drug resistance and AML relapse. LSCs only account for a small subpopulation of all leukemic cells, but possess stem cell properties, including a self-renewal capacity and a multi-directional differentiation potential. LSCs reside in a mostly quiescent state and are insensitive to chemotherapeutic agents. When LSCs reside in a bone marrow microenvironment (BMM) favorable to their survival, they engage into a steady, continuous clonal evolution to better adapt to the action of chemotherapy. Most chemotherapeutic drugs can only eliminate LSC-derived clones, reducing the number of leukemic cells in the BM to a normal range in order to achieve complete remission (CR). LSCs hidden in the BM niche can hardly be targeted or eradicated, leading to drug resistance and AML relapse. Understanding the relationship between LSCs, the BMM, and the generation and evolution laws of LSCs can facilitate the development of effective therapeutic targets and increase the efficiency of LSCs elimination in AML.
Collapse
Affiliation(s)
- Yongfeng Chen
- Department of Basic Medical Sciences, Medical College of Taizhou University, Taizhou, Zhejiang, 318000, China.
| | - Jing Li
- Department of Histology and Embryology, North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Linglong Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, 318000, China
| | - Mihnea-Alexandru Găman
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474, Bucharest, Romania.
- Department of Hematology, Centre of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania.
| | - Zhenyou Zou
- Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, Guangxi, 545005, China.
| |
Collapse
|
7
|
Sun GK, Xu ZJ, Nan FY, Tang LJ, Yao DM. Dysregulation of LINC00324 associated with methylation facilitates leukemogenesis in de novo acute myeloid leukemia. Int J Lab Hematol 2022; 44:567-575. [PMID: 35218157 DOI: 10.1111/ijlh.13809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/06/2022] [Accepted: 02/03/2022] [Indexed: 12/17/2022]
Abstract
INTRODUCTION LINC00324 was overexpressed and facilitated carcinogenesis in various solid malignant tumors. However, the role of LINC00324 in leukemogenesis remains to be elucidated. METHODS The relative expression and unmethylation levels of LINC00324 were detected by real-time quantitative PCR (RT-qPCR) and real-time quantitative methylation-specific PCR (RT-qMSP). Cell proliferation experimental and flow cytometer (FCM) was used to detect the change of proliferation and apoptosis in leukemia cell lines after overexpression of LINC00324. RESULTS The results showed that the expression of LINC00324 and the methylation level of the promoter region were significantly negatively correlated in AML patients. Moreover, patients with lower LINC00324 expression showed more prolonged overall survival (OS). Remarkably, overexpression of LINC00324 in leukemia cell lines promoted the proliferation of target cells and inhibited their apoptosis. CONCLUSION Our findings firstly identified that the hypomethylation of LINC00324 was a common molecular event in de novo AML patients. The abnormally upregulated LINC00324 promotes proliferation and inhibits apoptosis in leukemia cells.
Collapse
Affiliation(s)
- Guo-Kang Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
| | - Fang-Yu Nan
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Zhenjiang, China
| | - Li-Juan Tang
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China
| | - Dong-Ming Yao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment of Zhenjiang City, Zhenjiang, China
| |
Collapse
|
8
|
Zhu H, Yang B, Liu J, Wang B, Wu Y, Zheng Z, Ling Y. A novel treatment regimen of granulocyte colony-stimulating factor combined with ultra-low-dose decitabine and low-dose cytarabine in older patients with acute myeloid leukemia and myelodysplastic syndromes. Ther Adv Hematol 2021; 12:20406207211009334. [PMID: 33995987 PMCID: PMC8111530 DOI: 10.1177/20406207211009334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/21/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Older patients with acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) unfit for intensive chemotherapy are emergent for suitable treatment strategies. Hypomethylating agents and low-dose cytarabine have generated relevant benefits in the hematological malignancies over recent decades. We evaluated the efficacy and safety of the novel treatment regimen consisting of ultra-low-dose decitabine and low-dose cytarabine, with granulocyte colony-stimulating factor (G-CSF) in this population of patients. Methods and materials: Patients aged more than 60 years with newly diagnosed AML/MDS were enrolled to receive therapy combined of 300 µg subcutaneously per day for priming, decitabine 5.15–7.62 mg/m2/d intravenously and cytarabine 15 mg/m2/d twice a day subcutaneously and G-CSF for consecutive 10 days every 28 days. The study enrolled 28 patients unfit for standard intensive chemotherapy. The median age of patients was 68 years (range 60–83 years) and 20 (71.4%) patients harbored AML. The primary outcome was to evaluate overall response rate. Results: Overall, this novel ultra-low-dose treatment regimen was well tolerated, with 0% of both 4- and 8-week mortality occurrence. Objective response rate (CR + CRi + PR in AML and CR + mCR + PR in MDS) was 57.1% after the first treatment course. Responses of hematologic improvement (HI) aspect were achieved in 18 of 28 (64.3%) patients, 11 (39.3%), 12 (42.9%), and eight patients (28.6%) achieved HI-E, HI-P, HI-N, respectively. Conclusions: Untreated elderly with AML/MDS were well tolerated and benefited from this novel ultra-low-dose treatment regimen.
Collapse
Affiliation(s)
- Huan Zhu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Bin Yang
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Jia Liu
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Biao Wang
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Yicun Wu
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Zhuojun Zheng
- The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
| | - Yun Ling
- Department of Hematology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Juqian Road 185, Changzhou, Jiangsu 213000, China
| |
Collapse
|
9
|
Papazoglou P, Peng L, Sachinidis A. Epigenetic Mechanisms Involved in the Cardiovascular Toxicity of Anticancer Drugs. Front Cardiovasc Med 2021; 8:658900. [PMID: 33987212 PMCID: PMC8110725 DOI: 10.3389/fcvm.2021.658900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022] Open
Abstract
The cardiovascular toxicity of anticancer drugs promotes the development of cardiovascular diseases. Therefore, cardiovascular toxicity is an important safety issue that must be considered when developing medications and therapeutic applications to treat cancer. Among anticancer drugs, members of the anthracycline family, such as doxorubicin, daunorubicin and mitoxantrone, are known to cause cardiotoxicity and even heart failure. Using human-induced pluripotent stem cell-derived cardiomyocytes in combination with "Omic" technologies, we identified several cardiotoxicity mechanisms and signal transduction pathways. Moreover, these drugs acted as cardiovascular toxicants through a syndrome of mechanisms, including epigenetic ones. Herein, we discuss the main cardiovascular toxicity mechanisms, with an emphasis on those associated with reactive oxygen species and mitochondria that contribute to cardiotoxic epigenetic modifications. We also discuss how to mitigate the cardiotoxic effects of anticancer drugs using available pharmaceutical "weapons."
Collapse
Affiliation(s)
| | - Luying Peng
- Heart Health Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Agapios Sachinidis
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Ehx G, Larouche JD, Durette C, Laverdure JP, Hesnard L, Vincent K, Hardy MP, Thériault C, Rulleau C, Lanoix J, Bonneil E, Feghaly A, Apavaloaei A, Noronha N, Laumont CM, Delisle JS, Vago L, Hébert J, Sauvageau G, Lemieux S, Thibault P, Perreault C. Atypical acute myeloid leukemia-specific transcripts generate shared and immunogenic MHC class-I-associated epitopes. Immunity 2021; 54:737-752.e10. [PMID: 33740418 DOI: 10.1016/j.immuni.2021.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/24/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) has not benefited from innovative immunotherapies, mainly because of the lack of actionable immune targets. Using an original proteogenomic approach, we analyzed the major histocompatibility complex class I (MHC class I)-associated immunopeptidome of 19 primary AML samples and identified 58 tumor-specific antigens (TSAs). These TSAs bore no mutations and derived mainly (86%) from supposedly non-coding genomic regions. Two AML-specific aberrations were instrumental in the biogenesis of TSAs, intron retention, and epigenetic changes. Indeed, 48% of TSAs resulted from intron retention and translation, and their RNA expression correlated with mutations of epigenetic modifiers (e.g., DNMT3A). AML TSA-coding transcripts were highly shared among patients and were expressed in both blasts and leukemic stem cells. In AML patients, the predicted number of TSAs correlated with spontaneous expansion of cognate T cell receptor clonotypes, accumulation of activated cytotoxic T cells, immunoediting, and improved survival. These TSAs represent attractive targets for AML immunotherapy.
