1
|
Głuszyńska A, Kosman J, Chuah SS, Hoffmann M, Haider S. Carbazole Derivatives Binding to Bcl-2 Promoter Sequence G-quadruplex. Pharmaceuticals (Basel) 2024; 17:912. [PMID: 39065762 PMCID: PMC11279778 DOI: 10.3390/ph17070912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, we used ultraviolet-visible (UV-Vis), fluorescence, and circular dichroism (CD) techniques, as well as molecular modeling, to probe the interactions between carbazole derivatives and the G-quadruplex structure formed in the promoter region of gene Bcl-2. This gene is a rational target for anticancer therapy due to its high expression in a variety of tumors as well as resistance to chemotherapy-induced apoptosis. We employed a sequence with a specific dual G-to-T mutation that may form a mixed-type hybrid G-quadruplex structure in the Bcl-2 P1 promoter region. The three tested carbazole compounds differing in substitution on the nitrogen atom of carbazole interact with the Bcl-2 G-quadruplex by the same binding mode with the very comparable binding affinities in the order of 105 M-1. During absorption and fluorescence measurements, large changes in the ligand spectra were observed at higher G4 concentrations. The spectrophotometric titration results showed a two-step complex formation between the ligands and the G-quadruplex in the form of initial hypochromicity followed by hyperchromicity with a bathochromic shift. The strong fluorescence enhancement of ligands was observed after binding to the DNA. All of the used analytical techniques, as well as molecular modeling, suggested the π-π interaction between carbazole ligands and a guanine tetrad of the Bcl-2 G-quadruplex. Molecular modeling has shown differences in the interaction between each of the ligands and the tested G-quadruplex, which potentially had an impact on the binding strength.
Collapse
Affiliation(s)
- Agata Głuszyńska
- Department of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Joanna Kosman
- Department of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Laboratory of Molecular Assays and Imaging, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Shang Shiuan Chuah
- School of Pharmacy, University College London, London WC1N 1AX, UK (S.H.)
| | - Marcin Hoffmann
- Department of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Shozeb Haider
- School of Pharmacy, University College London, London WC1N 1AX, UK (S.H.)
| |
Collapse
|
2
|
Fan M, Wang K, Pan D, Cao X, Li Z, He S, Xie S, You C, Gu Y, Li L. Radiomic analysis reveals diverse prognostic and molecular insights into the response of breast cancer to neoadjuvant chemotherapy: a multicohort study. J Transl Med 2024; 22:637. [PMID: 38978099 PMCID: PMC11232151 DOI: 10.1186/s12967-024-05487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Breast cancer patients exhibit various response patterns to neoadjuvant chemotherapy (NAC). However, it is uncertain whether diverse tumor response patterns to NAC in breast cancer patients can predict survival outcomes. We aimed to develop and validate radiomic signatures indicative of tumor shrinkage and therapeutic response for improved survival analysis. METHODS This retrospective, multicohort study included three datasets. The development dataset, consisting of preoperative and early NAC DCE-MRI data from 255 patients, was used to create an imaging signature-based multitask model for predicting tumor shrinkage patterns and pathological complete response (pCR). Patients were categorized as pCR, nonpCR with concentric shrinkage (CS), or nonpCR with non-CS, with prediction performance measured by the area under the curve (AUC). The prognostic validation dataset (n = 174) was used to assess the prognostic value of the imaging signatures for overall survival (OS) and recurrence-free survival (RFS) using a multivariate Cox model. The gene expression data (genomic validation dataset, n = 112) were analyzed to determine the biological basis of the response patterns. RESULTS The multitask learning model, utilizing 17 radiomic signatures, achieved AUCs of 0.886 for predicting tumor shrinkage and 0.760 for predicting pCR. Patients who achieved pCR had the best survival outcomes, while nonpCR patients with a CS pattern had better survival than non-CS patients did, with significant differences in OS and RFS (p = 0.00012 and p = 0.00063, respectively). Gene expression analysis highlighted the involvement of the IL-17 and estrogen signaling pathways in response variability. CONCLUSIONS Radiomic signatures effectively predict NAC response patterns in breast cancer patients and are associated with specific survival outcomes. The CS pattern in nonpCR patients indicates better survival.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Kailang Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Da Pan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Xuan Cao
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Zhihao Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Songlin He
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China
| | - Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China.
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Xiasha High Education Zone, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
3
|
Wang BS, Zhang CL, Cui X, Li Q, Yang L, He ZY, Yang Z, Zeng MM, Cao N. Curcumin inhibits the growth and invasion of gastric cancer by regulating long noncoding RNA AC022424.2. World J Gastrointest Oncol 2024; 16:1437-1452. [PMID: 38660661 PMCID: PMC11037052 DOI: 10.4251/wjgo.v16.i4.1437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Gastric cancer, characterized by a multifactorial etiology and high heterogeneity, continues to confound researchers in terms of its pathogenesis. Curcumin, a natural anticancer agent, exhibits therapeutic promise in gastric cancer. Its effects include promoting cell apoptosis, curtailing tumor angiogenesis, and enhancing sensitivity to radiation and chemotherapy. Long noncoding RNAs (lncRNAs) have garnered significant attention as biomarkers for early screening, diagnosis, treatment, and drug response because of their remarkable specificity and sensitivity. Recent investigations have revealed an association between aberrant lncRNA expression and early diagnosis, clinical staging, metastasis, drug sensitivity, and prognosis in gastric cancer. A profound understanding of the intricate mechanisms through which lncRNAs influence gastric cancer development can provide novel insights for precision treatment and tailored management of patients with gastric cancer. This study aimed to unravel the potential of curcumin in suppressing the malignant behavior of gastric cancer cells by upregulating specific lncRNAs and modulating gastric cancer onset and progression. AIM To identify lncRNAs associated with curcumin treatment and investigate the role of lncRNA AC022424.2 in the effects of curcumin on gastric cancer cell apoptosis, proliferation, and invasion. Furthermore, these findings were validated in clinical samples. METHODS The study employed CCK-8 assays to assess the impact of curcumin on gastric cancer cell proliferation, flow cytometry to investigate its effects on apoptosis, and scratch and Transwell assays to evaluate its influence on the migration and invasion of BGC-823 and MGC-803 cells. Western blotting was used to gauge changes in the protein expression levels of CDK6, CDK4, Bax, Bcl-2, caspase-3, P65, and the PI3K/Akt/mTOR pathway in gastric cancer cell lines after curcumin treatment. Differential expression of lncRNAs before and after curcumin treatment was assessed using lncRNA sequencing and validated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in BGC-823 and MGC-803 cells. AC022424.2-1 knockdown BGC-823 and MGC-803 cells were generated to scrutinize the impact of lncRNA AC022424.2 on apoptosis, proliferation, migration, and invasion of gastric cancer cells. Western blotting was performed to ascertain changes in the expression of proteins implicated in the PI3K/Akt/mTOR and NF-κB signaling pathways. RT-PCR was employed to measure lncRNA AC022424.2 expression in clinical gastric cancer tissues and to correlate its expression with clinical pathological characteristics. RESULTS Curcumin induced apoptosis and hindered proliferation, migration, and invasion of gastric cancer cells in a dose- and time-dependent manner. LncRNA AC022424.2 was upregulated after curcumin treatment, and its knockdown enhanced cancer cell aggressiveness. LncRNA AC022424.2 may have affected cancer cells via the PI3K/Akt/mTOR and NF-κB signaling pathways. LncRNA AC022424.2 downregulation was correlated with lymph node metastasis, making it a potential diagnostic and prognostic marker. CONCLUSION Curcumin has potential anticancer effects on gastric cancer cells by regulating lncRNA AC022424.2. This lncRNA plays a significant role in cancer cell behavior and may have clinical implications in diagnosis and prognosis evaluation. The results of this study enhance our understanding of gastric cancer development and precision treatment.
Collapse
Affiliation(s)
- Bin-Sheng Wang
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Chen-Li Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Xiang Cui
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Qiang Li
- Third Department of General Surgery, First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Lei Yang
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Zhi-Yun He
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Ze Yang
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Miao-Miao Zeng
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Nong Cao
- Department of General Surgery, First Hospital of Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
4
|
Shamis SA, Savioli F, Ammar A, Al-Badran SS, Hatthakarnkul P, Leslie H, Mallon EE, Jamieson NB, McMillan DC, Edwards J. Spatial transcriptomic analysis of tumour with high and low CAIX expression in TNBC tissue samples using GeoMx™ RNA assay. Histol Histopathol 2024; 39:177-200. [PMID: 37681672 DOI: 10.14670/hh-18-655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
PURPOSE Prognostic significance and gene signatures associated with carbonic anhydrase IX (CAIX) was investigated in triple negative breast cancer (TNBC) patients. METHODS Immunohistochemistry (IHC) for CAIX was performed in tissue microarrays (TMAs) of 136 TNBC patients. In a subset of 52 patients Digital Spatial Profiler (DSP) was performed in tumour (pan-cytokeratin+) and stroma (pan-cytokeratin-). Differentially expressed genes (DEGs) with P<0.05 and and log2 fold change (FC)>(±0.25 and ±0.3, for tumour and stromal compartment, respectively) were identified. Four genes were validated at the protein level. RESULT Cytoplasmic CAIX expression was independently associated with poor recurrence free survival in TNBC patients [hazard ratio (HR)=6.59, 95% confidence interval (CI): 1.47-29.58, P=0.014]. DEG analysis identified 4 up-regulated genes (CD68, HIF1A, pan-melanocyte, and VSIR) in the tumour region and 9 down-regulated genes in the stromal region (CD86, CD3E, MS4A1, BCL2, CCL5, NKG7, PTPRC, CD27, and FAS) when low versus high CAIX expression was explored. Employing IHC, high CD68 and HIF-1α was associated with poorer prognosis and high BCL2 and CD3 was associated with good prognosis. CONCLUSIONS DSP technology identified DEGs in TNBC. Selected genes validated by IHC showed involvement of CD3 and BCL2 expression within stroma and HIF-1α, and CD68 expression within tumour. However, further functional analysis is warranted.
