1
|
Jain S, Annett SL, Morgan MP, Robson T. The Cancer Stem Cell Niche in Ovarian Cancer and Its Impact on Immune Surveillance. Int J Mol Sci 2021; 22:4091. [PMID: 33920983 PMCID: PMC8071330 DOI: 10.3390/ijms22084091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is an aggressive gynaecological cancer with extremely poor prognosis, due to late diagnosis as well as the development of chemoresistance after first-line therapy. Research advances have found stem-like cells present in ovarian tumours, which exist in a dynamic niche and persist through therapy. The stem cell niche interacts extensively with the immune and non-immune components of the tumour microenvironment. Significant pathways associated with the cancer stem cell niche have been identified which interfere with the immune component of the tumour microenvironment, leading to immune surveillance evasion, dysfunction and suppression. This review aims to summarise current evidence-based knowledge on the cancer stem cell niche within the ovarian cancer tumour microenvironment and its effect on immune surveillance. Furthermore, the review seeks to understand the clinical consequences of this dynamic interaction by highlighting current therapies which target these processes.
Collapse
Affiliation(s)
| | | | | | - Tracy Robson
- School of Pharmacy and Biomolecular Science, RCSI University of Medicine and Health Sciences, 123 St Stephen’s Green, D02 YN77 Dublin, Ireland; (S.J.); (S.L.A.); (M.P.M.)
| |
Collapse
|
2
|
Akhtar S, Hourani S, Therachiyil L, Al-Dhfyan A, Agouni A, Zeidan A, Uddin S, Korashy HM. Epigenetic Regulation of Cancer Stem Cells by the Aryl Hydrocarbon Receptor Pathway. Semin Cancer Biol 2020; 83:177-196. [PMID: 32877761 DOI: 10.1016/j.semcancer.2020.08.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022]
Abstract
Compelling evidence has demonstrated that tumor bulk comprises distinctive subset of cells generally referred as cancer stem cells (CSCs) that have been proposed as a strong sustainer and promoter of tumorigenesis and therapeutic resistance. These distinguished properties of CSCs have raised interest in understanding the molecular mechanisms that govern the maintenance of these cells. Numerous experimental and epidemiological studies have demonstrated that exposure to environmental toxins such as the polycyclic aromatic hydrocarbons (PAHs) is strongly involved in cancer initiation and progression. The PAH-induced carcinogenesis is shown to be mediated through the activation of a cytosolic receptor, aryl hydrocarbon receptor (AhR)/Cytochrome P4501A pathway, suggesting a possible direct link between AhR and CSCs. Several recent studies have investigated the role of AhR in CSCs self-renewal and maintenance, however the molecular mechanisms and particularly the epigenetic regulations of CSCs by the AhR/CYP1A pathway have not been reviewed before. In this review, we first summarize the crosstalk between AhR and cancer genetics, with a particular emphasis on the mechanisms relevant to CSCs such as Wnt/β-catenin, Notch, NF-κB, and PTEN-PI3K/Akt signaling pathways. The second part of this review discusses the recent advances and studies highlighting the epigenetic mechanisms mediated by the AhR/CYP1A pathway that control CSC gene expression, self-renewal, and chemoresistance in various human cancers. Furthermore, the review also sheds light on the importance of targeting the epigenetic pathways as a novel therapeutic approach against CSCs.
Collapse
Affiliation(s)
- Sabah Akhtar
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Shireen Hourani
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdullah Al-Dhfyan
- Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Centre, Riyadh, 11211, Saudi Arabia
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Asad Zeidan
- Department of Biomedical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Zhang PY, Fan Y, Tan T, Yu Y. Generation of Artificial Gamete and Embryo From Stem Cells in Reproductive Medicine. Front Bioeng Biotechnol 2020; 8:781. [PMID: 32793569 PMCID: PMC7387433 DOI: 10.3389/fbioe.2020.00781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
In addition to the great growing need for assisted reproduction technologies (ART), additional solutions for patients without functional gametes are strongly needed. Due to ethical restrictions, limited studies can be performed on human gametes and embryos; however, artificial gametes and embryos represent a new hope for clinical application and basic research in the field of reproductive medicine. Here, we provide a review of the research progress and possible application of artificial gametes and embryos from different species, including mice, monkeys and humans. Gametes specification from adult stem cells and embryonic stem cells (ESCs) as well as propagation of stem cells from the reproductive system and from organized embryos, which are similar to blastocysts, have been realized in some nonhuman mammals, but not all achievements can be replicated in humans. This area of research remains noteworthy and requires further study and effort to achieve the reconstitution of the entire cycle of gametogenesis and embryo development in vitro.
Collapse
Affiliation(s)
- Pu-Yao Zhang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Tan
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China.,Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yang Yu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
4
|
Sabini C, Sorbi F, Cunnea P, Fotopoulou C. Ovarian cancer stem cells: ready for prime time? Arch Gynecol Obstet 2020; 301:895-899. [PMID: 32200419 DOI: 10.1007/s00404-020-05510-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/12/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The role of cancer stem cells (CSC) remains controversial and increasingly subject of investigation as a potential oncogenetic platform with promising therapeutic implications. Understanding the role of CSCs in a highly heterogeneous disease like epithelial ovarian cancer (EOC) may potentially lead to the better understanding of the oncogenetic and metastatic pathways of the disease, but also to develop novel strategies against its progression and platinum resistance. METHODS We have performed a review of all relevant literature that addresses the oncogenetic potential of stem cells in EOC, their mechanisms, and the associated therapeutic targets. RESULTS Cancer stem cells (CSCs) have been reported to be implicated not only in the development and pathways of intratumoral heterogeneity (ITH), but also potentially modulating the tumor microenvironment, leading to the selection of sub-clones resistant to chemotherapy. Furthermore, it appears that the enhanced DNA repair abilities of CSCs are connected with their endurance and resistance maintaining their genomic integrity during novel targeted treatments such as PARP inhibitors, allowing them to survive and causing disease relapse functioning as a tumor seeds. CONCLUSIONS It appears that CSCs play a major role in the underlying mechanisms of oncogenesis and development of relapse in EOC. Part of promising future plans would be to not only use them as therapeutic targets, but also extent their value on a preventative level through engineering mechanisms and prevention of EOC in its origin.