Collapse
Affiliation(s)
- Grégory Ehx
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Chantal Durette
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Leslie Hesnard
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Krystel Vincent
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Catherine Thériault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Caroline Rulleau
- Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
| | - Joël Lanoix
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Albert Feghaly
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Anca Apavaloaei
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Nandita Noronha
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Céline M Laumont
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Jean-Sébastien Delisle
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Centre de recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Josée Hébert
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Guy Sauvageau
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Chemistry, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
11
|
Babu G, Chaudhuri P, Rajappa M, Biswas M, Sansar B, Rajegowda C, Radhakrishnan A, Advani J, Tewary B, Radhakrishnan P, Thiyagarajan S, Chatterjee A, Upadhayaya RS, Majumder PK. JAK-STAT inhibitor as a potential therapeutic opportunity in AML patients resistant to cytarabine and epigenetic therapy. Cancer Biol Ther 2020; 22:66-78. [PMID: 33356802 DOI: 10.1080/15384047.2020.1831371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The prognosis of AML is generally poor, with 5-year survival rate of 25%. There has been substantial progress in identification of new therapeutic targets, along with approval of at least three targeted therapies for AML in recent years. Nevertheless, treatment has largely remained unchanged over couple of decades, with ~40% patients not achieving remission. AML is a highly heterogenous disease and there is a need for a preclinical platform to understand the heterogeneity and tumor microenvironment that can guide therapy selection. In this study, we employed an ex vivo tumor explant model to study tumor microenvironment and to select a treatment course for AML patients. Our data reveal dysregulation of DNA methyltransferase (DNMT) and histone deacetylase (HDAC) in a subset of AML patients. Based on this observation, epigenetic modulators azacitidine and panobinostat alone and in combination, were evaluated as treatment regimens in cytarabine refractory tumors. More than 50% of the treated samples showed response to the combination therapy. In order to explore alternate treatment modalities for tumors refractory to these epigenetic modulators, TCGA data analysis was done which revealed increased expression and hypomethylation of IFNGR1/2, suggesting activation of JAK/STAT pathway in AML. This was further interrogated ex vivo, with p-STAT3 expression in patients' samples. Fedratinib, a JAK/STAT inhibitor was evaluated and 78% tumor efficacy response was achieved. Taken together, our data indicate that ex vivo platform derived from patient samples is capable in guiding optimal therapy selection for various classes of drugs including identification of novel targeted therapies.
Collapse
Affiliation(s)
- Govind Babu
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology , Bengaluru, India
| | | | - Manoj Rajappa
- Departments of Cancer Biology, Mitra Biotech , Woburn, Massachusetts, USA
| | - Manjusha Biswas
- Molecular Pathology, Mitra Biotech , Woburn, Massachusetts, USA
| | - Bipinesh Sansar
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology , Bengaluru, India
| | - Chethan Rajegowda
- Department of Medical Oncology, Kidwai Memorial Institute of Oncology , Bengaluru, India
| | | | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park , Bangalore, India
| | - Biplab Tewary
- Departments of Cancer Biology, Mitra Biotech , Woburn, Massachusetts, USA
| | | | | | - Aditi Chatterjee
- Departments of Cancer Biology, Mitra Biotech , Woburn, Massachusetts, USA
| | | | - Pradip K Majumder
- Departments of Cancer Biology, Mitra Biotech , Woburn, Massachusetts, USA.,Ohm Oncology, Austin, TX, USA
| |
Collapse
|
12
|
Buelow DR, Anderson JT, Pounds SB, Shi L, Lamba JK, Hu S, Gibson AA, Goodwin EA, Sparreboom A, Baker SD. DNA Methylation-Based Epigenetic Repression of SLC22A4 Promotes Resistance to Cytarabine in Acute Myeloid Leukemia. Clin Transl Sci 2020; 14:137-142. [PMID: 32905646 PMCID: PMC7877866 DOI: 10.1111/cts.12861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Reduced expression of the uptake transporter, OCTN1 (SLC22A4), has been reported as a strong predictor of poor event-free and overall survival in multiple cohorts of patients with acute myeloid leukemia (AML) receiving the cytidine nucleoside analog, cytarabine (Ara-C). To further understand the mechanistic basis of interindividual variability in the functional expression of OCTN1 in AML, we hypothesized a mechanistic connection to DNA methylation-based epigenetic repression of SLC22A4. We found increased basal SLC22A4 methylation was associated with decreased Ara-C uptake in AML cell lines. Pre-treatment with hypomethylating agents, 5-azacytidine, or decitabine, restored SLC22A4 mRNA expression, increased cellular uptake of Ara-C, and was associated with increased cellular sensitivity to Ara-C compared with vehicle-treated cells. Additionally, lower SLC22A4 methylation status was associated with distinct clinical advantages in both adult and pediatric patients with AML. These findings suggest a regulatory mechanism is involved in the interindividual variability in response to Ara-C, and provides a basis for the integration of hypomethylating agents into Ara-C-based treatment regimens.
Collapse
Affiliation(s)
- Daelynn R Buelow
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Jason T Anderson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Stanley B Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida, USA
| | - Shuiying Hu
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Alice A Gibson
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Emily A Goodwin
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Sharyn D Baker
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
13
|
Han C, Sun LY, Wang WT, Sun YM, Chen YQ. Non-coding RNAs in cancers with chromosomal rearrangements: the signatures, causes, functions and implications. J Mol Cell Biol 2020; 11:886-898. [PMID: 31361891 PMCID: PMC6884712 DOI: 10.1093/jmcb/mjz080] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 12/25/2022] Open
Abstract
Chromosomal translocation leads to the juxtaposition of two otherwise separate DNA loci, which could result in gene fusion. These rearrangements at the DNA level are catastrophic events and often have causal roles in tumorigenesis. The oncogenic DNA messages are transferred to RNA molecules, which are in most cases translated into cancerous fusion proteins. Gene expression programs and signaling pathways are altered in these cytogenetically abnormal contexts. Notably, non-coding RNAs have attracted increasing attention and are believed to be tightly associated with chromosome-rearranged cancers. These RNAs not only function as modulators in downstream pathways but also directly affect chromosomal translocation or the associated products. This review summarizes recent research advances on the relationship between non-coding RNAs and chromosomal translocations and on diverse functions of non-coding RNAs in cancers with chromosomal rearrangements.