Collapse
Affiliation(s)
- Suad Ak Shamis
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Alexandria Parade, Glasgow, United Kingdom.
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Francesca Savioli
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Alexandria Parade, Glasgow, United Kingdom.
| | - Aula Ammar
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Sara Sf Al-Badran
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Phimmada Hatthakarnkul
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Holly Leslie
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Elizabeth Ea Mallon
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Nigel B Jamieson
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Royal Infirmary, Alexandria Parade, Glasgow, United Kingdom.
| | - Joanne Edwards
- Unit of Molecular Pathology, School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Glasgow, United Kingdom
| |
Collapse
|
5
|
Kim HJ, Eom YH, Choi SH. Prognostic influences of B-cell lymphoma 2-positive expression on late recurrence in breast cancer. Ann Surg Treat Res 2023; 105:20-30. [PMID: 37441325 PMCID: PMC10333802 DOI: 10.4174/astr.2023.105.1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Purpose B-cell lymphoma 2 (BCL2) has an antiapoptotic role, however, has resulted in it being a powerful favorable prognostic factor in breast cancer. Several studies revealed BCL2 is strongly associated with a lower rate of early recurrence after initial treatment in breast cancer patients, but study of a prolonged effect after 5 years is lacking. We investigated BCL2 as a prognostic factor in breast cancer in comparison to early and late recurrence. Methods We retrieved data from 2,198 patients with primary breast cancer who underwent surgical treatment and adjuvant treatment at the breast cancer center between 2005 and 2015. Each molecular subtype was classified, and Ki-67 and BCL2 were also assessed by immunohistochemistry. BCL2 and the association between molecular subtypes were assessed in early and late recurrences, respectively. Five-year postrecurrence survival and BCL2 were also assessed. Results The BCL2-positive group was associated with favorable clinicopathologic characteristics. The time to recurrence was significantly longer in the BCL2-positive group (P = 0.035). Late recurrence after 5 years was higher in the BCL2-positive group (P = 0.029). In multivariate survival analysis, tumor size and BCL2-positive expression were the only independent prognostic factors for late recurrence (P = 0.004). In the patients with recurrence, 5-year postrecurrence survival was significantly higher in the BCL2-positive group (P < 0.001). Conclusion Our result showed that prognosis was better in BCL2-positive patients compared to BCL2-negative patients at late recurrence. We suggested that BCL2 expression could be used as a marker to help determine additional adjuvant therapy or extended hormone therapy in hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Hee Ju Kim
- Division of Breast Surgery, Department of Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University, Seoul, Korea
| | - Yong Hwa Eom
- Division of Breast Surgery, Department of Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University, Seoul, Korea
| | - Seung Hye Choi
- Division of Breast Surgery, Department of Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University, Seoul, Korea
| |
Collapse
|
6
|
Huda MN, Borrego EA, Guerena CD, Varela-Ramirez A, Aguilera RJ, Hamadani CM, Tanner EEL, Badruddoza AZM, Agarwal SK, Nurunnabi M. Topical Administration of an Apoptosis Inducer Mitigates Bleomycin-Induced Skin Fibrosis. ACS Pharmacol Transl Sci 2023; 6:829-841. [PMID: 37200808 PMCID: PMC10186622 DOI: 10.1021/acsptsci.3c00039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 05/20/2023]
Abstract
Pathological fibrosis is distinguished from physiological wound healing by persistent myofibroblast activation, suggesting that therapies that induce myofibroblast apoptosis selectively could prevent progression and potentially reverse the established fibrosis, such as for scleroderma (a heterogeneous autoimmune disease characterized by multiorgan fibrosis). Navitoclax (NAVI) is a BCL-2/BCL-xL inhibitor with antifibrotic properties and has been investigated as a potential therapeutic for fibrosis. NAVI makes myofibroblasts particularly vulnerable to apoptosis. However, despite NAVI's significant potency, clinical translation of BCL-2 inhibitors, NAVI in this case, is hindered due to the risk of thrombocytopenia. Therefore, in this work, we utilized a newly developed ionic liquid formulation of NAVI for direct topical application to the skin, thereby avoiding systemic circulation and off-target-mediated side effects. The ionic liquid composed of choline and octanoic acid (COA) at a 1:2 molar ionic ratio increases skin diffusion and transportation of NAVI and maintains their retention within the dermis for a prolonged duration. Topical administration of NAVI-mediated BCL-xL and BCL-2 inhibition results in the transition of myofibroblast to fibroblast and ameliorates pre-existing fibrosis, as demonstrated in a scleroderma mouse model. We have observed a significant reduction of α-SMA and collagen, which are known as fibrosis marker proteins, as a result of the inhibition of anti-apoptotic proteins BCL-2/BCL-xL. Overall, our findings show that COA-assisted topical delivery of NAVI upregulates apoptosis specific to myofibroblasts, with minimal presence of the drug in the systemic circulation, resulting in an accelerated therapeutic effect with no discernible drug-associated toxicity.
Collapse
Affiliation(s)
- Md Nurul Huda
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Edgar A. Borrego
- Department
of Biological Sciences, College of Sciences, University of Texas at El Paso, El Paso, Texas 79956, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79956, United States
| | - Cristina D. Guerena
- Department
of Biological Sciences, College of Sciences, University of Texas at El Paso, El Paso, Texas 79956, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79956, United States
| | - Armando Varela-Ramirez
- Department
of Biological Sciences, College of Sciences, University of Texas at El Paso, El Paso, Texas 79956, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79956, United States
| | - Renato J. Aguilera
- Department
of Biological Sciences, College of Sciences, University of Texas at El Paso, El Paso, Texas 79956, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79956, United States
| | - Christine M. Hamadani
- Department
of Chemistry & Biochemistry, The University
of Mississippi, University, Mississippi 38677, United States
| | - Eden E. L. Tanner
- Department
of Chemistry & Biochemistry, The University
of Mississippi, University, Mississippi 38677, United States
| | - Abu Zayed Md Badruddoza
- Department
of Chemical and Life Sciences Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Sandeep K. Agarwal
- Department
of Medicine, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Md Nurunnabi
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Border
Biomedical Research Center, University of
Texas at El Paso, El Paso, Texas 79956, United States
- Biomedical Engineering, and Aerospace Center, College of Engineering, University of Texas at El Paso, El Paso, Texas 79956, United States
| |
Collapse
|
7
|
Chen H, Yin L, Yang J, Ren N, Chen J, Lu Q, Huang Y, Feng Y, Wang W, Wang S, Liu Y, Song Y, Li Y, Jin J, Tan W, Lin D. Genetic polymorphisms in genes regulating cell death and prognosis of patients with rectal cancer receiving postoperative chemoradiotherapy. Cancer Biol Med 2023; 20:j.issn.2095-3941.2022.0711. [PMID: 37144561 PMCID: PMC10157810 DOI: 10.20892/j.issn.2095-3941.2022.0711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 05/06/2023] Open
Abstract
OBJECTIVE The identification of biomarkers for predicting chemoradiotherapy efficacy is essential to optimize personalized treatment. This study determined the effects of genetic variations in genes involved in apoptosis, pyroptosis, and ferroptosis on the prognosis of patients with locally advanced rectal cancer receiving postoperative chemoradiotherapy (CRT). METHODS The Sequenom MassARRAY was used to detect 217 genetic variations in 40 genes from 300 patients with rectal cancer who received postoperative CRT. The associations between genetic variations and overall survival (OS) were evaluated using hazard ratios (HRs) and 95% confidence intervals (CIs) computed using a Cox proportional regression model. Functional experiments were performed to determine the functions of the arachidonate 5-lipoxygenase (ALOX5) gene and the ALOX5 rs702365 variant. RESULTS We detected 16 genetic polymorphisms in CASP3, CASP7, TRAILR2, GSDME, CASP4, HO-1, ALOX5, GPX4, and NRF2 that were significantly associated with OS in the additive model (P < 0.05). There was a substantial cumulative effect of three genetic polymorphisms (CASP4 rs571407, ALOX5 rs2242332, and HO-1 rs17883419) on OS. Genetic variations in the CASP4 and ALOX5 gene haplotypes were associated with a higher OS. We demonstrated, for the first time, that rs702365 [G] > [C] represses ALOX5 transcription and corollary experiments suggested that ALOX5 may promote colon cancer cell growth by mediating an inflammatory response. CONCLUSIONS Polymorphisms in genes regulating cell death may play essential roles in the prognosis of patients with rectal cancer who are treated with postoperative CRT and may serve as potential genetic biomarkers for individualized treatment.