Collapse
Affiliation(s)
- Carlotta Sabini
- Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and Gynecology, University of Florence, 50134, Florence, Italy
| | - Flavia Sorbi
- Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and Gynecology, University of Florence, 50134, Florence, Italy
| | - Paula Cunnea
- West London Gynecological Cancer Centre, Imperial College NHS Trust, London, W12 OHS, UK.,Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0HS, UK
| | - Christina Fotopoulou
- West London Gynecological Cancer Centre, Imperial College NHS Trust, London, W12 OHS, UK. .,Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0HS, UK.
| |
Collapse
|
5
|
Silvestris E, D’Oronzo S, Cafforio P, Kardhashi A, Dellino M, Cormio G. In Vitro Generation of Oocytes from Ovarian Stem Cells (OSCs): In Search of Major Evidence. Int J Mol Sci 2019; 20:ijms20246225. [PMID: 31835581 PMCID: PMC6940822 DOI: 10.3390/ijms20246225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 02/07/2023] Open
Abstract
The existence of ovarian stem cells (OSCs) in women as well as their physiological role in post-menopausal age are disputed. However, accumulating evidence demonstrated that, besides the animal models including primarily mice, even in adult women putative OSCs obtained from ovarian cortex are capable to differentiate in vitro into oocyte-like cells (OLCs) expressing molecular markers typical of terminal stage of oogonial cell lineage. Recent studies describe that, similarly to mature oocytes, the OSC-derived OLCs also contain haploid karyotype. As proof of concept of their stem commitment, OSCs from mice differentiated to oocytes in vitro are suitable to be fertilized and implanted in sterilized animals resulting in embryo development. Despite enthusiasm for these data, which definitely require extended confirmation before considering potential application in humans for treatment of ovarian insufficiency, OSCs appear suitable for other clinical uses, restoring the endocrine derangements in premature ovarian failure or for fertility preservation in oncologic patients after anti-cancer treatments. In this context, the selection of viable oocytes generated from OSCs before chemotherapy protocols would overcome the potential adjunct oncogenic risk in women bearing hormone-dependent tumors who are repeatedly stimulated with high dose estrogens to induce oocyte maturation for their egg recruitment and cryopreservation.
Collapse
Affiliation(s)
- Erica Silvestris
- Gynecologic Oncology Unit, National Cancer Center, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (A.K.); (M.D.); (G.C.)
- Correspondence:
| | - Stella D’Oronzo
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; (S.D.); (P.C.)
- National Cancer Center, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
| | - Paola Cafforio
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, 70124 Bari, Italy; (S.D.); (P.C.)
| | - Anila Kardhashi
- Gynecologic Oncology Unit, National Cancer Center, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (A.K.); (M.D.); (G.C.)
| | - Miriam Dellino
- Gynecologic Oncology Unit, National Cancer Center, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (A.K.); (M.D.); (G.C.)
| | - Gennaro Cormio
- Gynecologic Oncology Unit, National Cancer Center, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy; (A.K.); (M.D.); (G.C.)
- Department of Biomedical Sciences and Human Oncology, Unit of Obstetrics and Gynecology, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
6
|
Kenda Suster N, Virant-Klun I. Presence and role of stem cells in ovarian cancer. World J Stem Cells 2019; 11:383-397. [PMID: 31396367 PMCID: PMC6682502 DOI: 10.4252/wjsc.v11.i7.383] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the deadliest gynecological malignancy. It is typically diagnosed at advanced stages of the disease, with metastatic sites disseminated widely within the abdominal cavity. Ovarian cancer treatment is challenging due to high disease recurrence and further complicated pursuant to acquired chemoresistance. Cancer stem cell (CSC) theory proposes that both tumor development and progression are driven by undifferentiated stem cells capable of self-renewal and tumor-initiation. The most recent evidence revealed that CSCs in terms of ovarian cancer are not only responsible for primary tumor growth, metastasis and relapse of disease, but also for the development of chemoresistance. As the elimination of this cell population is critical for increasing treatment success, a deeper understanding of ovarian CSCs pathobiology, including epithelial-mesenchymal transition, signaling pathways and tumor microenvironment, is needed. Finally, before introducing new therapeutic agents for ovarian cancer, targeting CSCs, accurate identification of different ovarian stem cell subpopulations, including the very small embryonic-like stem cells suggested as progenitors, is necessary. To these ends, reliable markers of ovarian CSCs should be identified. In this review, we present the current knowledge and a critical discussion concerning ovarian CSCs and their clinical role.