Collapse
Affiliation(s)
- Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Lin-Yu Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
Yin X, Huang H, Huang S, Xu A, Fan F, Luo S, Yan H, Chen L, Sun C, Hu Y. A Novel Scoring System for Risk Assessment of Elderly Patients With Cytogenetically Normal Acute Myeloid Leukemia Based on Expression of Three AQP1 DNA Methylation-Associated Genes. Front Oncol 2020; 10:566. [PMID: 32373535 PMCID: PMC7186486 DOI: 10.3389/fonc.2020.00566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Aquaporin 1 (AQP-1), a transmembrane water channel protein, has been proven to involve in many diseases' progression and prognosis. This research aims to explore the prognostic value of AQP-1 in elderly cytogenetically normal acute myeloid leukemia (CN-AML). Methods: Complete clinical and expression data of 226 elderly patients (aged > 60) with cytogenetically normal acute myeloid leukemia (CN-AML) were downloaded from the databases of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). We have explored prognostic significance of AQP-1, investigated the underlying mechanism, and developed a novel scoring system for the risk assessment of elderly patients with AML based on AQP1 methylation. Results: In the first and second independent group, AQP1 shows lower expression in CN-AML than normal people, while high AQP1 expression and AQP1 promoter hypomethylation were related to better overall survival (OS; P < 0.05). To understand the underlying mechanisms, we investigated differentially expressed genes (DEGs), miRNA and lncRNA associated with AQP1 methylation. A three-gene prognostic signature based on AQP1 methylation which was highly correlated with OS was established, and the performance was validated by Permutation Test and Leave-one-out Cross Validation method. Furthermore, an independent cohort was used to verify the prognostic value of this model. Conclusions: AQP1 methylation could serve as an independent prognostic biomarker in elderly CN-AML, and may provide new insights for the diagnosis and treatment for elderly CN-AML patients.
Collapse
Affiliation(s)
- Xuejiao Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haifan Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sui Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Xu F, Guo H, Shi M, Liu S, Wei M, Sun K, Chen Y. A combination of low-dose decitabine and chidamide resulted in synergistic effects on the proliferation and apoptosis of human myeloid leukemia cell lines. Am J Transl Res 2019; 11:7644-7655. [PMID: 31934307 PMCID: PMC6943475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Two of the most common and well-characterized epigenetic changes, DNA methylation and histone modifications, occur in leukemia. Decitabine (5-aza-2'-deoxycytidine, DAC), as a hypomethylating agent (HMA), and chidamide (CS055), as a histone deacetylase inhibitor (HDACi), each demonstrate effects against leukemia. However, whether the combination of low-dose DAC with chidamide constitutes an effective epigenetic regimen for the treatment of myeloid leukemia is currently unknown. In this study, the combination of DAC at low doses and chidamide showed enhanced inhibition of myeloid leukemia cell (K562, THP-1) growth. As a novel HDACi, chidamide increased the level of ace-H3K18 expression. Combined use of low-dose DAC and chidamide arrested the cell cycle at the G0/G1 phase by upregulating p21 expression, and the combination also suppressed PI3K/AKT/mTOR signaling pathway. Furthermore, chidamide enhanced the apoptotic effect of DAC by downregulating expression of Bcl-2 and pro-caspase-3 and upregulating that of Bax, cleaved PARP-1, and caspase-9. Moreover, the mitochondrial transmembrane potential was significantly decreased in DAC-, chidamide-, or combination-treated leukemia cells. These results suggest that targeting the leukemia epigenome through the combination of low-dose DAC and chidamide is a promising approach.
Collapse
Affiliation(s)
- Fangfang Xu
- Department of Research and Discipline Development, Henan Provincial People’s Hospital and Zhengzhou University People’s HospitalZhengzhou 450003, PR China
| | - Honggang Guo
- Department of Hematology, Henan Provincial People’s Hospital and Zhengzhou University People’s HospitalZhengzhou 450003, PR China
| | - Mingyue Shi
- Department of Hematology, Henan Provincial People’s Hospital and Zhengzhou University People’s HospitalZhengzhou 450003, PR China
| | - Siwei Liu
- Department of Hematology, Henan Provincial People’s Hospital and Zhengzhou University People’s HospitalZhengzhou 450003, PR China
| | - Min Wei
- Department of Hematology, Henan Provincial People’s Hospital and Zhengzhou University People’s HospitalZhengzhou 450003, PR China
| | - Kai Sun
- Department of Hematology, Henan Provincial People’s Hospital and Zhengzhou University People’s HospitalZhengzhou 450003, PR China
| | - Yuqing Chen
- Department of Hematology, Henan Provincial People’s Hospital and Zhengzhou University People’s HospitalZhengzhou 450003, PR China
| |
Collapse
|
16
|
Yin X, Huang S, Xu A, Fan F, Chen L, Sun C, Hu Y. Identification of distinctive long noncoding RNA competitive interactions and a six-methylated-gene prognostic signature in acute myeloid leukemia with -5/del(5q) or -7/del(7q). J Cell Biochem 2019; 121:1563-1574. [PMID: 31535409 DOI: 10.1002/jcb.29391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) with -5/del(5q) or -7/del(7q) has special clinical and biological characteristics, but its molecular mechanisms and risk stratification remain unknown. METHODS The RNA sequencing and DNA methylation of 23 patients with -5/del(5q) or -7/del(7q) and 128 patients with other subtypes of acute myeloid leukemia were obtained from The Cancer Genome Atlas (TCGA). The regulatory mechanisms of competitive endogenous RNA (ceRNA) network and DNA methylation on gene expression were explored. To find robust and specific risk stratification for this AML subtype, a prognostic model was established and evaluated through four independent data sets. RESULTS We identified 966 differentially expressed long noncoding RNA, 2274 differentially expressed genes, and 47 differentially expressed microRNAs, and constructed a ceRNA network. After the integrated analysis of differentially methylated and expressed genes, 19 genes showed the opposite trend between the methylation variation and gene expression. An six-methylated-gene prognostic signature which highly correlated with overall survival was established, and the performance was validated by leave-one-out cross validation method and permutation test. Furthermore, the excellent prognostic value of this model was supported by an independent cohort, while specificity of this model was validated by three independent data sets, suggesting it as a predictive classifier with high efficiency for distinguishing those with -5/del(5q) or -7/del(7q) from other AML subtypes. CONCLUSIONS The ceRNA network may provide new ideas for the diagnosis and treatment for patients with -5/del(5q) or -7/del(7q).The six-methylated-gene prognostic signature was a robust, specific, and clinically practical risk stratification for the outcome of patients with AML having -5/del(5q) or -7/del(7q).
Collapse
Affiliation(s)
- Xuejiao Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sui Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Huang Y, Zou Y, Zheng R, Ma X. MiR-137 inhibits cell proliferation in acute lymphoblastic leukemia by targeting JARID1B. Eur J Haematol 2019; 103:215-224. [PMID: 31206203 DOI: 10.1111/ejh.13276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
AIM This study aimed to investigate the possible functions of interaction between JARID1B and miR-137 in ALL. METHODS The levels of H3K4me3 and H3K4me2 and the expression of JARID1B and miR-137 were analyzed in six ALL cell lines and 30 ALL patients. The effects of miR-137 and JARID1B on cell proliferation and apoptosis were investigated by silencing or promoting the respective genes. The interaction between miR-137 and JARID1B was confirmed by double-luciferase report assay. RESULTS The histone H3K4 expressions and miR-137 expression were lower in 30 ALL patients and in six ALL cell lines, while the expression of JARID1B was elevated. A negative correlation was observed between JARID1B and miR-137. Over-expression of miR-137 led to decreasing cell proliferation and increasing apoptosis in MOLT-4 and BALL-1 cells. MiR-137 inhibitor up-regulated JARID1B in these two cell lines, while promoted proliferation in BALL-1 cells only. Dual-luciferase report assay suggested that JARID1B was a direct target of miR-137 in ALL cell lines. CONCLUSIONS The expression of miR-137 was declined in ALL, and JARID1B was directly repressed by miR-137. Aberrant JARID1B expression could result in abnormal histone methylation, which might be one cause of ALL.
