2
|
Frost JN, Wideman SK, Preston AE, Teh MR, Ai Z, Wang L, Cross A, White N, Yazicioglu Y, Bonadonna M, Clarke AJ, Armitage AE, Galy B, Udalova IA, Drakesmith H. Plasma iron controls neutrophil production and function. SCIENCE ADVANCES 2022; 8:eabq5384. [PMID: 36197985 PMCID: PMC9534512 DOI: 10.1126/sciadv.abq5384] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/18/2022] [Indexed: 05/31/2023]
Abstract
Low plasma iron (hypoferremia) induced by hepcidin is a conserved inflammatory response that protects against infections but inhibits erythropoiesis. How hypoferremia influences leukocytogenesis is unclear. Using proteomic data, we predicted that neutrophil production would be profoundly more iron-demanding than generation of other white blood cell types. Accordingly in mice, hepcidin-mediated hypoferremia substantially reduced numbers of granulocytes but not monocytes, lymphocytes, or dendritic cells. Neutrophil rebound after anti-Gr-1-induced neutropenia was blunted during hypoferremia but was rescued by supplemental iron. Similarly, hypoferremia markedly inhibited pharmacologically stimulated granulopoiesis mediated by granulocyte colony-stimulating factor and inflammation-induced accumulation of neutrophils in the spleen and peritoneal cavity. Furthermore, hypoferremia specifically altered neutrophil effector functions, suppressing antibacterial mechanisms but enhancing mitochondrial reactive oxygen species-dependent NETosis associated with chronic inflammation. Notably, antagonizing endogenous hepcidin during acute inflammation enhanced production of neutrophils. We propose plasma iron modulates the profile of innate immunity by controlling monocyte-to-neutrophil ratio and neutrophil activity in a therapeutically targetable system.
Collapse
Affiliation(s)
- Joe N. Frost
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sarah K. Wideman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alexandra E. Preston
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Megan R. Teh
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Zhichao Ai
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Lihui Wang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Amy Cross
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DS, UK
| | - Natasha White
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Yavuz Yazicioglu
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Michael Bonadonna
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120, 69120 Heidelberg, Germany
- Biosciences Faculty, University of Heidelberg, 69120 Heidelberg, Germany
| | - Alexander J. Clarke
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Andrew E. Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Bruno Galy
- German Cancer Research Center, “Division of Virus-Associated Carcinogenesis”, Im Neuenheimer Feld 280, 69120, 69120 Heidelberg, Germany
| | - Irina A. Udalova
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
3
|
Kwok I, Becht E, Xia Y, Ng M, Teh YC, Tan L, Evrard M, Li JLY, Tran HTN, Tan Y, Liu D, Mishra A, Liong KH, Leong K, Zhang Y, Olsson A, Mantri CK, Shyamsunder P, Liu Z, Piot C, Dutertre CA, Cheng H, Bari S, Ang N, Biswas SK, Koeffler HP, Tey HL, Larbi A, Su IH, Lee B, St John A, Chan JKY, Hwang WYK, Chen J, Salomonis N, Chong SZ, Grimes HL, Liu B, Hidalgo A, Newell EW, Cheng T, Ginhoux F, Ng LG. Combinatorial Single-Cell Analyses of Granulocyte-Monocyte Progenitor Heterogeneity Reveals an Early Uni-potent Neutrophil Progenitor. Immunity 2020; 53:303-318.e5. [PMID: 32579887 DOI: 10.1016/j.immuni.2020.06.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/14/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Granulocyte-monocyte progenitors (GMPs) have been previously defined for their potential to generate various myeloid progenies such as neutrophils and monocytes. Although studies have proposed lineage heterogeneity within GMPs, it is unclear if committed progenitors already exist among these progenitors and how they may behave differently during inflammation. By combining single-cell transcriptomic and proteomic analyses, we identified the early committed progenitor within the GMPs responsible for the strict production of neutrophils, which we designate as proNeu1. Our dissection of the GMP hierarchy led us to further identify a previously unknown intermediate proNeu2 population. Similar populations could be detected in human samples. proNeu1s, but not proNeu2s, selectively expanded during the early phase of sepsis at the expense of monocytes. Collectively, our findings help shape the neutrophil maturation trajectory roadmap and challenge the current definition of GMPs.
Collapse
Affiliation(s)
- Immanuel Kwok
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Etienne Becht
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Yu Xia
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Melissa Ng
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Ye Chean Teh
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117558, Singapore
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Jackson L Y Li
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Hoa T N Tran
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Yingrou Tan
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore
| | - Dehua Liu
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Archita Mishra
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Ka Hang Liong
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Keith Leong
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Yuning Zhang
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Andre Olsson
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chinmay Kumar Mantri
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Pavithra Shyamsunder
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Cecile Piot
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Charles-Antoine Dutertre
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Sudipto Bari
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Nicholas Ang
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Subhra K Biswas
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - H Philip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Cedars-Sinai Medical Center, Division of Hematology/Oncology, UCLA School of Medicine, Los Angeles, CA 90048, USA; Department of Hematology-Oncology, National University Cancer Institute of Singapore, National University Hospital, Singapore 119074, Singapore
| | - Hong Liang Tey
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - I-Hsin Su
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Ashley St John
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; SingHealth Duke-National University of Singapore Global Health Institute, Singapore 168753, Singapore
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore; Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - William Y K Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore; National Cancer Centre Singapore, Singapore 169610, Singapore; Department of Hematology, Singapore General Hospital, Singapore 169608, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Shu Zhen Chong
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100071, China; State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Andrés Hidalgo
- Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Evan W Newell
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China; Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A∗STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138648, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore; State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; National Cancer Centre Singapore, Singapore 169610, Singapore.
| |
Collapse
|