Collapse
Affiliation(s)
- Natasa Kenda Suster
- Department of Gynecology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Irma Virant-Klun
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
7
|
Bhartiya D. Stem cells survive oncotherapy & can regenerate non-functional gonads: A paradigm shift for oncofertility. Indian J Med Res 2019; 148:S38-S49. [PMID: 30964080 PMCID: PMC6469380 DOI: 10.4103/ijmr.ijmr_2065_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A large proportion of patients who survive cancer are rendered infertile as an unwanted side effect of oncotherapy. Currently accepted approaches for fertility preservation involve banking eggs/sperm/embryos or ovarian/testicular tissue before oncotherapy for future use. Such approaches are invasive, expensive, technically challenging and depend on assisted reproductive technologies (ART). Establishing a gonadal tissue bank (for cancer patients) is also fraught with ethical, legal and safety issues. Most importantly, patients who find it difficult to meet expenses towards cancer treatment will find it difficult to meet expenses towards gonadal tissue banking and ART to achieve parenthood later on. In this review an alternative strategy to regenerate non-functional gonads in cancer survivors by targeting endogenous stem cells that survive oncotherapy is discussed. A novel population of pluripotent stem cells termed very small embryonic-like stem cells (VSELs), developmentally equivalent to late migratory primordial germ cells, exists in adult gonads and survives oncotherapy due to their quiescent nature. However, the stem-cell niche gets compromised by oncotherapy. Transplanting niche cells (Sertoli or mesenchymal cells) can regenerate the non-functional gonads. This approach is safe, has resulted in the birth of fertile offspring in mice and could restore gonadal function early in life to support proper growth and later serve as a source of gametes. This newly emerging understanding on stem cells biology can obviate the need to bank gonadal tissue and fertility may also be restored in existing cancer survivors who were earlier deprived of gonadal tissue banking before oncotherapy.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
8
|
Virant-Klun I. Functional Testing of Primitive Oocyte-like Cells Developed in Ovarian Surface Epithelium Cell Culture from Small VSEL-like Stem Cells: Can They Be Fertilized One Day? Stem Cell Rev Rep 2019; 14:715-721. [PMID: 29876729 DOI: 10.1007/s12015-018-9832-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Data from the literature show that there are different populations of stem cells present in human adult ovaries, including small stem cells resembling very small embryonic-like stem cells (VSELs). These small ovarian stem cells with diameters of up to 5 μm are present in the ovarian surface epithelium and can grow into bigger, primitive oocyte-like cells that express several markers of a germinal lineage and exhibit pluripotency but not the zona pellucida structure when cultured in vitro. In this report, we present the results of the functional testing of such primitive oocyte-like cells from one patient with premature ovarian failure after insemination with her partners' sperm. Knowing that even immature oocytes collected in an in vitro fertilization program cannot be fertilized naturally, we were only interested in determining whether and how these cells react to added sperm and whether spermatozoa somehow "recognize" them. Interestingly, the primitive oocyte-like cells quickly released a zona pellucida-like structure in the presence of sperm. Two different populations of cells were distinguished, those with a thick and those with a thin zona pellucida-like structure. The primitive oocyte-like cells with a released zona pellucida-like structure expressed the pluripotency-related gene OCT4A (POU5F1) and zona pellucida-related gene ZP3, similar to oocytes obtained from in vitro fertilization but not somatic chondrocytes. In a small proportion of these cells, a single-spermatozoon was observed inside the cytoplasm, but no signs of fertilization were found. These observations may suggest a primitive "cortical reaction". Our data further confirm the presence of germinal stem cells in the ovarian surface epithelium cell culture.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Taniguchi H, Hoshino D, Moriya C, Zembutsu H, Nishiyama N, Yamamoto H, Kataoka K, Imai K. Silencing PRDM14 expression by an innovative RNAi therapy inhibits stemness, tumorigenicity, and metastasis of breast cancer. Oncotarget 2018; 8:46856-46874. [PMID: 28423353 PMCID: PMC5564528 DOI: 10.18632/oncotarget.16776] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
PR domain zinc finger protein 14 (PRDM14) maintains stemness in embryonic stem cells via epigenetic mechanisms. Although PRDM14 is elevated in several cancers, it is unclear if and how PRDM14 confers stem cell-like properties and epigenetic changes to cancer cells. Here, we examined the phenotypic characteristics and epigenetic and gene expression profiles of cancer cells that differentially express PRDM14, and assessed the potential of PRDM14-targeted cancer therapy. PRDM14 expression was markedly increased in many different cancer types and correlated with poor survival of breast cancer patients. PRDM14 conferred stem cell-like phenotypes to cancer cells and regulated the expression of genes involved in cancer stemness, metastasis, and chemoresistance. PRDM14 also reduced the methylation of proto-oncogene and stemness gene promoters and PRDM14-binding regions were primarily occupied by histone H3 Lys-4 trimethylation (H3K4me3), both of which are positively correlated with gene expression. Moreover, strong PRDM14 binding sites coincided with promoters containing both H3K4me3 and H3K27me3 histone marks. Using calcium phosphate hybrid micelles as an RNAi delivery system, silencing of PRDM14 expression by chimera RNAi reduced tumor size and metastasis in vivo without causing adverse effects. Conditional loss of PRDM14 function also improved survival of MMTV-Wnt-1 transgenic mice, a spontaneous model of murine breast cancer. Our findings suggest that PRDM14 inhibition may be an effective and novel therapy for cancer stem cells.
Collapse
Affiliation(s)
- Hiroaki Taniguchi
- The Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Daisuke Hoshino
- Cancer Biology Department, The Kanagawa Cancer Center Research Institute, Kanagawa 241-0815, Japan
| | - Chiharu Moriya
- The Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hitoshi Zembutsu
- Division of Genetics, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, Kanagawa 226-8503, Japan
| | - Hiroyuki Yamamoto
- Department of Gastroenterology and Hepatology, School of Medicine, St. Marianna Medical University, Kanagawa 216-0015, Japan
| | - Kazunori Kataoka
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Kohzoh Imai
- The Center for Antibody and Vaccine Therapy, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
10
|
Cancer Stem Cell-Related Marker NANOG Expression in Ovarian Serous Tumors: A Clinicopathological Study of 159 Cases. Int J Gynecol Cancer 2018; 27:2006-2013. [PMID: 28906309 DOI: 10.1097/igc.0000000000001105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The objectives of this study were to assess cancer stem cell-related marker NANOG expression in ovarian serous tumors and to evaluate its prognostic significance in relation to ovarian serous carcinoma. METHODS NANOG protein expression was immunohistochemically evaluated in the ovarian tissue microarrays of 20 patients with benign ovarian serous tumors, 30 patients with borderline ovarian serous tumors, and 109 patients with ovarian serous carcinomas, from which 106 were of high-grade and 3 of low-grade morphology Immunohistochemical reaction was scored according to signal intensity and the percentage of positive cells in tumor samples. Pursuant to our summation of signal intensity and positive cell occurrence, we divided our samples into 4 groups: NANOG-negative, NANOG-slightly positive, NANOG-moderately positive, and NANOG-strongly positive group. Complete clinical data were obtained for the ovarian serous carcinoma group, and correlation between clinical data and NANOG expression was analyzed. RESULTS A specific brown nuclear, or cytoplasmic reaction, was considered a positive NANOG staining. In terms of the ovarian serous carcinoma group, 69.7% were NANOG positive, 22.9% slightly positive, 22.9% moderately positive, and 23.9% strongly positive. All NANOG-positive cases were of high-grade morphology. Benign and borderline tumors and low-grade serous carcinomas were NANOG negative. There was no significant correlation between NANOG expression and clinical parameters in terms of the ovarian serous carcinoma group. CONCLUSIONS Positive NANOG expression is significantly associated with high-grade ovarian serous carcinoma and is absent in benign, borderline, and low-grade serous lesions. In our study, there was no correlation between NANOG expression and clinical parameters, including its use in the prognosis of ovarian serous carcinoma.