Collapse
Affiliation(s)
- Hongxia Chen
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Luxi Yin
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ningxin Ren
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jinna Chen
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qixuan Lu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ying Huang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yanru Feng
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weihu Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shulian Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yueping Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yongwen Song
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yexiong Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wen Tan
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxin Lin
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China
| |
Collapse
|
8
|
Haider M, Elsherbeny A, Pittalà V, Consoli V, Alghamdi MA, Hussain Z, Khoder G, Greish K. Nanomedicine Strategies for Management of Drug Resistance in Lung Cancer. Int J Mol Sci 2022; 23:1853. [PMID: 35163777 PMCID: PMC8836587 DOI: 10.3390/ijms23031853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer (LC) is one of the leading causes of cancer occurrence and mortality worldwide. Treatment of patients with advanced and metastatic LC presents a significant challenge, as malignant cells use different mechanisms to resist chemotherapy. Drug resistance (DR) is a complex process that occurs due to a variety of genetic and acquired factors. Identifying the mechanisms underlying DR in LC patients and possible therapeutic alternatives for more efficient therapy is a central goal of LC research. Advances in nanotechnology resulted in the development of targeted and multifunctional nanoscale drug constructs. The possible modulation of the components of nanomedicine, their surface functionalization, and the encapsulation of various active therapeutics provide promising tools to bypass crucial biological barriers. These attributes enhance the delivery of multiple therapeutic agents directly to the tumor microenvironment (TME), resulting in reversal of LC resistance to anticancer treatment. This review provides a broad framework for understanding the different molecular mechanisms of DR in lung cancer, presents novel nanomedicine therapeutics aimed at improving the efficacy of treatment of various forms of resistant LC; outlines current challenges in using nanotechnology for reversing DR; and discusses the future directions for the clinical application of nanomedicine in the management of LC resistance.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Amr Elsherbeny
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Valeria Pittalà
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy; (V.P.); (V.C.)
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif 21974, Saudi Arabia;
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; (Z.H.); (G.K.)
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences, Arabian Gulf University, Manama 329, Bahrain;
| |
Collapse
|
9
|
Li M, Chen X, Wang X, Wei X, Wang D, Liu X, Xu L, Batu W, Li Y, Guo B, Zhang L. RSL3 enhances the antitumor effect of cisplatin on prostate cancer cells via causing glycolysis dysfunction. Biochem Pharmacol 2021; 192:114741. [PMID: 34428443 DOI: 10.1016/j.bcp.2021.114741] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
The resistance to cisplatin (DDP) and dose-related toxicity are the two important obstacles in the chemotherapy of prostate cancer (PCa) patients. The present study demonstrated that cotreatment of DDP and RSL3, a type of small molecular compound which can inactivate glutathione peroxidase 4 (GPX4) and induce ferroptosis, synergistically inhibited the viability and proliferation of PCa cells in vitro and in vivo at low dose. In vitro studies revealed that RSL3 improved that sensitivity of PCa cells to DDP by producing ROS and aggravating the cell cycle arrest and apoptosis caused by DDP. Mechanistically, RSL3 could decrease the ATP and pyruvate content as well as the protein levels of HKII, PFKP, PKM2, which indicated that RSL3 induced glycolysis dysfunction in prostate cancer cells. Rescuing RSL3-induced glycolysis dysfunction by supplement of exterior sodium pyruvate not only inhibited RSL3/DDP-induced changes of apoptosis-related proteins levels, but also mitigated the cell death caused by RSL3/DDP. In vivo studies further confirmed that cotreatment of RSL3 and DDP at low dose significantly inhibited the growth of PCa with no obvious side effects. Taken together, we demonstrated that RSL3 improved the sensitivity of PCa to DDP via causing glycolysis dysfunction. Our findings indicated that DDP-based chemotherapy combined with RSL3 might provide a promising therapy for PCa.
Collapse
Affiliation(s)
- Mengxin Li
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuyang Chen
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xiaodong Wei
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ding Wang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaorui Liu
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Libo Xu
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wuren Batu
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yang Li
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Ling Zhang
- Key Laboratory of Pathobiology, Ministry of Education, and Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
10
|
Albogami SM, Asiri Y, Asiri A, Alnefaie AA, Alnefaie S. Effects of neoadjuvant therapies on genetic regulation of targeted pathways in ER+ primary ductal breast carcinoma: A meta-analysis of microarray datasets. Saudi Pharm J 2021; 29:656-669. [PMID: 34400859 PMCID: PMC8347676 DOI: 10.1016/j.jsps.2021.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer arises as a result of multiple interactions between environmental and genetic factors. Conventionally, breast cancer is treated based on histopathological and clinical features. DNA technologies like the human genome microarray are now partially integrated into clinical practice and are used for developing new "personalized medicines" and "pharmacogenetics" for improving the efficiency and safety of cancer medications. We investigated the effects of four established therapies-for ER+ ductal breast cancer-on the differential gene expression. The therapies included single agent tamoxifen, two-agent docetaxel and capecitabine, or combined three-agents CAF (cyclophosphamide, doxorubicin, and fluorouracil) and CMF (cyclophosphamide, methotrexate, and fluorouracil). Genevestigator 8.1.0 was used to compare five datasets from patients with infiltrating ductal carcinoma, untreated or treated with selected drugs, to those from the healthy control. We identified 74 differentially expressed genes involved in three pathways, i.e., apoptosis (extrinsic and intrinsic), oxidative signaling, and PI3K/Akt signaling. The treatments affected the expression of apoptotic genes (TNFRSF10B [TRAIL], FAS, CASP3/6/7/8, PMAIP1 [NOXA], BNIP3L, BNIP3, BCL2A1, and BCL2), the oxidative stress-related genes (NOX4, XDH, MAOA, GSR, GPX3, and SOD3), and the PI3K/Akt pathway gene (ERBB2 [HER2]). Breast cancer treatments are complex with varying drug responses and efficacy among patients. This necessitates identifying novel biomarkers for predicting the drug response, using available data and new technologies. GSR, NOX4, CASP3, and ERBB2 are potential biomarkers for predicting the treatment response in primary ER+ ductal breast carcinoma.
Collapse
Key Words
- BC, breast cancer
- Bax, Bcl-2-associated X
- Bcl2, B-cell lymphoma 2
- CAF, cyclophosphamide, doxorubicin, and fluorouracil
- CASP3
- CMF, cyclophosphamide, methotrexate, and fluorouracil
- Chemotherapy
- DC, docetaxel and capecitabine
- ER+ ductal carcinoma
- ER, estrogen receptor
- ERBB2 (HER2)
- FC, fold-change
- FU, fluorouracil
- GSR
- H2O2, hydrogen peroxide
- HER2, human epidermal growth factor 2
- IGF-1, insulin-like growth factor-1
- NOX4
- OH●, hydroxyl radical
- PI3K/Akt, phosphatidylinositol 3-kinase/protein kinase B
- PM, personalized medicine
- PR, progesterone receptor
- PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses
- ROS, reactive oxygen species
- TGF-α/β, transforming growth factor alpha/beta
- TMX, tamoxifen
- TS, thymidylate synthase
Collapse
Affiliation(s)
- Sarah M. Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Yousif Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdulaziz Asiri
- Pharmaceutical Care Division, King Faisal Specialist Hospital and Research Center, P.O. Box 3354, MBC#11, Riyadh 11211, Saudi Arabia
| | - Alaa A. Alnefaie
- International Medical Center Hospital, P.O. Box 953, Jeddah 21423, Saudi Arabia
| | - Sahar Alnefaie
- Department of Surgery, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
11
|
Devi GR, Finetti P, Morse MA, Lee S, de Nonneville A, Van Laere S, Troy J, Geradts J, McCall S, Bertucci F. Expression of X-Linked Inhibitor of Apoptosis Protein (XIAP) in Breast Cancer Is Associated with Shorter Survival and Resistance to Chemotherapy. Cancers (Basel) 2021; 13:2807. [PMID: 34199946 PMCID: PMC8200223 DOI: 10.3390/cancers13112807] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 11/16/2022] Open
Abstract
XIAP, the most potent inhibitor of cell death pathways, is linked to chemotherapy resistance and tumor aggressiveness. Currently, multiple XIAP-targeting agents are in clinical trials. However, the characterization of XIAP expression in relation to clinicopathological variables in large clinical series of breast cancer is lacking. We retrospectively analyzed non-metastatic, non-inflammatory, primary, invasive breast cancer samples for XIAP mRNA (n = 2341) and protein (n = 367) expression. XIAP expression was analyzed as a continuous value and correlated with clinicopathological variables. XIAP mRNA expression was heterogeneous across samples and significantly associated with younger patients' age (≤50 years), pathological ductal type, lower tumor grade, node-positive status, HR+/HER2- status, and PAM50 luminal B subtype. Higher XIAP expression was associated with shorter DFS in uni- and multivariate analyses in 909 informative patients. Very similar correlations were observed at the protein level. This prognostic impact was significant in the HR+/HER2- but not in the TN subtype. Finally, XIAP mRNA expression was associated with lower pCR rate to anthracycline-based neoadjuvant chemotherapy in both uni- and multivariate analyses in 1203 informative patients. Higher XIAP expression in invasive breast cancer is independently associated with poorer prognosis and resistance to chemotherapy, suggesting the potential therapeutic benefit of targeting XIAP.