Collapse
Affiliation(s)
- Yiqun Huang
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Yong Zou
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Ruiji Zheng
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| | - Xudong Ma
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, China
| |
Collapse
|
18
|
Gu Y, Zhou JD, Xu ZJ, Zhang TJ, Wen XM, Ma JC, Ji RB, Yuan Q, Zhang W, Chen Q, Lin J, Qian J. Promoter methylation of the candidate tumor suppressor gene TCF21 in myelodysplastic syndrome and acute myeloid leukemia. Am J Transl Res 2019; 11:3450-3460. [PMID: 31312357 PMCID: PMC6614633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/12/2019] [Indexed: 06/10/2023]
Abstract
Transcription factor 21 (TCF21) has been identified as a candidate tumor suppressor gene which was epigenetically inactivated in a variety of human cancers. However, TCF21 methylation pattern remains unknown in hematologic malignancies. The aim of this study was to investigate TCF21 methylation and its clinical relevance in myelodysplastic syndrome (MDS) and non-M3 acute myeloid leukemia (AML). A total cohort of 33 MDS patients, 100 non-M3 AML patients and 25 healthy donors were enrolled in the study. Targeted bisulfite sequencing assay was performed to identify the methylation pattern of CpG islands within the promoter of TCF21 gene. The bioinformatics analyses were based on The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO). The results showed that there were significant differences in the methylation levels of TCF21 between MDS, non-M3 AML and controls (P = 0.003 and < 0.001, respectively). TCF21 hypermethylation might be served as a promising biomarker which could distinguish MDS/AML from normal controls (P < 0.001 and = 0.003, respectively). There was a significant difference in cytogenetic risk categories between TCF21 hypermethylation and non-hypermethylation AML patients (P = 0.032). Notably, TCF21 hypermethylation occurred frequently in AML patients with adverse risk category, compared with those with favorable and intermediate categories, respectively (67% vs 44% and 29%). TCF21 non-hypermethylation AML patients showed a higher probability of normal karyotype than abnormal karyotype (P = 0.003). The rate of DNMT3A gene mutation was significantly higher in the non-hypermethylation AML patients than that in the hypermethylation (8/44 vs 0/34, P = 0.020). These results suggested that aberrant DNA promoter methylation of TCF21 was frequent event in MDS and non-M3 AML, and TCF21 hypermathylation was associated with adverse risk karyotype in AML.
Collapse
Affiliation(s)
- Yu Gu
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Zhenjiang Clinical Research Center of HematologyZhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiang, Jiangsu, People’s Republic of China
| | - Jing-Dong Zhou
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Zhenjiang Clinical Research Center of HematologyZhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiang, Jiangsu, People’s Republic of China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Zhenjiang Clinical Research Center of HematologyZhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiang, Jiangsu, People’s Republic of China
| | - Ting-Juan Zhang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Zhenjiang Clinical Research Center of HematologyZhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiang, Jiangsu, People’s Republic of China
| | - Xiang-Mei Wen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Zhenjiang Clinical Research Center of HematologyZhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiang, Jiangsu, People’s Republic of China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Zhenjiang Clinical Research Center of HematologyZhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiang, Jiangsu, People’s Republic of China
| | - Ren-Bi Ji
- Zhenjiang Clinical Research Center of HematologyZhenjiang, Jiangsu, People’s Republic of China
| | - Qian Yuan
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Zhenjiang Clinical Research Center of HematologyZhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiang, Jiangsu, People’s Republic of China
| | - Wei Zhang
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Zhenjiang Clinical Research Center of HematologyZhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiang, Jiangsu, People’s Republic of China
| | - Qin Chen
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Zhenjiang Clinical Research Center of HematologyZhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiang, Jiangsu, People’s Republic of China
| | - Jiang Lin
- Laboratory Center, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Zhenjiang Clinical Research Center of HematologyZhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiang, Jiangsu, People’s Republic of China
| | - Jun Qian
- Department of Hematology, Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, People’s Republic of China
- Zhenjiang Clinical Research Center of HematologyZhenjiang, Jiangsu, People’s Republic of China
- The Key Lab of Precision Diagnosis and Treatment of Zhenjiang CityZhenjiang, Jiangsu, People’s Republic of China
| |
Collapse
|
19
|
Phenethyl Isothiocyanate Inhibits In Vivo Growth of Xenograft Tumors of Human Glioblastoma Cells. Molecules 2018; 23:molecules23092305. [PMID: 30201893 PMCID: PMC6225357 DOI: 10.3390/molecules23092305] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022] Open
Abstract
Phenethyl isothiocyanate (PEITC) from cruciferous vegetables can inhibit the growth of various human cancer cells. In previous studies, we determined that PEITC inhibited the in vitro growth of human glioblastoma GBM 8401 cells by inducing apoptosis, inhibiting migration and invasion, and altering gene expression. Nevertheless, there are no further in vivo reports disclosing whether PEITC can suppress the growth of glioblastoma. Therefore, in this study we investigate the anti-tumor effects of PEITC in a xenograft model of glioblastoma in nude mice. Thirty nude mice were inoculated subcutaneously with GBM 8401 cells. Mice with one palpable tumor were divided randomly into three groups: control, PEITC-10, and PEITC-20 groups treated with 0.1% dimethyl sulfoxide (DMSO), and 10 and 20 μmole PEITC/100 μL PBS daily by oral gavage, respectively. PEITC significantly decreased tumor weights and volumes of GBM 8401 cells in mice, but did not affect the total body weights of mice. PEITC diminished the levels of anti-apoptotic proteins MCL-1 (myeloid cell leukemia 1) and XIAP (X-linked inhibitor of apoptosis protein) in GBM 8401 cells. PEITC enhanced the levels of caspase-3 and Bax in GBM 8401 cells. The growth of glioblastoma can be suppressed by the biological properties of PEITC in vivo. These effects might support further investigations into the potential use of PEITC as an anticancer drug for glioblastoma.