Collapse
|
11
|
Patel H, Bhartiya D, Parte S. Further characterization of adult sheep ovarian stem cells and their involvement in neo-oogenesis and follicle assembly. J Ovarian Res 2018; 11:3. [PMID: 29304868 PMCID: PMC5755409 DOI: 10.1186/s13048-017-0377-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Stem cells in the ovary comprise of two distinct populations including very small embryonic-like stem cells (VSELs) and slightly bigger progenitors termed ovarian stem cells (OSCs). They are lodged in ovary surface epithelium (OSE) and are expected to undergo neo-oogenesis and primordial follicle (PF) assembly in adult ovaries. The ovarian stem cells express follicle stimulating hormone (FSH) receptors and are directly activated by FSH resulting in formation of germ cell nests (GCN) in vitro. Present study was undertaken to further characterize adult sheep OSCs and to understand their role during neo-oogenesis and PF assembly. METHODS Stem cells were collected by gently scraping the OSE cells and were characterized by H&E staining, immuno-localization, immuno-phenotyping and RT-PCR studies. Expression of FSH receptors and markers specific for stem cells (OCT-4, SSEA-4) and proliferation (PCNA) were studied on stem/progenitor cells in OSE culture and on adult sheep ovarian cortical tissue sections. Effect of FSH on stem cells was also studied in vitro. Asymmetric cell division (ACD) was monitored by studying expression of OCT-4 and NUMB. RESULTS Additional evidence was generated on the presence of two populations of stem cells in the OSE including VSELs and OSCs. FSHR expression was observed on both VSELs and OSCs by immuno-localization and immuno-phenotyping studies. FSH treatment in vitro stimulated VSELs that underwent ACD to self-renew and give rise to OSCs which divided rapidly by symmetric cell divisions (SCD) and clonal expansion with incomplete cytokinesis to form GCN. ACD was further confirmed by differential expression of OCT-4 in VSELs and NUMB in the OSCs. Immuno-histochemical expression of OCT-4, PCNA and FSHR was noted on stem cells located in the OSE in sheep ovarian sections. GCN and cohort of PF were observed in the ovarian cortex and provided evidence in support of neo-oogenesis from the stem cells. CONCLUSION Results of present study provide further evidence in support of two stem cells populations in adult sheep ovary. Both VSELs, OSCs and GCN express FSH receptors and FSH possibly regulates their function to undergo neo-oogenesis and primordial follicle assembly.
Collapse
Affiliation(s)
- Hiren Patel
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012 India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012 India
| | - Seema Parte
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012 India
| |
Collapse
|
12
|
Ratajczak MZ, Ciechanowicz AK, Kucharska-Mazur J, Samochowiec J. Stem cells and their potential clinical applications in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:3-9. [PMID: 28435007 PMCID: PMC5623088 DOI: 10.1016/j.pnpbp.2017.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 12/23/2022]
Abstract
The robustness of stem cells is one of the major factors that directly impacts life quality and life span. Evidence has accumulated that changes in the stem cell compartment affect human mental health and serve as an indicator of psychiatric problems. It is well known that stem cells continuously replace differentiated cells and tissues that are used up during life, although this replacement occurs at a different pace in the various organs. However, the participation of local neural stem cells in regeneration of the central nervous system is controversial. It is known that low numbers of stem cells circulate continuously in peripheral blood (PB) and lymph and undergo a circadian rhythm in their PB level, with the peak occurring early in the morning and the nadir at night, and recent evidence suggests that the number and pattern of circulating stem cells in PB changes in psychotic disorders. On the other hand, progress in the creation of induced pluripotent stem cells (iPSCs) from patient somatic cells provides valuable tools with which to study changes in gene expression in psychotic patients. We will discuss the various potential sources of stem cells that are currently employed in regenerative medicine and the mechanisms that explain some of their beneficial effects as well as the emerging problems with stem cell therapies. However, the main question remains: Will it be possible in the future to modulate the stem cell compartment to reverse psychiatric problems?
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute, 500 South Floyd Street, James Graham Brown Cancer Center, University of Louisville, Louisville 40202, KY, USA; Department of Regenerative Medicine Warsaw Medical University, Warsaw, Poland.
| | | | | | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
13
|
Bhartiya D, Anand S, Patel H, Parte S. Making gametes from alternate sources of stem cells: past, present and future. Reprod Biol Endocrinol 2017; 15:89. [PMID: 29145898 PMCID: PMC5691385 DOI: 10.1186/s12958-017-0308-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023] Open
Abstract
Infertile couples including cancer survivors stand to benefit from gametes differentiated from embryonic or induced pluripotent stem (ES/iPS) cells. It remains challenging to convert human ES/iPS cells into primordial germ-like cells (PGCLCs) en route to obtaining gametes. Considerable success was achieved in 2016 to obtain fertile offspring starting with mouse ES/iPS cells, however the specification of human ES/iPS cells into PGCLCs in vitro is still not achieved. Human ES cells will not yield patient-specific gametes unless and until hES cells are derived by somatic cell nuclear transfer (therapeutic cloning) whereas iPS cells retain the residual epigenetic memory of the somatic cells from which they are derived and also harbor genomic and mitochondrial DNA mutations. Thus, they may not be ideal starting material to produce autologus gametes, especially for aged couples. Pluripotent, very small embryonic-like stem cells (VSELs) have been reported in adult tissues including gonads, are relatively quiescent in nature, survive oncotherapy and can be detected in aged, non-functional gonads. Being developmentally equivalent to PGCs (natural precursors to gametes), VSELs spontaneously differentiate into gametes in vitro. It is also being understood that gonadal stem cells niche is compromised by oncotherapy and with age. Improving the gonadal somatic niche could regenerate non-functional gonads from endogenous VSELs to restore fertility. Niche cells (Sertoli/mesenchymal cells) can be directly transplanted and restore gonadal function by providing paracrine support to endogenous VSELs. This strategy has been successful in several mice studies already and resulted in live birth in a woman with pre-mature ovarian failure.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Sandhya Anand
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Seema Parte
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
14
|
Underlying Mechanisms that Restore Spermatogenesis on Transplanting Healthy Niche Cells in Busulphan Treated Mouse Testis. Stem Cell Rev Rep 2017; 12:682-697. [PMID: 27663915 DOI: 10.1007/s12015-016-9685-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Very small embryonic-like stem cells (VSELs) exist among spermatogonial stem cells and survive chemotherapy in both mice and human testes because of their relatively quiescent nature. Our earlier study revealed that inter-tubular transplantation of niche (Sertoli or bone marrow derived mesenchymal) cells can restore spermatogenesis from endogenous surviving VSELs. Present study was undertaken to delineate the effect of busulphan on testicular stem/germ/Sertoli cells and to comprehend the underlying mechanisms of how transplanted niche cells restore spermatogenesis. Ploidy analysis showed an increase in diploid cells on D7 and VSELs (2-6 μm; LIN-/CD45-/SCA-1+) were detected at all time-points studied and were maximum on D15 after busulphan treatment. They were visualized in cell smears, expressed nuclear NANOG and SOX2 and BrdU uptake on D15 suggested they were proliferating in response to stress induced by busulphan. Verapamil-sensitive side population detected comprised SCA-1 positive stem cells (5 ± 0.02 % in normal and 8.6 ± 2.02 % in chemoablated testis). Adverse effects of busulphan on Sertoli cells by transcriptome analysis included altered expression of Gdnf, Scf, Fgf, Bmp4, androgen binding protein, components of blood-testis-barrier and also stem cells related signaling pathways including Wnt. GFP positive transplanted cells aligned themselves as 'neo-tubules' and were visualized adjacent to 'native' germ cells depleted tubules. 'Neo-tubules' provide paracrine support to endogenous VSELs to undergo spermatogenesis. Quantitative analysis was done to track proliferation (PCNA) and differentiation (MVH) of stem cells by immuno-localization studies at different time intervals. Results provide an alternative strategy to restore spermatogenesis in cancer survivors from endogenous stem cells which needs to be further researched.
Collapse
|
15
|
Abstract
Recently, the existence of a mechanism for neo-oogenesis in the ovaries of adult mammals has generated much controversy within reproductive biology. This mechanism, which proposes that the ovary has cells capable of renewing the follicular reserve, has been described for various species of mammals. The first evidence was found in prosimians and humans. However, these findings were not considered relevant because the predominant dogma for reproductive biology at the time was that of Zuckerman. This dogma states that female mammals are born with finite numbers of oocytes that decline throughout postnatal life. Currently, the concept of neo-oogenesis has gained momentum due to the discovery of cells with mitotic activity in adult ovaries of various mammalian species (mice, humans, rhesus monkeys, domestic animals such as pigs, and wild animals such as bats). Despite these reports, the concept of neo-oogenesis has not been widely accepted by the scientific community, generating much criticism and speculation about its accuracy because it has been impossible to reproduce some evidence. This controversy has led to the creation of two positions: one in favour of neo-oogenesis and the other against it. Various animal models have been used in support of both camps, including both classic laboratory animals and domestic and wild animals. The aim of this review is to critically present the current literature on the subject and to evaluate the arguments pro and contra neo-oogenesis in mammals.
Collapse
|
16
|
Vanni VS, Viganò P, Papaleo E, Mangili G, Candiani M, Giorgione V. Advances in improving fertility in women through stem cell-based clinical platforms. Expert Opin Biol Ther 2017; 17:585-593. [PMID: 28351161 DOI: 10.1080/14712598.2017.1305352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Due to their regenerative ability, stem cells are looked at as a promising tool for improving infertility treatments in women. As the main limiting factor in female fertility is represented by the decrease of ovarian reserve, the main goals of stem cell-based clinical platforms would be to obtain in vitro or in vivo neo-oogenesis. Refractory endometrial factor infertility also represents an obstacle for female reproduction for which stem cells might provide novel treatment strategies. Areas covered: A systematic search of the literature was performed on MEDLINE/PubMed database to identify relevant articles using stem-cell based clinical or research platforms in the field of female infertility. Expert opinion: In vitro oogenesis has not so far developed beyond the stage of oocyte-like cells whose normal progression to mature oocytes and ability to be fertilized was not proved. Extensive epigenetic programming of gamete precursors and the complex interactions between somatic and germ cells required for human oogenesis likely represent the main obstacles in stem-cell-based neo-oogenesis. Also resuming oogenesis in vivo in adulthood still appears a distant hypothesis, as there is still a lack of consensus about the existence and functionality of adult ovarian stem cells.