Collapse
Affiliation(s)
- Gayathri R. Devi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Pascal Finetti
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 13009 Marseille, France; (P.F.); (A.d.N.)
| | - Michael A. Morse
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA;
| | - Seayoung Lee
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA;
| | - Alexandre de Nonneville
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 13009 Marseille, France; (P.F.); (A.d.N.)
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France
| | | | - Jesse Troy
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA;
| | - Joseph Geradts
- Department of Pathology and Laboratory Medicine, East Carolina University Brody School of Medicine, Greenville, NC 27858, USA;
| | - Shannon McCall
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Francois Bertucci
- Laboratory of Predictive Oncology, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Aix-Marseille University, 13009 Marseille, France; (P.F.); (A.d.N.)
- Department of Medical Oncology, Institut Paoli-Calmettes, 13009 Marseille, France
| |
Collapse
|
12
|
Carrara GFA, Evangelista AF, Scapulatempo-Neto C, Abrahão-Machado LF, Morini MA, Kerr LM, Folgueira MAAK, da Costa Vieira RA. Analysis of RPL37A, MTSS1, and HTRA1 expression as potential markers for pathologic complete response and survival. Breast Cancer 2021; 28:307-320. [PMID: 32951185 DOI: 10.1007/s12282-020-01159-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/11/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Non-metastatic locally advanced breast carcinoma (LABC) treatment involves neoadjuvant chemotherapy (NCT). We evaluated the association of clinical-pathological data and immunoexpression of hormone receptors, HER2 and Ki67, and new biomarkers, RPL37A, MTSS1 and HTRA1, with pathological complete response (PCR) or tumour resistance (stable disease or disease progression), disease-free survival (DFS) and cancer-specific survival (CSS). METHODS This is a retrospective study of 333 patients with LABC who underwent NCT. Expression of MTSS1, RPL37A and HTRA1/PRSS11 was evaluated by immunohistochemistry in TMA slides. Cutoff values were established for low and high tumour expression. ROC plotter evaluated response to NCT. Chi-square test for factors related to PCR, and Kaplan-Meier test and Cox model for factors related to DFS and CSS were prformed. RESULTS The mean follow-up was 70.0 months and PCR rate was 15.6%. At 120 months, DFS rate was 32.5% and CSS rate was 67.1%. In multivariate analysis, there was an association between: (1) necrosis presence, intense inflammatory infiltrate, ER absence, HER2 molecular subtype and high RPL3A expression with increased odds of PCR; (2) lymph node involvement (LNI), high Ki67, low RPL37A and high HTRA1 expression with increased risk for NCT non-response; (3) LNI, high proliferation, necrosis absence, low RPL37A and high HTRA1 expression with increased recurrence risk; (4) advanced LNI, ER negative tumours, high HTRA1, low RPL37A expression and desmoplasia presence with higher risk of cancer death. CONCLUSION RPL37A is a potential biomarker for response to NCT and for prognosis. Additional studies evaluating HTRA1 and MTSS1 prognostic value are needed.
Collapse
Affiliation(s)
- Guilherme Freire Angotti Carrara
- Programa de Pós-Graduação em Oncologia, Hospital de Câncer de Barretos, Rua Antenor Duarte Villela, 1331, Bairro Dr Paulo Prata, Barretos, São Paulo, 14.784-400, Brasil
| | - Adriane Feijo Evangelista
- Programa de Pós-Graduação em Oncologia, Hospital de Câncer de Barretos, Rua Antenor Duarte Villela, 1331, Bairro Dr Paulo Prata, Barretos, São Paulo, 14.784-400, Brasil
- Centro de Pesquisa Molecular em Oncologia, Hospital de Câncer de Barretos, Barretos, Brasil
| | - Cristovam Scapulatempo-Neto
- Programa de Pós-Graduação em Oncologia, Hospital de Câncer de Barretos, Rua Antenor Duarte Villela, 1331, Bairro Dr Paulo Prata, Barretos, São Paulo, 14.784-400, Brasil
- Departamento de Patologia, Hospital de Câncer de Barretos, Barretos, Brasil
| | | | | | - Ligia Maria Kerr
- Departamento de Patologia, Hospital de Câncer de Barretos, Barretos, Brasil
| | - Maria Aparecida Azevedo Koike Folgueira
- Programa de Pós-Graduação em Oncologia, Departamento de Radiologia e Oncologia, Faculdade de Medicina, FMUSP Universidade de São Paulo, FMUSP, São Paulo, Brasil
| | - René Aloisio da Costa Vieira
- Programa de Pós-Graduação em Oncologia, Hospital de Câncer de Barretos, Rua Antenor Duarte Villela, 1331, Bairro Dr Paulo Prata, Barretos, São Paulo, 14.784-400, Brasil.
- Programa de Pós-Graduação em Ginecologia, Obstetricia e Mastologia, Faculdade de Medicina de Botucatu/UNESP, Botucatu, São Paulo, Brasil.
| |
Collapse
|
13
|
Role of docosahexaenoic acid in enhancement of docetaxel action in patient-derived breast cancer xenografts. Breast Cancer Res Treat 2019; 177:357-367. [DOI: 10.1007/s10549-019-05331-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
|
14
|
Ayadi EZ, Cherif B, Ben Hamed Y, Mokni M, Rebai A, Ayadi H, Jlidi R. Prognostic Value of BCL2 in Women Patients with Invasive Breast Cancer. Asian Pac J Cancer Prev 2018; 19:3557-3564. [PMID: 30583683 PMCID: PMC6428546 DOI: 10.31557/apjcp.2018.19.12.3557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Breast cancers are heterogeneous, making it essential to recognize several biomarkers for cancer
outcome predictions especially in young women where the classical prediction parameters are not suitable. The goal
from this study is to evaluate the impact of B cell lymphoma 2 (BCL2), P53 and Ki-67 proteins expression on survival
in young women patients with invasive ductal carcinoma. Patients and methods: Samples and clinical data from 238
patients were collected between 2003 and 2017. They were selected according to 2 criteria: age ≤40 years old and most of
them are affected by an Invasive Ductal Carcinoma. We evaluated BCL2, P53 and ki-67 expression by immunochemistry
test, and then we assessed correlations of these biomarkers expression with patient’s clinicopathological characteristics
and survival. Results: Triple negative breast cancer group showed a high frequency among our cohort but we emphasize
an almost equitable distribution among all molecular groups. Contrary to other studies which reported that luminal A
was correlated with better prognosis, our analysis demonstrated that luminal A is correlated with the Scarff, Bloom
and Richardson (SBR) grading 2 or SBR grading 3. To better investigate the prognosis, we analyze three biomarkers
known by their impact on physiopathology behavior on breast cancer BCL2, ki-67and P53. BCL2 is the more relevant
one, it was correlated with molecular subtypes (p=0.0012) and SBR grading (p=0.0016). BCL2 seems to be the good
prognostic biomarker related to survival (p=0.004) with a protective role among patients when endocrine therapy
is not provided and Lymph Node (LN) involvement is positive (p=0.021, p=0.000 respectively). Conclusions: The
classical prognostic parameters based mainly on the molecular classification in breast cancer seem insufficient in the
case of young women. BCL2 protein expression analysis provides a better prognostic value. BCL2 should be clinically
associated in current practice when young women specimens are diagnosticated.