Collapse
|
20
|
Li Y, Zhao H, Xu Q, Lv N, Jing Y, Wang L, Wang X, Guo J, Zhou L, Liu J, Chen G, Chen C, Li Y, Yu L. Detection of prognostic methylation markers by methylC-capture sequencing in acute myeloid leukemia. Oncotarget 2017; 8:110444-110459. [PMID: 29299160 PMCID: PMC5746395 DOI: 10.18632/oncotarget.22789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022] Open
Abstract
Clinical and genetic features incompletely predict outcome in acute myeloid leukemia (AML). The value of clinical methylation assays for prognostic markers has not been extensively explored. We assess the prognostic implications of methylC-capture sequencing (MCC-Seq) in patients with de novo AML by integrating DNA methylation and genetic risk stratification. MCC-Seq assessed DNA methylation level in 44 samples. The differentially methylated regions associated with prognostic genetic information were identified. The selected prognostic DNA methylation markers were independently validated in two sets. MCC-Seq exhibited good performance in AML patients. A panel of 12 differentially methylated genes was identified with promoter hyper-differentially methylated regions associated with the outcome. Compared with a low M-value, a high M-value was associated with failure to achieve complete remission (p = 0.024), increased hazard for disease-free survival in the study set (p = 0.039) and poor overall survival in The Cancer Genome Atlas set (p = 0.038). Hematopoietic stem cell transplantation and survival outcomes were not adversely affected by a high M-value (p = 0.271). Our study establishes that MCC-Seq is a stable, reproducible, and cost-effective methylation assay in AML. A 12-gene M-value encompassing epigenetic and genetic prognostic information represented a valid prognostic marker for patients with AML.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China.,Department of Hematology, Hainan Branch of Chinese PLA General Hospital, Sanya 572013, China
| | - Hongmei Zhao
- Annoroad Gene Technology Co. Ltd., Beijing 100176, China
| | - Qingyu Xu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China.,Medical School of Nankai University, Tianjin 300071, China
| | - Na Lv
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China.,Department of Hematology, General Hospital of Shenzhen University, Shenzhen 518060, China
| | - Yu Jing
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lili Wang
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaowen Wang
- Annoroad Gene Technology Co. Ltd., Beijing 100176, China
| | - Jing Guo
- Annoroad Gene Technology Co. Ltd., Beijing 100176, China
| | - Lei Zhou
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Jing Liu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Guofeng Chen
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China.,Medical School of Nankai University, Tianjin 300071, China
| | - Chongjian Chen
- Annoroad Gene Technology Co. Ltd., Beijing 100176, China
| | - Yonghui Li
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Li Yu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, China.,Department of Hematology, General Hospital of Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
21
|
Li Y, Xu Q, Lv N, Wang L, Zhao H, Wang X, Guo J, Chen C, Li Y, Yu L. Clinical implications of genome-wide DNA methylation studies in acute myeloid leukemia. J Hematol Oncol 2017; 10:41. [PMID: 28153026 PMCID: PMC5290606 DOI: 10.1186/s13045-017-0409-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/27/2017] [Indexed: 01/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. AML is a heterogeneous malignancy characterized by distinct genetic and epigenetic abnormalities. Recent genome-wide DNA methylation studies have highlighted an important role of dysregulated methylation signature in AML from biological and clinical standpoint. In this review, we will outline the recent advances in the methylome study of AML and overview the impacts of DNA methylation on AML diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology and BMT center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.,Department of Hematology, Hainan Branch of Chinese PLA General Hospital, Sanya, 572013, Hainan Province, China
| | - Qingyu Xu
- Department of Hematology and BMT center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.,Medical school of Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Na Lv
- Department of Hematology and BMT center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Lili Wang
- Department of Hematology and BMT center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Hongmei Zhao
- Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - Xiuli Wang
- Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - Jing Guo
- Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - Chongjian Chen
- Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - Yonghui Li
- Department of Hematology and BMT center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Li Yu
- Department of Hematology and BMT center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
22
|
Zhang X, Liu D, Li M, Cao C, Wan D, Xi B, Li W, Tan J, Wang J, Wu Z, Ma D, Gao Q. Prognostic and therapeutic value of disruptor of telomeric silencing-1-like (DOT1L) expression in patients with ovarian cancer. J Hematol Oncol 2017; 10:29. [PMID: 28114995 PMCID: PMC5259947 DOI: 10.1186/s13045-017-0400-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/13/2017] [Indexed: 01/07/2023] Open
Abstract
Background Epigenetics has been known to play a critical role in regulating the malignant phenotype. This study was designed to examine the expression of DOT1L (histone 3 lysine 79 methyltransferase) and H3K79 methylation in normal ovarian tissues and ovarian tumors and to explore the function of DOT1L and its underline mechanisms in ovarian cancer. Methods The expression of DOT1L and H3K79 methylation in 250 ovarian tumor samples and 24 normal ovarian samples was assessed by immunohistochemistry. The effects of DOT1L on cell proliferation in vitro were evaluated using CCK8, colony formation and flow cytometry. The DOT1L-targeted genes were determined using chromatin immune-precipitation coupled with high-throughput sequencing (ChIP-seq) and ChIP-PCR. Gene expression levels were measured by real-time PCR and immunoblotting. The effects of DOT1L on tumor growth in vivo were evaluated using an orthotopic ovarian tumor model. Results DOT1L expression and H3K79 methylation was significantly increased in malignant ovarian tumors. High DOT1L expression was associated with International Federation of Gynecology and Obstetrics (FIGO) stage, histologic grade, and lymphatic metastasis. DOT1L was an independent prognostic factor for the overall survival (OS) and progression-free survival (PFS) of ovarian cancer, and higher DOT1L expression was associated with poorer OS and PFS. Furthermore, DOT1L regulates the transcription of G1 phase genes CDK6 and CCND3 through H3K79 dimethylation; therefore, blocking DOT1L could result in G1 arrest and thereby impede the cell proliferation in vitro and tumor growth in vivo. Conclusions Our findings first demonstrate that DOT1L over-expression has important clinical significance in ovarian cancer and also clarify that it drives cell cycle progression through transcriptional regulation of CDK6 and CCND3 through H3K79 methylation, suggesting that DOT1L might be potential target for prognostic assessment and therapeutic intervention in ovarian cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0400-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dan Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Mengchen Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Canhui Cao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dongyi Wan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Bixin Xi
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wenqian Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jiahong Tan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ji Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhongcai Wu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ding Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
23
|
Tibes R, Al-Kali A, Oliver GR, Delman DH, Hansen N, Bhagavatula K, Mohan J, Rakhshan F, Wood T, Foran JM, Mesa RA, Bogenberger JM. The Hedgehog pathway as targetable vulnerability with 5-azacytidine in myelodysplastic syndrome and acute myeloid leukemia. J Hematol Oncol 2015; 8:114. [PMID: 26483188 PMCID: PMC4615363 DOI: 10.1186/s13045-015-0211-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/28/2015] [Indexed: 02/04/2023] Open
Abstract
Background Therapy and outcome for elderly acute myeloid leukemia (AML) patients has not improved for many years. Similarly, there remains a clinical need to improve response rates in advanced myelodysplastic syndrome (MDS) patients treated with hypomethylating agents, and few combination regimens have shown clinical benefit. We conducted a 5-azacytidine (5-Aza) RNA-interference (RNAi) sensitizer screen to identify gene targets within the commonly deleted regions (CDRs) of chromosomes 5 and 7, whose silencing enhances the activity of 5-Aza. Methods and results An RNAi silencing screen of 270 genes from the CDRs of chromosomes 5 and 7 was performed in combination with 5-Aza treatment in four AML cell lines (TF-1, THP-1, MDS-L, and HEL). Several genes within the hedgehog pathway (HhP), specifically SHH, SMO, and GLI3, were identified as 5-Aza sensitizing hits. The smoothened (SMO) inhibitors LDE225 (erismodegib) and GDC0449 (vismodegib) showed moderate single-agent activity in AML cell lines. Further studies with erismodegib in combination with 5-Aza demonstrated synergistic activity with combination index (CI) values of 0.48 to 0.71 in seven AML lines. Clonogenic growth of primary patient samples was inhibited to a greater extent in the combination than with single-agent erismodegib or 5-Aza in 55 % (6 of 11) primary patient samples examined. There was no association of the 5-Aza/erismodegib sensitization potential to clinical-cytogenetic features or common myeloid mutations. Activation of the HhP, as determined by greater expression of HhP-related genes, showed less responsiveness to single-agent SMO inhibition, while synergy between both agents was similar regardless of HhP gene expression. In vitro experiments suggested that concurrent dosing showed stronger synergy than sequential dosing. Conclusions Inhibition of the HhP with SMO inhibitors in combination with the hypomethylating agent 5-Aza demonstrates synergy in vitro and inhibits long-term repopulation capacity ex vivo in AML and MDS. A clinical trial combining 5-Aza with LDE225 (erismodegib) in MDS and AML is ongoing based on these results as well as additional publications suggesting a role for HhP signaling in myeloid disease. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0211-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raoul Tibes
- Division of Hematology and Medical Oncology, Mayo Clinic/Mayo Clinic Cancer Center, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA.
| | - Aref Al-Kali
- Mayo Clinic's Campus in Rochester, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Gavin R Oliver
- Mayo Clinic's Campus in Rochester, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Devora H Delman
- Division of Hematology and Medical Oncology, Mayo Clinic/Mayo Clinic Cancer Center, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA.
| | - Nanna Hansen
- Division of Hematology and Medical Oncology, Mayo Clinic/Mayo Clinic Cancer Center, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA.