Collapse
Affiliation(s)
- Valeria Stella Vanni
- a Obstetrics and Gynaecology Unit , IRCCS San Raffaele Hospital , Milano , Italy.,b Obstetrics and Gynaecology Unit , Vita-Salute San Raffaele University , Milano , Italy
| | - Paola Viganò
- c Division of Genetics and Cell Biology , IRCCS San Raffaele Hospital , Milano , Italy
| | - Enrico Papaleo
- a Obstetrics and Gynaecology Unit , IRCCS San Raffaele Hospital , Milano , Italy
| | - Giorgia Mangili
- a Obstetrics and Gynaecology Unit , IRCCS San Raffaele Hospital , Milano , Italy
| | - Massimo Candiani
- a Obstetrics and Gynaecology Unit , IRCCS San Raffaele Hospital , Milano , Italy.,b Obstetrics and Gynaecology Unit , Vita-Salute San Raffaele University , Milano , Italy
| | - Veronica Giorgione
- a Obstetrics and Gynaecology Unit , IRCCS San Raffaele Hospital , Milano , Italy.,b Obstetrics and Gynaecology Unit , Vita-Salute San Raffaele University , Milano , Italy
| |
Collapse
|
17
|
Kenda Suster N, Smrkolj S, Virant-Klun I. Putative stem cells and epithelial-mesenchymal transition revealed in sections of ovarian tumor in patients with serous ovarian carcinoma using immunohistochemistry for vimentin and pluripotency-related markers. J Ovarian Res 2017; 10:11. [PMID: 28231820 PMCID: PMC5324304 DOI: 10.1186/s13048-017-0306-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/13/2017] [Indexed: 12/24/2022] Open
Abstract
Background The mechanism of aggressive character of ovarian cancer and unsuccessful treatment of women with this deadly disease has been recently explained by the theory of cancer stem cells (CSCs). It has been reported that ovarian carcinogenesis and progression of disease is associated with epithelial-mesenchymal transition (EMT). EMT, a physiological cell process during embryonic development and later in life during regeneration, could, when induced in pathological condition, generate CSCs-like cells. Until now EMT in the ovarian tissue has been mainly studied in cell cultures in vitro. The aim of this study was to focus on in situ morphological changes in the ovarian surface epithelium of tumor tissue in women with epithelial ovarian cancer after we applied the antibodies for markers of EMT vimentin and pluripotency-related markers NANOG, SOX2 and SSEA-4. Methods We analyzed ovarian tissue sections of 20 women with high grade serous ovarian carcinoma. After eosin and hematoxylin staining, used in standard practice, immunohistochemistry was performed for vimentin and markers of pluripotency: NANOG, SSEA-4 and SOX2. We focused on the ovarian surface epithelium in order to observe morphological changes in tumor tissue. Results Among epithelial cells of the ovarian surface epithelium in women with serous ovarian carcinoma we observed a population of small NANOG-positive cells with diameters of up to 5 μm and nuclei, which filled almost the entire cell volumes. These small NANOG-positive cells were in some cases concentrated in the regions with morphologically changed epithelial cells. In these regions, a population of bigger round cells with diameters of 10–15 μm with large nuclei, and positively stained for vimentin, NANOG and other markers of pluripotnecy, were released from the surface epithelium. These cells are proposed as CSCs, and possibly originate from small stem cells among epithelial cells. They formed typical cell clusters, invaded the tissue by changing their round shape into a mesenchymal-like phenotype, and contributed to the manifestation of ovarian cancer. Conclusions Our findings show morphological changes in the ovarian surface epithelium in tumor slides of high grade serous ovarian carcinoma and provide a new population of putative CSCs. Electronic supplementary material The online version of this article (doi:10.1186/s13048-017-0306-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natasa Kenda Suster
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia
| | - Spela Smrkolj
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia
| | - Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| |
Collapse
|
18
|
Lee S, Lee CM, Kim SC. Adult human pancreas-derived cells expressing stage-specific embryonic antigen 4 differentiate into Sox9-expressing and Ngn3-expressing pancreatic ducts in vivo. Stem Cell Res Ther 2016; 7:162. [PMID: 27836003 PMCID: PMC5105312 DOI: 10.1186/s13287-016-0422-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/10/2016] [Accepted: 10/14/2016] [Indexed: 12/28/2022] Open
Abstract
Background Tissue-specific stem/progenitor cells are found in various adult tissues and may have the capacity for lineage-specific differentiation, facilitating applications in autologous transplantation. Stage-specific embryonic antigen 4 (SSEA-4), an early embryonic glycolipid antigen, is expressed in cells derived from adult human pancreas exocrine tissue. Here, we examined the characteristics and lineage-specific differentiation capacity of SSEA-4+ cells. Methods Human adult partial pancreas tissues were obtained from different donors and cultured in vitro. SSEA-4+ and CA19-9+ cells were isolated from adult human pancreas exocrine cells using magnetic-activated cell sorting, and gene expression was validated by quantitative polymerase chain reaction. To confirm in-vivo differentiation, SSEA-4+ and CA19-9+ cells were transplanted into the dorsal subcutaneous region of mice. Finally, morphological features of differentiated areas were confirmed by immunostaining and morphometric analysis. Results SSEA-4-expressing cells were detected in isolated pancreas exocrine cells from adult humans. These SSEA-4+ cells exhibited coexpression of CA19-9, a marker of pancreatic duct cells, but not amylase expression, as shown by immunostaining and flow cytometry. SSEA-4+ cells exhibited higher relative expression of Oct4, Nanog, Klf4, Sox2, and c-Myc mRNAs than CA19-9+ cells. Pancreatic intralobular ducts (PIDs) were generated from SSEA-4+ or CA19-9+ cells in vivo at 5 weeks after transplantation. However, newly formed PIDs from CA19-9+ cells were less abundant and showed an incomplete PID morphology. In contrast, newly formed PIDs from SSEA-4+ cells were abundant in the transplanted area and showed a crowded morphology, typical of PIDs. Sox9 and Ngn3, key transcription factors associated with pancreatic development and regeneration, were expressed in PIDs from SSEA-4+ cells. Conclusions SSEA-4-expressing cells in the adult human pancreas may have the potential for regeneration of the pancreas and may be used as a source of stem/progenitor cells for pancreatic cell lineage-specific differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0422-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Song Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea.,Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Chan Mi Lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea.,Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Song Cheol Kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea. .,Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
19
|
Yazdekhasti H, Rajabi Z, Parvari S, Abbasi M. Used protocols for isolation and propagation of ovarian stem cells, different cells with different traits. J Ovarian Res 2016; 9:68. [PMID: 27765047 PMCID: PMC5072317 DOI: 10.1186/s13048-016-0274-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 10/03/2016] [Indexed: 11/10/2022] Open
Abstract
Although existence of ovarian stem cells (OSCs) in mammalian postnatal ovary is still under controversy, however, it has been almost accepted that OSCs are contributing actively to folliculogenesis and neo-oogenesis. Recently, various methods with different efficacies have been employed for OSCs isolation from ovarian tissue, which these methods could be chosen depends on aim of isolation and accessible equipments and materials in lab. Although isolated OSCs from different methods have various traits and characterizations, which might become from their different nature and origin, however these stem cells are promising source for woman infertility treatment or source of energy for women with a history of repeat IVF failure in near future. This review has brought together and summarized currently used protocols for isolation and propagation of OSCs in vitro.