Collapse
Affiliation(s)
- E-Z Ayadi
- Procédés de criblage moléculaire et cellulaire, Centre of Biotechnology of Sfax B.P K.3038 Sfax, Tunisia.,Patholab Private CytoPathology Laboratory R. du Caire, Cité Jardin Sfax,Tunisia.,Patholab Private Cytopathology Laboratory A. Ibn Khaldoun Sfax, Tunisia.
| | | | | | | | | | | | | |
Collapse
|
15
|
García-Aranda M, Pérez-Ruiz E, Redondo M. Bcl-2 Inhibition to Overcome Resistance to Chemo- and Immunotherapy. Int J Mol Sci 2018; 19:E3950. [PMID: 30544835 PMCID: PMC6321604 DOI: 10.3390/ijms19123950] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Abstract: According to the World Health Organization (WHO), cancer is a leading cause of death worldwide. The identification of novel targets for cancer treatment is an area of intense work that has led Bcl-2 over-expression to be proposed as one of the hallmarks of cancer and Bcl-2 inhibition as a promising strategy for cancer treatment. In this review, we describe the different pathways related to programmed cell death, the role of Bcl-2 family members in apoptosis resistance to anti-cancer treatments, and the potential utility of Bcl-2 inhibitors to overcome resistance to chemo- and immunotherapy.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research Unit, REDISSEC, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Málaga, Spain.
| | - Elisabet Pérez-Ruiz
- Oncology Department, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Málaga, Spain.
| | - Maximino Redondo
- Research Unit, REDISSEC, Hospital Costa del Sol, Universidad de Málaga, Autovía A-7 km 187, 29603 Marbella, Málaga, Spain.
| |
Collapse
|
16
|
Pearce MC, Gamble JT, Kopparapu PR, O'Donnell EF, Mueller MJ, Jang HS, Greenwood JA, Satterthwait AC, Tanguay RL, Zhang XK, Kolluri SK. Induction of apoptosis and suppression of tumor growth by Nur77-derived Bcl-2 converting peptide in chemoresistant lung cancer cells. Oncotarget 2018; 9:26072-26085. [PMID: 29899843 PMCID: PMC5995251 DOI: 10.18632/oncotarget.25437] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/24/2018] [Indexed: 01/12/2023] Open
Abstract
Resistance to chemotherapy is a major cause of treatment failure and poor overall survival in patients with lung cancer. Identification of molecular targets present in resistant cancer cells is essential for addressing therapeutic resistance and prolonging lung cancer patient survival. Members of the B-cell lymphoma 2 (Bcl-2) family of proteins are associated with chemotherapeutic resistance. In this study, we found that pro-survival protein Bcl-2 is upregulated in paclitaxel resistant cells, potentially contributing to chemotherapy resistance. To exploit the increase in Bcl-2 expression for targeting therapy resistance, we investigated the effects of a peptide derived from the nuclear receptor Nur77 that converts Bcl-2 from an anti-apoptotic protein to a pro-apoptotic protein. The Nur77 derived peptide preferentially induced apoptosis in paclitaxel-resistant cancer cells with high expression of Bcl-2. This peptide also induced apoptosis of multidrug resistant H69AR lung cancer cells that express Bcl-2 and inhibited their growth in 3D spheroids. The Nur77 peptide strongly suppressed the growth of paclitaxel-resistant lung cancer cells in a zebrafish xenograft tumor model. Taken together, our data supports a new strategy for treating lung cancers that acquire resistance to chemotherapy through overexpression of Bcl-2.
Collapse
Affiliation(s)
- Martin C. Pearce
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
| | - John T. Gamble
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Prasad R. Kopparapu
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Edmond F. O'Donnell
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Monica J. Mueller
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Hyo Sang Jang
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Julie A. Greenwood
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon 97331, USA
| | | | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA
| | - Xiao-Kun Zhang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92031, USA
| | - Siva Kumar Kolluri
- Cancer Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
- Department of Environmental & Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
17
|
Chen Y, Shi XE, Tian JH, Yang XJ, Wang YF, Yang KH. Survival benefit of neoadjuvant chemotherapy for resectable breast cancer: A meta-analysis. Medicine (Baltimore) 2018; 97:e10634. [PMID: 29768327 PMCID: PMC5976345 DOI: 10.1097/md.0000000000010634] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Neoadjuvant chemotherapy (NAC) increases breast conservation rates in patients with resectable breast cancer at the associated cost of higher locoregional recurrence rates; however, the magnitude of the survival benefits of NAC for these patients remains undefined. Therefore, we aimed to clarify the survival benefit of NAC versus postoperative chemotherapy by conducting an updated meta-analysis of randomized clinical trials (RCTs). METHODS The authors searched the Cochrane Library, PubMed, Embase, Web of Science, Chinese biomedical literature database, and Chinese Scientific Journals full-text database from their inception to December 2016. The authors identified relevant RCTs that compared NAC with postoperative chemotherapy in the treatment of operable breast cancer. The main endpoints were overall survival (OS) and recurrence-free survival (RFS). RESULTS A total of 21 citations representing 16 unique studies were eligible. There were 787 deaths among 2794 patients assigned to NAC groups and 816 deaths among 2799 patients assigned to adjuvant chemotherapy groups. A meta-analysis of data indicated that there was no significant benefit in terms of OS ([hazard ratio [HR] = 1.03, 95% confidence interval [CI]: 0.94-1.13, P = .51) and RFS (HR = 1.01, 95% CI: 0.93-1.10, P = .80) between the NAC and postoperative chemotherapy groups. The pooled HR estimate for OS was not influenced by NAC cycles, the total number of chemotherapy cycles, administration of tamoxifen, administration of adjuvant chemotherapy, or type of NAC regimen. Subgroup analysis showed that the pooled HR estimate for RFS was influenced by anthracycline-containing regimens. Patients with a pathological complete response had superior survival outcomes compared with patients who had residual disease. CONCLUSION The survival benefits for patients with operable breast cancer who received either NAC or adjuvant chemotherapy based on anthracycline regimens were comparable.
Collapse
Affiliation(s)
- Yan Chen
- The First Hospital of Lanzhou University
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province
| | - Xiu-E Shi
- Department of Internal Medicine, Gansu Rehabilitation Center Hospital
- Center for Evidence-Based Rehabilitation Medicine, Gansu Province
| | - Jin-Hui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province
| | - Xu-Juan Yang
- School of Basic Medical Sciences, Lanzhou University
| | - Yong-Feng Wang
- School of Basic Medical Sciences, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Ke-Hu Yang
- The First Hospital of Lanzhou University
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University
- Key Laboratory of Evidence-Based Medicine and Knowledge Translation of Gansu Province
| |
Collapse
|
18
|
Ren L, Li Z, Dai C, Zhao D, Wang Y, Ma C, Liu C. Chrysophanol inhibits proliferation and induces apoptosis through NF-κB/cyclin D1 and NF-κB/Bcl-2 signaling cascade in breast cancer cell lines. Mol Med Rep 2018; 17:4376-4382. [PMID: 29344652 PMCID: PMC5802211 DOI: 10.3892/mmr.2018.8443] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022] Open
Abstract
Chrysophanol is an anthraquinone compound, which exhibits anticancer effects on certain types of cancer cells. However, the effects of chrysophanol on human breast cancer remain to be elucidated. The aim of the present study was to clarify the role of chrysophanol on breast cancer cell lines MCF-7 and MDA-MB-231, and to identify the signal transduction pathways regulated by chrysophanol. MTT assay and flow cytometric analysis demonstrated that chrysophanol inhibited cell proliferation, and cell cycle progression in a dose-dependent manner. The expression of cell cycle-associated cyclin D1 and cyclin E were downregulated while p27 expression was upregulated following chrysophanol treatment at the mRNA, and protein levels. The Annexin V/propidium iodide staining assay results revealed that apoptosis levels increased following chrysophanol treatment. Chrysophanol upregulated caspase 3 and poly (ADP-ribose) polymerase cleavage in both cell lines. Furthermore, chrysophanol enhanced the effect of paclitaxel on breast cancer cell apoptosis. In addition, chrysophanol downregulated apoptosis regulator Bcl-2 protein, and transcription factor p65 and IκB phosphorylation. Inhbition of nuclear factor (NF)-κB by ammonium pyrrolidine dithiocarbamate diminished the effect of chrysophanol on apoptosis and associated proteins. In conclusion, the results of the current study demonstrated that chrysophanol effectively suppresses breast cancer cell proliferation and facilitates chemosentivity through modulation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Li Ren
- Department of Biochemistry and Molecular Biology, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Zhouping Li
- Department of Aesthetic and Plastic Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121004, P.R. China
| | - Chunmei Dai
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Danyu Zhao
- Department of Biochemistry and Molecular Biology, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Yanjie Wang
- Department of Biochemistry and Molecular Biology, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Chunyu Ma
- College of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Chun Liu
- Department of Biochemistry and Molecular Biology, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
19
|
Ozretic P, Alvir I, Sarcevic B, Vujaskovic Z, Rendic-Miocevic Z, Roguljic A, Beketic-Oreskovic L. Apoptosis regulator Bcl-2 is an independent prognostic marker for worse overall survival in triple-negative breast cancer patients. Int J Biol Markers 2018; 33:109-115. [PMID: 28777433 DOI: 10.5301/ijbm.5000291] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The objective of this study was to examine the prognostic significance of carbonic anhydrase IX (CAIX), an endogenous marker for tumor hypoxia; the cellular tumor antigen p53; and the apoptosis regulator Bcl-2, in triple-negative breast cancer (TNBC) patients. METHODS Immunohistochemically determined expression of CAIX, p53, Bcl-2 and proliferation factor Ki-67, analyzed in 64 paraffin-embedded TNBC tissue samples, was used to assess their relation to clinicopathological variables and prognostic implications for overall survival (OS). RESULTS Bcl-2 expression was negatively correlated with histological grade of tumor, while expression of p53 was positively correlated with the same clinical variable (p = 0.036 and p = 0.033, respectively). The p53 expression was also positively correlated with tumor size (p = 0.010). Survival analysis showed that patients with high Bcl-2 expression (above cutoff value determined by receiver operator characteristic [ROC] curve analysis) had shorter OS (p = 0.020). The same was observed for patients with tumors larger than 5 cm (p = 0.034) or positive lymph nodes (p = 0.004). Among all 3 examined markers, multivariate analysis showed that only Bcl-2 expression was a strong independent prognostic indicator for decreased OS (hazard ratio [HR] = 15.16, 95% confidence interval [95% CI], 2.881-79.727, p = 0.001). CONCLUSIONS Elevated expression of Bcl-2 was an independent prognostic factor for poorer OS in TNBC and as such a significant marker for tumor aggressiveness.