| | - Keerthi Bhagavatula
- Division of Hematology and Medical Oncology, Mayo Clinic/Mayo Clinic Cancer Center, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA.
| | - Jayaram Mohan
- Washington University St. Louis, St. Louis, MO, 63130-4899, USA.
| | - Fariborz Rakhshan
- Mayo Clinic's Campus in Rochester, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Thomas Wood
- Mayo Clinic's Campus in Rochester, 200 First Street SW, Rochester, MN, 55905, USA.
| | - James M Foran
- Mayo Clinic's Campus in Florida, 4500 San Pablo Road, Jacksonville, FL, 32224, USA.
| | - Ruben A Mesa
- Division of Hematology and Medical Oncology, Mayo Clinic/Mayo Clinic Cancer Center, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA.
| | - James M Bogenberger
- Division of Hematology and Medical Oncology, Mayo Clinic/Mayo Clinic Cancer Center, 13400 E. Shea Boulevard, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
24
|
Gao J, Chen YH, Peterson LC. GATA family transcriptional factors: emerging suspects in hematologic disorders. Exp Hematol Oncol 2015; 4:28. [PMID: 26445707 PMCID: PMC4594744 DOI: 10.1186/s40164-015-0024-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/28/2015] [Indexed: 01/28/2023] Open
Abstract
GATA transcription factors are zinc finger DNA binding proteins that regulate transcription during development and cell differentiation. The three important GATA transcription factors GATA1, GATA2 and GATA3 play essential roles in the development and maintenance of hematopoietic systems. GATA1 is required for the erythroid and megakaryocytic commitment during hematopoiesis. GATA2 is crucial for the proliferation and survival of early hematopoietic cells, and is also involved in lineage specific transcriptional regulation as the dynamic partner of GATA1. GATA3 plays an essential role in T lymphoid cell development and immune regulation. As a result, mutations in genes encoding the GATA transcription factors or alteration in the protein expression level or their function have been linked to a variety of human hematologic disorders. In this review, we summarized the current knowledge regarding the disrupted biologic function of GATA in various hematologic disorders.
Collapse
Affiliation(s)
- Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E. Huron Street, Chicago, IL 60611 USA
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E. Huron Street, Chicago, IL 60611 USA
| | - LoAnn C Peterson
- Department of Pathology, Northwestern University Feinberg School of Medicine, 251 E. Huron Street, Chicago, IL 60611 USA
| |
Collapse
|
25
|
Establishment and genetic characterization of a novel mixed-phenotype acute leukemia cell line with EP300-ZNF384 fusion. J Hematol Oncol 2015; 8:100. [PMID: 26293203 PMCID: PMC4546145 DOI: 10.1186/s13045-015-0197-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/11/2015] [Indexed: 11/25/2022] Open
Abstract
Herein, we describe the establishment and characterization of the first mixed-phenotype acute leukemia cell line (JIH-5). The JIH-5 cell line was established from leukemia cells with B lymphoid/myeloid phenotype from a female mixed-phenotype acute leukemia patient. JIH-5 cells exhibit an immunophenotype comprised of myeloid and B lymphoid antigens. Whole-exome sequencing revealed somatic mutations in nine genes in JIH-5 cells. Transcriptional sequencing of JIH-5 cells identified EP300-ZNF384 fusion transcript, which is a recurrent alteration in B cell acute lymphoblastic leukemia. Our results suggest that the JIH-5 cell line may serve as a tool for the study of mixed-phenotype acute leukemia or EP300-ZNF384.
Collapse
|
26
|
Kharabi Masouleh B, Chevet E, Panse J, Jost E, O'Dwyer M, Bruemmendorf TH, Samali A. Drugging the unfolded protein response in acute leukemias. J Hematol Oncol 2015; 8:87. [PMID: 26179601 PMCID: PMC4504168 DOI: 10.1186/s13045-015-0184-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/08/2015] [Indexed: 12/15/2022] Open
Abstract
The unfolded protein response (UPR), an endoplasmic reticulum (ER) stress-induced signaling cascade, is mediated by three major stress sensors IRE-1α, PERK, and ATF6α. Studies described the UPR as a critical network in selection, adaptation, and survival of cancer cells. While previous reviews focused mainly on solid cancer cells, in this review, we summarize the recent findings focusing on acute leukemias. We take into account the impact of the underlying genetic alterations of acute leukemia cells, the leukemia stem cell pool, and provide an outline on the current genetic, clinical, and therapeutic findings. Furthermore, we shed light on the important oncogene-specific regulation of individual UPR signaling branches and the therapeutic relevance of this information to answer the question if the UPR could be an attractive novel target in acute leukemias.
Collapse
Affiliation(s)
- Behzad Kharabi Masouleh
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Eric Chevet
- Université Rennes 1 - ER_440 "Oncogenesis, Stress & Signaling", Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Edgar Jost
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael O'Dwyer
- Apoptosis Research Centre (ARC), National University of Ireland, Galway, Ireland.,Department of Medicine, National University of Ireland, Galway, Ireland
| | - Tim H Bruemmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Afshin Samali
- Apoptosis Research Centre (ARC), National University of Ireland, Galway, Ireland.,Department of Biochemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
27
|
Ocio EM, Herrera P, Olave MT, Castro N, Pérez-Simón JA, Brunet S, Oriol A, Mateo M, Sanz MÁ, López J, Montesinos P, Chillón MC, Prieto-Conde MI, Díez-Campelo M, González M, Vidriales MB, Mateos MV, San Miguel JF. Panobinostat as part of induction and maintenance for elderly patients with newly diagnosed acute myeloid leukemia: phase Ib/II panobidara study. Haematologica 2015; 100:1294-300. [PMID: 26160880 DOI: 10.3324/haematol.2015.129577] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/25/2015] [Indexed: 01/08/2023] Open
Abstract
This phase Ib/II trial combined the pan-deacetylase inhibitor panobinostat with chemotherapy followed by panobinostat maintenance in elderly patients with newly diagnosed acute myeloid leukemia. Patients with prior history of myelodysplastic syndrome were excluded and 38 evaluable patients were included in the study (median age: 71 years; range: 65-83). Study patients received an induction with idarubicin (8 mg/m(2) iv days 1-3) plus cytarabine (100 mg/m(2) iv days 1-7) plus panobinostat po at escalating doses (days 8, 10, 12, 15, 17 and 19) that could be repeated in non-responding patients. Patients achieving complete remission received a consolidation cycle with the same schema, followed by panobinostat maintenance (40 mg po 3 days/week) every other week until progression. Thirty-one patients were treated at the maximum tolerated dose of panobinostat in the combination (10 mg) with good tolerability. Complete remission rate was 64% with a time to relapse of 17.0 months (12.8-21.1). Median overall survival for the whole series was 17 months (5.5-28.4). Moreover, in 4 of 5 patients with persistent minimal residual disease before maintenance, panobinostat monotherapy reduced its levels, with complete negativization in two of them. Maintenance phase was well tolerated. The most frequent adverse events were thrombocytopenia (25% grades 3/4), and gastrointestinal toxicity, asthenia and anorexia (mainly grades 1/2). Five patients required dose reduction during this phase, but only one discontinued therapy due to toxicity. These results suggest that panobinostat is one of the first novel agents with activity in elderly acute myeloid leukemia patients, and suggest further investigation is warranted, particularly in the context of maintenance therapy. This trial is registered at clinicaltrials.gov identifier: 00840346.