Collapse
Affiliation(s)
- Hossein Yazdekhasti
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rajabi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soraya Parvari
- Department of Anatomy, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Abbasi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Virant-Klun I, Stimpfel M. Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer. Sci Rep 2016; 6:34730. [PMID: 27703207 PMCID: PMC5050448 DOI: 10.1038/srep34730] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022] Open
Abstract
Small stem cells with diameters of up to 5 μm previously isolated from adult human ovaries indicated pluripotency and germinal lineage, especially primordial germ cells, and developed into primitive oocyte-like cells in vitro. Here, we show that a comparable population of small stem cells can be found in the ovarian tissue of women with borderline ovarian cancer, which, in contrast to small stem cells in "healthy" ovaries, formed spontaneous tumour-like structures and expressed some markers related to pluripotency and germinal lineage. The gene expression profile of these small putative cancer stem cells differed from similar cells sorted from "healthy" ovaries by 132 upregulated and 97 downregulated genes, including some important forkhead box and homeobox genes related to transcription regulation, developmental processes, embryogenesis, and ovarian cancer. These putative cancer stem cells are suggested to be a novel population of ovarian tumour-initiating cells in humans.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Martin Stimpfel
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Bhartiya D, Shaikh A, Anand S, Patel H, Kapoor S, Sriraman K, Parte S, Unni S. Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Hum Reprod Update 2016; 23:41-76. [PMID: 27614362 DOI: 10.1093/humupd/dmw030] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Both pluripotent very small embryonic-like stem cells (VSELs) and induced pluripotent stem (iPS) cells were reported in 2006. In 2012, a Nobel Prize was awarded for iPS technology whereas even today the very existence of VSELs is not well accepted. The underlying reason is that VSELs exist in low numbers, remain dormant under homeostatic conditions, are very small in size and do not pellet down at 250-280g. The VSELs maintain life-long tissue homeostasis, serve as a backup pool for adult stem cells and are mobilized under stress conditions. An imbalance in VSELs function (uncontrolled proliferation) may result in cancer. SEARCH METHODS The electronic database 'Medline/Pubmed' was systematically searched with the subject heading term 'very small embryonic-like stem cells'. OBJECTIVE AND RATIONALE The most primitive stem cells that undergo asymmetric cell divisions to self-renew and give rise to progenitors still remain elusive in the hematopoietic system and testes, while the presence of stem cells in ovary is still being debated. We propose to review the available literature on VSELs, the methods of their isolation and characterization, their ontogeny, how they compare with embryonic stem (ES) cells, primordial germ cells (PGCs) and iPS cells, and their role in maintaining tissue homeostasis. The review includes a look ahead on how VSELs will result in paradigm shifts in basic reproductive biology. OUTCOMES Adult tissue-specific stem cells including hematopoietic, spermatogonial, ovarian and mesenchymal stem cells have good proliferation potential and are indeed committed progenitors (with cytoplasmic OCT-4), which arise by asymmetric cell divisions of pluripotent VSELs (with nuclear OCT-4). VSELs are the most primitive stem cells and postulated to be an overlapping population with the PGCs. Rather than migrating only to the gonads, PGCs migrate and survive in various adult body organs throughout life as VSELs. VSELs express both pluripotent and PGC-specific markers and are epigenetically and developmentally more mature compared with ES cells obtained from the inner cell mass of a blastocyst-stage embryo. As a result, VSELs readily differentiate into three embryonic germ layers and spontaneously give rise to both sperm and oocytes in vitro. Like PGCs, VSELs do not divide readily in culture, nor produce teratoma or integrate in the developing embryo. But this property of being relatively quiescent allows endogenous VSELs to survive various kinds of toxic insults. VSELs that survive oncotherapy can be targeted to induce endogenous regeneration of non-functional gonads. Transplanting healthy niche (mesenchymal) cells have resulted in improved gonadal function and live births. WIDER IMPLICATIONS Being quiescent, VSELs possibly do not accumulate genomic (nuclear or mitochondrial) mutations and thus may be ideal endogenous, pluripotent stem cell candidates for regenerative and reproductive medicine. The presence of VSELs in adult gonads and the fact that they survive oncotherapy may obviate the need to bank gonadal tissue for fertility preservation prior to oncotherapy. VSELs and their ability to undergo spermatogenesis/neo-oogenesis in the presence of a healthy niche will help identify newer strategies toward fertility restoration in cancer survivors, delaying menopause and also enabling aged mothers to have better quality eggs.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Ambreen Shaikh
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sandhya Anand
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Sona Kapoor
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India
| | - Kalpana Sriraman
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,The Foundation for Medical Research, 84-A, RG Thadani Marg, Worli, Mumbai 400018, India
| | - Seema Parte
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Department of Physiology, James Graham Brown Cancer Centre, University of Louisville School of Medicine, 2301 S 3rd St, Louisville, KY 40202, USA
| | - Sreepoorna Unni
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400 012, India.,Inter Disciplinary Studies Department, University College, Zayed University, Academic City, PO Box 19282, Dubai, United Arab Emirates
| |
Collapse
|
22
|