Collapse
Affiliation(s)
- Petar Ozretic
- 1 Laboratory for Hereditary Cancer, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb - Croatia
| | - Ilija Alvir
- 2 Department of Gynecologic Oncology, University Hospital for Tumors, Sestre Milosrdnice Clinical Hospital Center, Zagreb - Croatia
| | - Bozena Sarcevic
- 3 Department of Pathology, University Hospital for Tumors, Sestre Milosrdnice Clinical Hospital Center, Zagreb - Croatia
| | - Zeljko Vujaskovic
- 4 Division of Translational Radiation Sciences, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland - USA
| | - Zrinka Rendic-Miocevic
- 5 Department of Radiotherapy and Internal Oncology, University Hospital for Tumors, Sestre Milosrdnice Clinical Hospital Center, Zagreb - Croatia
| | - Ana Roguljic
- 5 Department of Radiotherapy and Internal Oncology, University Hospital for Tumors, Sestre Milosrdnice Clinical Hospital Center, Zagreb - Croatia
| | - Lidija Beketic-Oreskovic
- 5 Department of Radiotherapy and Internal Oncology, University Hospital for Tumors, Sestre Milosrdnice Clinical Hospital Center, Zagreb - Croatia
- 6 Department of Clinical Oncology, University of Zagreb School of Medicine, Zagreb - Croatia
| |
Collapse
|
20
|
Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2017; 8:603-19. [PMID: 27019364 PMCID: PMC4925817 DOI: 10.18632/aging.100934] [Citation(s) in RCA: 1053] [Impact Index Per Article: 131.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
Apoptosis is a form of programmed cell death that results in the orderly and efficient removal of damaged cells, such as those resulting from DNA damage or during development. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Deregulation in apoptotic cell death machinery is an hallmark of cancer. Apoptosis alteration is responsible not only for tumor development and progression but also for tumor resistance to therapies. Most anticancer drugs currently used in clinical oncology exploit the intact apoptotic signaling pathways to trigger cancer cell death. Thus, defects in the death pathways may result in drug resistance so limiting the efficacy of therapies. Therefore, a better understanding of the apoptotic cell death signaling pathways may improve the efficacy of cancer therapy and bypass resistance. This review will highlight the role of the fundamental regulators of apoptosis and how their deregulation, including activation of anti-apoptotic factors (i.e., Bcl-2, Bcl-xL, etc) or inactivation of pro-apoptotic factors (i.e., p53 pathway) ends up in cancer cell resistance to therapies. In addition, therapeutic strategies aimed at modulating apoptotic activity are briefly discussed.
Collapse
Affiliation(s)
- Giuseppa Pistritto
- Department of Systems Medicine, University "Tor Vergata", 00133 Rome, Italy
| | - Daniela Trisciuoglio
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00158 Rome, Italy
| | - Claudia Ceci
- Department of Systems Medicine, University "Tor Vergata", 00133 Rome, Italy
| | - Alessia Garufi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00158 Rome, Italy.,Department of Medical Oral and Biotechnological Sciences, Tumor Biology Unit, University "G. d'Annunzio", 66013 Chieti, Italy
| | - Gabriella D'Orazi
- Department of Research, Advanced Diagnostics, and Technological Innovation, Regina Elena National Cancer Institute, 00158 Rome, Italy.,Department of Medical Oral and Biotechnological Sciences, Tumor Biology Unit, University "G. d'Annunzio", 66013 Chieti, Italy
| |
Collapse
|
21
|
Song S, Wang B, Gu S, Li X, Sun S. Expression of Beclin 1 and Bcl-2 in pancreatic neoplasms and its effect on pancreatic ductal adenocarcinoma prognosis. Oncol Lett 2017; 14:7849-7861. [PMID: 29344231 PMCID: PMC5755265 DOI: 10.3892/ol.2017.7218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/13/2017] [Indexed: 02/06/2023] Open
Abstract
Aberrant expression of Beclin 1 and B-cell lymphoma-2 (Bcl-2) has been identified in a variety of human tumors; however, little information is available for pancreatic neoplasms. The present study analyzed the expression of Beclin 1 and Bcl-2 in pancreatic ductal adenocarcinoma (PDAC) and solid pseudopapillary neoplasm (SPN) of the pancreas, and evaluated their prognostic significance for PDAC. The present study included 117 PDAC, 43 SPN and 32 chronic pancreatitis (CP) cases. Levels of Beclin 1 and Bcl-2 expression were evaluated semiquantitatively by immunohistochemistry, and their correlation with the survival of patients with PDAC was determined. Beclin 1 was upregulated in 74 (63.2%) PDAC, 26 (60.5%) SPN, and 14 (43.8%) CP cases. Bcl-2 was upregulated in 38 (32.5%) PDAC, 11 (25.6%) SPN and 24 (75.0%) CP cases. High Beclin 1 and low Bcl-2 expression was significantly correlated with poor differentiation and distant metastasis in PDAC, and associated with the presence of nuclear pleomorphism in SPN and with advanced Tumor-Node-Metastasis stage in PDAC. Beclin 1 and Bcl-2 levels were inversely correlated in PDAC, whereas they were positively correlated in SPN. Low Beclin 1 and high Bcl-2 expression was associated with improved disease-free survival and overall survival (OS). However, the association of Beclin 1 with survival was not significant in the Cox analysis, whereas Bcl-2 expression was significantly correlated with OS in the multivariate analysis. In conclusion, Beclin 1 upregulation exacerbated the progression and aggressiveness of pancreatic neoplasms, and Bcl-2 downregulated expression was an independently poor prognostic factor for PDAC.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Pancreas and Endocrine Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Baosheng Wang
- Department of Pancreas and Endocrine Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuailin Gu
- Department of Pancreas and Endocrine Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xiaocheng Li
- Department of Pancreas and Endocrine Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shaolong Sun
- Department of Pancreas and Endocrine Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
22
|
Zhu T, Xu F, Zhang L, Zhang Y, Yang C, Cheng M, Chen F, Wang K. Measurement of molecular biomarkers that predict the tumor response in estrogen receptor-positive breast cancers after dose-dense (biweekly) paclitaxel/carboplatin neoadjuvant chemotherapy. Oncotarget 2017; 8:101087-101094. [PMID: 29254147 PMCID: PMC5731857 DOI: 10.18632/oncotarget.19686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to determine the predictive value of the clinical and histopathological characteristics of estrogen receptor (ER)-positive patients treated with dose-dense paclitaxel/carboplatin neoadjuvant chemotherapy (NCT). Pathological complete response (pCR) and the change in tumor size between pre- and post-NCT were used to evaluate the tumor response.85 ER-positive breast cancer patients who were treated with dose-dense (biweekly) paclitaxel/carboplatin NCT were analyzed with respect to the expression of progesterone receptor (PgR), Tau, Ki67, human epidermal growth factor receptor 2 (HER2), and Bcl-2 by immunohistochemistry (IHC). These data were used to determine whether these biomarkers could predict the tumor response. A univariate analysis showed that the patients who tested positive for HER2 expression (56.00% vs 11.67%, p<0.01), negative for Tau expression (41.94% vs 14.81%, p=0.005), negative for Bcl-2 expression (46.43% vs 14.04%, p<0.01) and had smaller (≤2 cm) tumors (45.00% vs 18.46%, p=0.02) were associated with higher pCR rates. A multivariate analysis showed that a HER2-positive status (OR: 6.244; 95%CI: 1.734-22.487; p=0.005), Bcl-2-negative status (OR: 0.236; 95%CI: 0.064-0.869; p=0.030) and smaller (≤2 cm) tumor sizes (OR: 0.188; 95%CI: 0.046-0.767; p=0.020) are independent predictors of pCRs. The tumor sizes were significantly reduced in patients with HER2-positive, Tau-negative, Bcl-2-negative and high Ki67 index breast cancer. In conclusion, Bcl-2 negative, HER2-positive and smaller (≤2 cm) tumor sizes are independent predictors of pCR in ER-positive patients treated with dose-dense (biweekly) paclitaxel/carboplatin NCT. This study is registered with ClinicalTrials.gov (NCT0205986).