Collapse
Affiliation(s)
- Enrique M Ocio
- Complejo Asistencial Universitario de Salamanca (IBSAL), Centro Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca
| | | | | | | | - José A Pérez-Simón
- Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Seville
| | | | | | | | | | | | | | - María-Carmen Chillón
- Complejo Asistencial Universitario de Salamanca (IBSAL), Centro Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca
| | - María-Isabel Prieto-Conde
- Complejo Asistencial Universitario de Salamanca (IBSAL), Centro Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca
| | - María Díez-Campelo
- Complejo Asistencial Universitario de Salamanca (IBSAL), Centro Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca
| | - Marcos González
- Complejo Asistencial Universitario de Salamanca (IBSAL), Centro Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca
| | - María-Belén Vidriales
- Complejo Asistencial Universitario de Salamanca (IBSAL), Centro Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca
| | - María-Victoria Mateos
- Complejo Asistencial Universitario de Salamanca (IBSAL), Centro Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca
| | - Jesús F San Miguel
- Clínica Universidad de Navarra, Centro de Investigaciones Médicas Aplicadas (CIMA), IDISNA, Pamplona, Spain
| | | |
Collapse
|
28
|
Eriksson A, Lennartsson A, Lehmann S. Epigenetic aberrations in acute myeloid leukemia: Early key events during leukemogenesis. Exp Hematol 2015; 43:609-24. [PMID: 26118500 DOI: 10.1016/j.exphem.2015.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/23/2015] [Indexed: 12/17/2022]
Abstract
As a result of the introduction of new sequencing technologies, the molecular landscape of acute myeloid leukemia (AML) is rapidly evolving. From karyotyping, which detects only large genomic aberrations of metaphase chromosomes, we have moved into an era when sequencing of each base pair allows us to define the AML genome at highest resolution. This has revealed a new complex landscape of genetic aberrations where addition of mutations in epigenetic regulators has been one of the most important contributions to the understanding of the pathogenesis of AML. These findings, together with new insights into epigenetic mechanisms, have placed dysregulated epigenetic mechanisms at the forefront of AML development. Not only have several new mutations in genes directly involved in epigenetic regulatory mechanisms been discovered, but also previously well-known gene fusions have been found to exert aberrant effects through epigenetic mechanisms. In addition, mutations in epigenetic regulators such as DNMT3A, TET2, and ASXL1 have recently been found to be the earliest known events during AML evolution and to be present as preleukemic lesions before the onset of AML. In this article, we review epigenetic changes in AML also in relation to what is known about their mechanism of action and their prognostic role.
Collapse
Affiliation(s)
- Anna Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, NOVUM, Karolinska Institutet, Stockholm, Sweden
| | - Sören Lehmann
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Centre of Hematology, HERM, Department of Medicine, Karolinska Institute, Huddinge, Stockholm, Sweden.
| |
Collapse
|
29
|
Zhou Z, Cho IIH, Shan Z, Irudayaraj J. Cross-platform detection of epigenetic modifications from extracted chromatin in leucocytes from blood. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.ancr.2015.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Karmali R, Larson ML, Shammo JM, Basu S, Christopherson K, Borgia JA, Venugopal P. Impact of insulin-like growth factor 1 and insulin-like growth factor binding proteins on outcomes in acute myeloid leukemia. Leuk Lymphoma 2015; 56:3135-42. [DOI: 10.3109/10428194.2015.1022767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Hu K, Gu Y, Lou L, Liu L, Hu Y, Wang B, Luo Y, Shi J, Yu X, Huang H. Galectin-3 mediates bone marrow microenvironment-induced drug resistance in acute leukemia cells via Wnt/β-catenin signaling pathway. J Hematol Oncol 2015; 8:1. [PMID: 25622682 PMCID: PMC4332970 DOI: 10.1186/s13045-014-0099-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/22/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Acute leukemia is currently the major cause of death in hematological malignancies. Despite the rapid development of new therapies, minimal residual disease (MRD) continues to occur and leads to poor outcomes. The leukemia niche in the bone marrow microenvironment (BMM) is thought to be responsible for such MRD development, which can lead to leukemia drug resistance and disease relapse. Consequently further investigation into the way in which the leukemia niche interacts with acute leukemia cells (ALCs) and development of strategies to block the underlying process are expected to improve disease prognosis. Recent studies indicated that galectin-3 (gal-3) might play a pivotal role in this process. Thus we aimed to elucidate the exact role played by gal-3 in this process and clarify its mechanism of action. METHODS We used human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) to mimic the leukemia BMM in vitro, and investigated their effects on drug resistance of ALCs and the possible mechanisms involved, with particular emphasis on the role of gal-3. RESULTS In our study, we demonstrated that hBM-MSCs induced gal-3 up-regulation, promoting β-catenin stabilization and thus activating the Wnt/β-catenin signaling pathway in ALCs, which is critical in cytotoxic drug resistance of leukemia. This effect could be reversed by addition of gal-3 short hairpin RNA (shRNA). We also found that up-regulation of gal-3 promoted Akt and glycogen synthase kinase (GSK)-3β phosphorylation, thought to constitute a cross-bridge between gal-3 and Wnt signaling. CONCLUSIONS Our results suggest that gal-3, a key factor mediating BMM-induced drug resistance, could be a novel therapeutic target in acute leukemia.
Collapse
Affiliation(s)
- Kaimin Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China. .,Cancer Institute, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Yanjun Gu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China. .,Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Lixia Lou
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Xiaohong Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
32
|
Stiehl T, Baran N, Ho AD, Marciniak-Czochra A. Cell division patterns in acute myeloid leukemia stem-like cells determine clinical course: a model to predict patient survival. Cancer Res 2015; 75:940-9. [PMID: 25614516 DOI: 10.1158/0008-5472.can-14-2508] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease in which a variety of distinct genetic alterations might occur. Recent attempts to identify the leukemia stem-like cells (LSC) have also indicated heterogeneity of these cells. On the basis of mathematical modeling and computer simulations, we have provided evidence that proliferation and self-renewal rates of the LSC population have greater impact on the course of disease than proliferation and self-renewal rates of leukemia blast populations, that is, leukemia progenitor cells. The modeling approach has enabled us to estimate the LSC properties of 31 individuals with relapsed AML and to link them to patient survival. On the basis of the estimated LSC properties, the patients can be divided into two prognostic groups that differ significantly with respect to overall survival after first relapse. The results suggest that high LSC self-renewal and proliferation rates are indicators of poor prognosis. Nevertheless, high LSC self-renewal rate may partially compensate for slow LSC proliferation and vice versa. Thus, model-based interpretation of clinical data allows estimation of prognostic factors that cannot be measured directly. This may have clinical implications for designing treatment strategies.
Collapse
Affiliation(s)
- Thomas Stiehl
- Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany. Bioquant Center, University of Heidelberg, Heidelberg, Germany. Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany.
| | - Natalia Baran
- Department of Medicine V, Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Anthony D Ho
- Department of Medicine V, Medical Center, University of Heidelberg, Heidelberg, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, University of Heidelberg, Heidelberg, Germany. Bioquant Center, University of Heidelberg, Heidelberg, Germany. Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
33
|
Engen CBN, Wergeland L, Skavland J, Gjertsen BT. Targeted Therapy of FLT3 in Treatment of AML-Current Status and Future Directions. J Clin Med 2014; 3:1466-89. [PMID: 26237612 PMCID: PMC4470194 DOI: 10.3390/jcm3041466] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/18/2022] Open
Abstract
Internal tandem duplications (ITDs) of the gene encoding the Fms-Like Tyrosine kinase-3 (FLT3) receptor are present in approximately 25% of patients with acute myeloid leukemia (AML). The mutation is associated with poor prognosis, and the aberrant protein product has been hypothesized as an attractive therapeutic target. Various tyrosine kinase inhibitors (TKIs) have been developed targeting FLT3, but in spite of initial optimism the first generation TKIs tested in clinical studies generally induce only partial and transient hematological responses. The limited treatment efficacy generally observed may be explained by numerous factors; extensively pretreated and high risk cohorts, suboptimal pharmacodynamic and pharmacokinetic properties of the compounds, acquired TKI resistance, or the possible fact that inhibition of mutated FLT3 alone is not sufficient to avoid disease progression. The second-generation agent quizartinb is showing promising outcomes and seems better tolerated and with less toxic effects than traditional chemotherapeutic agents. Therefore, new generations of TKIs might be feasible for use in combination therapy or in a salvage setting in selected patients. Here, we sum up experiences so far, and we discuss the future outlook of targeting dysregulated FLT3 signaling in the treatment of AML.