Collapse
Affiliation(s)
- Teng Zhu
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Fangping Xu
- Department of Pathology, Cancer Center, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Liulu Zhang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yifang Zhang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Ciqiu Yang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Minyi Cheng
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Fulong Chen
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kun Wang
- Department of Breast Cancer, Cancer Center, Guangdong General Hospital & Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
23
|
Ding JH, Yuan LY, Chen GA. Aspirin enhances the cytotoxic activity of bortezomib against myeloma cells via suppression of Bcl-2, survivin and phosphorylation of AKT. Oncol Lett 2017; 13:647-654. [PMID: 28356941 PMCID: PMC5351279 DOI: 10.3892/ol.2016.5472] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
In our previous study, it was found that aspirin (ASA) exerted antimyeloma actions in vivo and in vitro. The resistance to bortezomib (BTZ) in multiple myeloma (MM) is partly due to AKT activation and the upregulation of survivin induced by BTZ, which are the targets of ASA in gastric and ovarian cancer, respectively. Thus, the present study investigated the interaction between ASA and BTZ in MM and further clarified the underlying mechanisms. MM1.S and RPMI-8226 cell lines harboring the N- and K-Ras mutations, respectively, were treated with 2.5 mM ASA, 10 nM BTZ and ASA+BTZ for different durations. The proliferation and apoptosis of the cells were determined, and the underlying mechanisms governing the interaction of ASA and BTZ were examined in the MM cells. Treatment with ASA+BTZ caused higher rates of proliferative inhibition and apoptosis in the MM1.S and RPMI-8226 cells in time-dependent manner, compared with either agent alone. A drug interaction assay revealed the additive effect of ASA and BTZ on the myeloma cells. ASA alone inhibited the levels of phosphorylated AKT (p-AKT) and survivin, whereas BTZ alone augmented the levels of p-AKT and survivin. Of note, ASA markedly decreased the upregulation of p-AKT and survivin induced by BTZ. Treatment with ASA+BTZ significantly suppressed the level of Bcl-2, compared with either agent alone. ASA may potentiate the antimyeloma activity of BTZ against myeloma cells via suppression of AKT phosphorylation, survivin and Bcl-2, indicating the potential of ASA+BTZ in treating MM, particularly for cases of BTZ-refractory/relapsed MM.
Collapse
Affiliation(s)
- Jiang-Hua Ding
- Hematology and Oncology Department, The No. 171st Hospital of PLA, Jiujiang, Jiangxi 332000, P.R. China
| | - Li-Ya Yuan
- Hematology Department, Jiangxi Academy of Medical Science, Nanchang, Jiangxi 330006, P.R. China
| | - Guo-An Chen
- Hematology Department, The 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
24
|
|
25
|
Over-expression of NOTCH1 as a biomarker for invasive breast ductal carcinoma. 3 Biotech 2016; 6:58. [PMID: 28330128 PMCID: PMC4752955 DOI: 10.1007/s13205-016-0373-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/10/2015] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is the leading cause of cancer-related death in women worldwide. Invasive ductal carcinoma (IDC) is the most frequent invasive form of breast cancer followed by metastasis. There is no accepted marker for distinguishing this form from other less aggressive forms of breast cancer. Therefore, finding new markers especially molecularly detectable ones are noteworthy. It has been shown that NOTCH1 has been overexpressed in the patients with breast cancer, but no study has investigated the expression of NOTCH1 and its correlation with other molecular and hormonal markers of breast cancer so far. In the current study, 20 breast cancer tissues and 20 matched adjacent normal breast tissue from breast cancer patients were obtained and categorized in two groups: patients with IDC and patient with other types of breast cancer. Gene expression analysis using real-time PCR showed that the NOTCH1 gene was significantly overexpressed in patients with IDC. We also found a slight correlation between NOTCH1 overexpression and p53 accumulation in the cancerous cells confirmed by Immunohistochemistry (IHC). This results showed that it is possible to introduce NOTCH1 expression as a novel biomarker of IDC, alone or preferably accompanied by IHC of p53. We also can design new therapeutic agents targeting NOTCH1 expression for inhibition of metastasis in ductal breast carcinoma.
Collapse
|
26
|
Micheli E, Altieri A, Cianni L, Cingolani C, Iachettini S, Bianco A, Leonetti C, Cacchione S, Biroccio A, Franceschin M, Rizzo A. Perylene and coronene derivatives binding to G-rich promoter oncogene sequences efficiently reduce their expression in cancer cells. Biochimie 2016; 125:223-31. [DOI: 10.1016/j.biochi.2016.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/08/2016] [Indexed: 11/28/2022]
|
27
|
Honma N, Horii R, Ito Y, Saji S, Younes M, Iwase T, Akiyama F. Differences in clinical importance of Bcl-2 in breast cancer according to hormone receptors status or adjuvant endocrine therapy. BMC Cancer 2015; 15:698. [PMID: 26472348 PMCID: PMC4607008 DOI: 10.1186/s12885-015-1686-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 10/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bcl-2 plays an anti-apoptotic role, resulting in poor clinical outcome or resistance to therapy in most tumor types expressing Bcl-2. In breast cancer, however, Bcl-2 expression has been reported to be a favorable prognostic factor. The positive correlation of Bcl-2 with estrogen receptor (ER)/progesterone receptor (PR) status, and endocrine therapy frequently given for hormone receptor-positive tumors, may obscure the independent pathobiological role of Bcl-2. We constructed a large systematic study to determine whether Bcl-2 has an independent role in breast cancer. METHODS Bcl-2 expression was immunohistochemically evaluated and compared with other clinicopathological factors, including clinical outcome, in 1081 breast cancer cases with long follow-up, separately analyzing 634 cases without any adjuvant therapy and 447 cases with tamoxifen monotherapy. The χ (2)-test for independence using a contingency table, the Kaplan-Meier method with the log-rank test, and a Cox proportional hazards model were used for the comparison of clinicopathological factors, assessment of clinical outcome, and multivariate analyses, respectively. RESULTS In both patient groups, Bcl-2 expression strongly correlated with positive ER/PR status, low grade, negative human epidermal growth factor receptor 2 (HER2) status, and small tumor size, as previously reported. Bcl-2 expression did not independently predict clinical outcome in patients with ER-positive and/or PR-positive tumors or in those who received tamoxifen treatment; however, it was an independent unfavorable prognostic factor in patients with ER-negative/PR-negative or triple-negative (ER-negative/PR-negative/HER2-negative) tumors who received no adjuvant therapy. The latter was even more evident in postmenopausal women: those with hormone receptor-negative or triple-negative tumors lacking Bcl-2 expression showed a favorable outcome. CONCLUSION Bcl-2 expression is an independent poor prognostic factor in patients with hormone receptor-negative or triple-negative breast cancers, especially in the absence of adjuvant therapy, suggesting that the anti-apoptotic effect of Bcl-2 is clearly exhibited under such conditions. The prognostic value of Bcl-2 was more evident in postmenopausal women. The present findings also highlight Bcl-2 as a potential therapeutic target in breast cancers lacking conventional therapeutic targets such as triple-negative tumors. The favorable prognosis previously associated with Bcl-2-positive breast cancer probably reflects the indirect effect of frequently coexpressed hormone receptors and adjuvant endocrine therapy.
Collapse
Affiliation(s)
- Naoko Honma
- Department of Pathology, School of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo, 143-8540, Japan. .,Department of Pathology, Cancer Institute, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Rie Horii
- Department of Pathology, Cancer Institute, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Yoshinori Ito
- Breast Medical Oncology, Breast Oncology Center, Cancer Institute Hospital, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Shigehira Saji
- Department of Medical Oncology, Fukushima Medical University, School of Medicine, 1 Hikarigaoka, Fukushima City, Fukushima, 960-1295, Japan.
| | - Mamoun Younes
- Department of Pathology and Laboratory Medicine, University of Texas Medical School, 6431 Fannin, MSB 2.270, Houston, TX, 77030, USA.
| | - Takuji Iwase
- Breast Oncology Center, Cancer Institute Hospital, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| | - Futoshi Akiyama
- Department of Pathology, Cancer Institute, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
| |
Collapse
|
28
|
Kim MS, Lee HW, Jun SY, Lee EH. Expression of alpha B crystallin and BCL2 in patients with infiltrating ductal carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8842-8856. [PMID: 26464626 PMCID: PMC4583858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/21/2015] [Indexed: 06/05/2023]
Abstract
Alpha B crystallin was characterized as a negative prognostic factor in breast cancer. BCL2 has an antiapoptotic role and sustains cell survival in vitro, ironically BCL2 expression has been associated with a good prognosis of breast cancer patients. To investigate the significance of alpha B crystallin and BCL2 expression in breast cancer and the relationship between these proteins, we performed immunohistochemical staining for both proteins in human breast cancer tissues. In the present study, overexpression of alpha B crystallin was observed more frequently in triple negative cancer (9/20, 45%) than in luminal type cancer (8/53, 15.1%, P=0.02161). BCL2 tended to be more highly expressed in luminal type cancer than in HER2 and triple negative cancer types (luminal: 36/53, 68%, HER2: 2/9, 22%, triple negative: 7/20 35%, P=0.008652). In multivariate analysis using ANCOVA, alpha B crystallin was related to short overall survival (P=0.017173). These findings suggest that alpha B crystallin is an independent prognostic factor of infiltrating ductal carcinoma. BCL2 was not associated with survival in multivariate analysis using ANCOVA. Thus, in our study BCL2 was not an independent prognostic indicator.
Collapse
Affiliation(s)
- Mee-Seon Kim
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of MedicineChangwon, South Korea
| | - Hyoun Wook Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of MedicineChangwon, South Korea
| | - Si-Youl Jun
- Department of Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of MedicineChangwon, South Korea
| | - Eun Hee Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of MedicineChangwon, South Korea
| |
Collapse
|
29
|
Jia J, Dai S, Sun X, Sang Y, Xu Z, Zhang J, Cui X, Song J, Guo X. A preliminary study of the effect of ECRG4 overexpression on the proliferation and apoptosis of human laryngeal cancer cells and the underlying mechanisms. Mol Med Rep 2015; 12:5058-64. [PMID: 26165988 PMCID: PMC4581775 DOI: 10.3892/mmr.2015.4059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 06/03/2015] [Indexed: 12/18/2022] Open
Abstract
Human esophageal cancer-related gene 4 (ECRG4) is a potential tumor suppressor gene isolated from human esophageal epithelial cells. Studies have shown that ECRG4 effectively inhibits the proliferation of tumor cells and induces apoptosis. However, the role of ECRG4 in laryngeal cancer has not yet been clearly defined. In this study, a human laryngeal cancer cell line stably overexpressing ECRG4 was established. The effect of ECRG4 on the proliferation and apoptosis of laryngeal cancer cells and the associated mechanisms were investigated. The Hep-2 human laryngeal carcinoma cell line exhibited a low basal level of ECRG4 expression and was selected for the present study. The eukaryotic expression plasmid pcDNA3.1-ECRG4 was constructed and introduced into Hep-2 cells by transfection reagents. Western blot analysis, reverse transcription-quantitative polymerase chain reaction and immunofluorescence staining confirmed high-level expression of ECRG4. The 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and colony formation assay showed that ECRG4 over-expression suppressed the proliferative capacity of laryngeal cancer cells in vitro. Cell cycle analysis showed that ECRG4 induced cell cycle arrest at the G0/G1 phase. Flow cytometric analysis and Hoechst staining demonstrated that overexpres-sion of ECRG4 significantly induced apoptosis. Western blot analysis confirmed that Bcl-2-associated X protein, cleaved-caspase-3 and cleaved-poly (ADP-ribose) polymerase were upregulated in the apoptotic process, whereas B-cell lymphoma 2 was downregulated. In conclusion, overexpression of ECRG4 inhibited laryngeal cancer cell proliferation and induced cancer cell apoptosis. Therefore, ECRG4 exhibits potential as an effective target in gene therapy for laryngeal cancer.
Collapse
Affiliation(s)
- Jianping Jia
- Department of Otolaryngology‑Head and Neck Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Song Dai
- Department of Otolaryngology, The 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Xinghe Sun
- Department of Otolaryngology, The 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Yuehong Sang
- Department of Otolaryngology, The 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Zhenming Xu
- Department of Otolaryngology, The 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Jie Zhang
- Department of Otolaryngology, The 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Xiaofeng Cui
- Department of Otolaryngology, The 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Jinhui Song
- Department of Otolaryngology, The 463 Hospital of Chinese PLA, Shenyang, Liaoning 110042, P.R. China
| | - Xing Guo
- Department of Otolaryngology‑Head and Neck Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
30
|
de Leeuw R, Berman-Booty LD, Schiewer MJ, Ciment SJ, Den RB, Dicker AP, Kelly WK, Trabulsi EJ, Lallas CD, Gomella LG, Knudsen KE. Novel actions of next-generation taxanes benefit advanced stages of prostate cancer. Clin Cancer Res 2015; 21:795-807. [PMID: 25691773 PMCID: PMC4333741 DOI: 10.1158/1078-0432.ccr-14-1358] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE To improve the outcomes of patients with castration-resistant prostate cancer (CRPC), there is an urgent need for more effective therapies and approaches that individualize specific treatments for patients with CRPC. These studies compared the novel taxane cabazitaxel with the previous generation docetaxel, and aimed to determine which tumors are most likely to respond. EXPERIMENTAL DESIGN Cabazitaxel and docetaxel were compared via in vitro modeling to determine the molecular mechanism, biochemical and cell biologic impact, and cell proliferation, which was further assessed ex vivo in human tumor explants. Isogenic pairs of RB knockdown and control cells were interrogated in vitro and in xenograft tumors for cabazitaxel response. RESULTS The data herein show that (i) cabazitaxel exerts stronger cytostatic and cytotoxic response compared with docetaxel, especially in CRPC; (ii) cabazitaxel induces aberrant mitosis, leading to pyknotic and multinucleated cells; (iii) taxanes do not act through the androgen receptor (AR); (iv) gene-expression profiling reveals distinct molecular actions for cabazitaxel; and (v) tumors that have progressed to castration resistance via loss of RB show enhanced sensitivity to cabazitaxel. CONCLUSIONS Cabazitaxel not only induces improved cytostatic and cytotoxic effects, but also affects distinct molecular pathways, compared with docetaxel, which could underlie its efficacy after docetaxel treatment has failed in patients with CRPC. Finally, RB is identified as the first potential biomarker that could define the therapeutic response to taxanes in metastatic CRPC. This would suggest that loss of RB function induces sensitization to taxanes, which could benefit up to 50% of CRPC cases.
Collapse
Affiliation(s)
- Renée de Leeuw
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Lisa D Berman-Booty
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew J Schiewer
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stephen J Ciment
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania. Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam P Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania. Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - William K Kelly
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Edouard J Trabulsi
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Costas D Lallas
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Leonard G Gomella
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania. Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
31
|
Gao J, Yan Q, Liu S, Yang X. Knockdown of EpCAM enhances the chemosensitivity of breast cancer cells to 5-fluorouracil by downregulating the antiapoptotic factor Bcl-2. PLoS One 2014; 9:e102590. [PMID: 25019346 PMCID: PMC4097402 DOI: 10.1371/journal.pone.0102590] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/19/2014] [Indexed: 12/19/2022] Open
Abstract
Resistance to fluoropyrimidine-based chemotherapy is the main reason for the failure of cancer treatment, and drug resistance is associated with an inability of tumor cells to undergo apoptosis in response to treatment. Alterations in the expression of epithelial cell adhesion molecule (EpCAM) affect the sensitivity or resistance of tumor cells to anticancer treatment and the activity of intracellular signaling pathways. However, the role of EpCAM in the induction of apoptosis in breast cancer cells remains unclear. Here, we investigated the effect of EpCAM gene knockdown on chemosensitivity to 5-fluorouracil (5-FU) in MCF-7 cells and explored the underlying mechanisms. Our results showed that knockdown of EpCAM promoted apoptosis, inhibited cell proliferation and caused cell-cycle arrest. EpCAM knockdown enhanced the cytotoxic effect of 5-FU, promoting apoptosis by downregulating the expression of the anti-apoptotic protein Bcl-2 and upregulating the expression of the pro-apoptotic proteins Bax, and caspase3 via the ERK1/2 and JNK MAPK signaling pathways in MCF-7 cells. These results indicate that knockdown of EpCAM may have a tumor suppressor effect and suggest EpCAM as a potential target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jiujiao Gao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People’s Republic of China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People’s Republic of China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People’s Republic of China
| | - Xuesong Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian, People’s Republic of China
- * E-mail:
| |
Collapse
|
32
|
BCL-2, topoisomerase IIα, microvessel density and prognosis of early advanced breast cancer patients after adjuvant anthracycline-based chemotherapy. J Cancer Res Clin Oncol 2014; 140:2009-19. [PMID: 25005788 PMCID: PMC4228164 DOI: 10.1007/s00432-014-1770-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/29/2014] [Indexed: 12/19/2022]
Abstract
Purpose
The aim of this retrospective study was to investigate the effect of B cell lymphoma 2 (BCL-2) expression on disease-free survival (DFS) in 172 early breast cancer (BC) patients treated with anthracycline-based adjuvant chemotherapy. We have reanalysed follow-up data in these patient groups, and therefore, the relation between DFS and other tumour biological features [expression of oestrogen (ER) and progesterone (PgR) receptors, cytokeratin 5/6 (CK5/6), HER2, topoisomerase IIα (TOPOIIα), Ki-67, P53 and microvessel density (MVD)] studied previously (Biesaga et al. in Breast 20(4):338–350, 2011, doi:10.1016/j.breast.2011.03.002, Pathol Oncol Res 18(4): 949–960, 2012, doi:10.1007/s12253-012-9525-9) was also investigated. Method Tumour biological features were assessed immunohistochemically on paraffin-embedded sections obtained before treatment from 172 women with BC in stage T1–T2, N1–N2, M0. Results In univariate analysis, longer DFS was found for patients having tumours with BCL-2 positivity (P = 0.005), low grade (P = 0.001), ER (P = 0.017) and PgR (P = 0.045) positivity, CK5/6 negativity (P = 0.021), low TOPOIIα expression (P = 0.003) and high MVD (P = 0.000). In multivariate analysis, BCL-2, TOPOIIα and MVD were independent parameters indicating patient prognosis. All patients (n = 18) characterized by tumour BCL-2 positivity, low TOPOIIα expression and high MVD survived 80 months without any evidence of cancer disease, whereas DFS for all other patients was significantly (P = 0.022) lower (76.5 %). Conclusion Combination of three parameters: BCL-2 positivity, low topoisomerase IIα expression and high MVD, allows to identify subgroup of BC patients with very good prognosis after adjuvant anthracycline-based chemotherapy.
Collapse
|