Collapse
Affiliation(s)
| | - Line Wergeland
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen N-5020, Norway.
| | - Jørn Skavland
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen N-5020, Norway.
| | - Bjørn Tore Gjertsen
- Center for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen N-5020, Norway.
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen N-5021, Norway.
| |
Collapse
|
34
|
Loewen G, Jayawickramarajah J, Zhuo Y, Shan B. Functions of lncRNA HOTAIR in lung cancer. J Hematol Oncol 2014; 7:90. [PMID: 25491133 PMCID: PMC4266198 DOI: 10.1186/s13045-014-0090-4] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/22/2014] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) govern fundamental biochemical and cellular processes. lncRNA HOX transcript antisense RNA (HOTAIR) represses gene expression through recruitment of chromatin modifiers. The expression of HOTAIR is elevated in lung cancer and correlates with metastasis and poor prognosis. Moreover, HOTAIR promotes proliferation, survival, invasion, metastasis, and drug resistance in lung cancer cells. Here we review the molecular mechanisms underlying HOTAIR-mediated aggressive phenotypes of lung cancer. We also discuss HOTAIR’s potential in diagnosis and treatment of lung cancer, as well as the challenges of exploiting HOTAIR for intervention of lung cancer.
Collapse
Affiliation(s)
- Gregory Loewen
- Providence Regional Cancer Center, 105 W. 8th Avenue, Spokane, WA, 99204, USA.
| | | | - Ying Zhuo
- Kadlec Regional Medical Center, 888 Swift Boulevard, Richland, WA, 99352, USA.
| | - Bin Shan
- College of Medical Sciences, Washington State University Spokane, 412 E. Spokane Falls Boulevard, Spokane, WA, 99202, USA.
| |
Collapse
|
35
|
O'Brien EC, Brewin J, Chevassut T. DNMT3A: the DioNysian MonsTer of acute myeloid leukaemia. Ther Adv Hematol 2014; 5:187-96. [PMID: 25469209 DOI: 10.1177/2040620714554538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the mythology of Ancient Greece, there was often a creative tension between the opposing forces of the gods Apollo and Dionysius, the two sons of Zeus. The Apollonian force was considered to be rational and lifegiving, whilst Dionysian forces were chaotic and elemental. Acute myeloid leukaemia is characterised by the clash of these forces: the chaotic proliferation of immature myeloid cells in the bone marrow overcomes the normal, orderly production of healthy blood cells. DNMT3A mutations occur early in the leukaemogenic process and may even act as "founder" mutations - the first step in a pathway towards malignant transformation. As such, these mutations may represent a Dionysian agent of disorder, inciting the chaotic myeloid proliferation and arrest of differentiation which are hallmarks of AML. This review will focus on the role of DNMT3A mutations in leukaemia pathogenesis, their influence on prognosis, and the potential for therapeutic targeting.
Collapse
Affiliation(s)
- Emma Conway O'Brien
- Medical Research Building, Brighton and Sussex Medical School, Sussex University, Falmer, Brighton, UK
| | - John Brewin
- Medical Research Building, Brighton and Sussex Medical School, Sussex University, Falmer, Brighton, UK
| | - Timothy Chevassut
- Medical Research Building, Brighton and Sussex Medical School, Sussex University, Falmer, Brighton BN1 9PS, UK
| |
Collapse
|
36
|
Mehdipour P, Santoro F, Minucci S. Epigenetic alterations in acute myeloid leukemias. FEBS J 2014; 282:1786-800. [DOI: 10.1111/febs.13142] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/22/2014] [Accepted: 10/31/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Parinaz Mehdipour
- Department of Experimental Oncology at the IFOM-IEO Campus; European Institute of Oncology; Milan Italy
| | - Fabio Santoro
- Department of Experimental Oncology at the IFOM-IEO Campus; European Institute of Oncology; Milan Italy
| | - Saverio Minucci
- Department of Experimental Oncology at the IFOM-IEO Campus; European Institute of Oncology; Milan Italy
- Department of Biosciences; University of Milan; Milan Italy
| |
Collapse
|
37
|
Loewen G, Zhuo Y, Zhuang Y, Jayawickramarajah J, Shan B. lincRNA HOTAIR as a novel promoter of cancer progression. ACTA ACUST UNITED AC 2014; 3:134-140. [PMID: 25663954 DOI: 10.6000/1929-2279.2014.03.03.3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Large intergenic non-coding RNAs (lincRNA) regulate development and disease via interactions with their protein partners. Expression of the lincRNA HOX transcript antisense RNA (HOTAIR) is elevated in a variety of malignancies and linked to metastasis and poor prognosis. HOTAIR promotes proliferation, invasion, and metastasis in the preclinical studies of cancer through modulation of chromatin modifying complexes. In the current review we discuss the molecular mechanisms of HOTAIR-mediated aggressive phenotypes of cancer, HOTAIR's potential in cancer intervention, and challenges in exploration of HOTAIR in cancer biology.
Collapse
Affiliation(s)
- Gregory Loewen
- Providence Regional Cancer Center, 105 W. 8th Avenue, Spokane, WA 99204 USA
| | - Ying Zhuo
- Medical Oncology Associates, 6001 North Mayfair Street, Spokane, WA 99208 USA
| | - Yan Zhuang
- Department of Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | - Bin Shan
- College of Medical Sciences, Washington State University Spokane, 412 E. Spokane Falls Boulevard, Spokane, WA 99202 USA
| |
Collapse
|
38
|
Cang S, Ma Y, Chiao JW, Liu D. Phenethyl isothiocyanate and paclitaxel synergistically enhanced apoptosis and alpha-tubulin hyperacetylation in breast cancer cells. Exp Hematol Oncol 2014; 3:5. [PMID: 24495785 PMCID: PMC3927854 DOI: 10.1186/2162-3619-3-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/03/2014] [Indexed: 12/17/2022] Open
Abstract
Combination of phenethyl isothiocyanate (PEITC) and paclitaxel (taxol) has been shown to work synergistically to increase apoptosis and cell cycle arrest in breast cancer cells. In this report, we further explored the mechanisms for the synergistic activity of PEITC and taxol in MCF7 and MDA-MB-231 (MB) breast cancer cell lines. By Western blotting analysis, treatment of MCF7 cells with both PEITC and taxol led to a 10.4-fold and 5.96-fold increase in specific acetylation of alpha-tubulin over single agent PEITC and taxol, respectively. This synergistic effect on acetylation of alpha-tubulin was also seen in MB cells. The combination of PEITC and taxol also reduced expressions of cell cycle regulator Cdk1, and anti-apoptotic protein bcl-2, enhanced expression of Bax and cleavage of PARP proteins. In conclusion, this study provided biochemical evidence for the mechanism of synergistic effect between the epigenetic agent PEITC and the chemotherapeutic agent taxol.
Collapse
Affiliation(s)
- Shundong Cang
- Department of Oncology, Henan Province People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Yuehua Ma
- Department of Oncology, Henan Province People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Jen-Wei Chiao
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA
| | - Delong Liu
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY 10595, USA.,Institute of Hematology, Henan Tumor Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|