Patel H, Bhartiya D. Testicular Stem Cells Express Follicle-Stimulating Hormone Receptors and Are Directly Modulated by FSH. Reprod Sci 2016; 23:1493-1508. [PMID: 27189070 DOI: 10.1177/1933719116643593] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Testicular spermatogonial stem cells (SSCs) are a heterogeneous population of stem cells, and definitive marker for the most primitive subset that undergoes asymmetric cell division remains to be identified. A novel subpopulation of pluripotent, very small embryonic-like stem cells (VSELs) has been reported in both human and mouse testes. Follicle-stimulating hormone (FSH) receptors (FSHRs) are expressed on Sertoli cells in testis and on granulosa cells in ovary, but recently FSHRs are reported on VSELs in ovaries, bone marrow, and cord blood. The present study was aimed to investigate whether FSHRs are also expressed on testicular stem cells (VSELs and SSCs) and their possible modulation by FSH using intact and chemoablated (25 mg/kg busulfan) mice. Chemoablated testis was a better model to study stem cell biology since quiescent stem cells survive along with the Sertoli cells in the tubules. Proliferating cell nuclear antigen-positive, small-sized cells presumed to be VSELs were clearly visualized, and flow cytometry analysis revealed an increase in LIN-/CD45-/SCA-1+ VSELs from 0.045±0.008% to 0.1±0.03% of total cells in chemoablated testis after FSH treatment. Very small embryonic-like stem cells expressing nuclear octamer-binding transcription factor 4 (OCT-4) and SSCs with cytoplasmic OCT-4 were detected. Very small embryonic-like stem cells (Oct-4A, Sca-1, Nanog), SSCs (Oct-4), and proliferation (Pcna) specific transcripts were upregulated on FSH treatment. Stem cells expressed FSHR and were stimulated by FSH, and Fshr3 was the predominant transcript maximally modulated by FSH. Nuclear OCT-4 and SCA-1 (stem cell antigen 1) positive VSELs are the most primitive stem cells in testis, and FSH stimulates them to undergo asymmetric cell division including self-renewal and give rise to SSCs, which in turn proliferate rapidly and undergo clonal expansion and further differentiation.
Collapse
Affiliation(s)
- Hiren Patel
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
23
|
Virant-Klun I, Kenda-Suster N, Smrkolj S. Small putative NANOG, SOX2, and SSEA-4-positive stem cells resembling very small embryonic-like stem cells in sections of ovarian tissue in patients with ovarian cancer. J Ovarian Res 2016; 9:12. [PMID: 26940129 PMCID: PMC4778328 DOI: 10.1186/s13048-016-0221-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/22/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In previous studies it has been found that in cell cultures of human adult ovaries there is a population of small stem cells with diameters of 2-4 μm, which are present mainly in the ovarian surface epithelium and are comparable to very small embryonic-like stem cells (VSELs) from bone marrow. These cells are not observed by histopathologists in the ovarian tissue due to their small size and unknown clinical significance. Because these cells express a degree of pluripotency, they might be involved in the manifestation of ovarian cancer. Therefore we studied the ovarian tissue sections in women with borderline ovarian cancer and serous ovarian carcinoma to perhaps identify the small putative stem cells in situ. METHODS In 27 women with borderline ovarian cancer and 20 women with high-grade serous ovarian carcinoma the ovarian tissue sections were stained, per standard practice, with eosin and hematoxylin staining and on NANOG, SSEA-4 and SOX2 markers, related to pluripotency, using immunohistochemistry. We focused on the presence and localization of small putative stem cells with diameters of up to 5 μm and with the nuclei spread over nearly the full cell volume. RESULTS In ovarian sections of both borderline ovarian cancer and serous ovarian carcinoma patients we were able to identify the presence of small round cells complying with the above criteria. Some of these small cells were NANOG-positive, were located among epithelial cells in the ovarian surface epithelium and as a single cell or groups of cells/clusters in typical "chambers", were found only in the presence of ovarian cancer and not in healthy ovaries and are comparable to those in fetal ovaries. We envision that these small cells could be related to NANOG-positive tumor-like structures and oocyte-like cells in similar "chambers" found in sections of cancerous ovaries, which could support their stemness and pluripotency. Further immunohistochemistry revealed a similar population of SSEA-4 and SOX2-positive cells. CONCLUSIONS We may conclude that putative small stem cells expressing markers, related to pluripotency, are present in the ovarian tissue sections of women with borderline ovarian cancer and high-grade serous ovarian carcinoma thus indicating their potential involvement in ovarian cancer.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| | - Natasa Kenda-Suster
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| | - Spela Smrkolj
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000, Ljubljana, Slovenia.
| |
Collapse
|
24
|
Virant-Klun I. Very Small Embryonic-Like Stem Cells: A Potential Developmental Link Between Germinal Lineage and Hematopoiesis in Humans. Stem Cells Dev 2015; 25:101-13. [PMID: 26494182 DOI: 10.1089/scd.2015.0275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
It has been suggested that hematopoietic stem/progenitor cells (HSPCs) could become specified from a population of migrating primordial germ cells (PGCs), precursors of gametes, during embryogenesis. Some recent experimental data demonstrated that the cell population that is usually considered to be PGCs, moving toward the gonadal ridges of an embryo, contains a subset of cells coexpressing several germ cell and hematopoietic markers and possessing hematopoietic activity. Experimental data showed that bone morphogenetic protein 4 (BMP4) generates PGCs from mouse bone marrow-derived pluripotent stem cells. Interestingly, functional reproductive hormone receptors have been identified in HSPCs, thus indicating their potential role in reproductive function. Several reports have demonstrated fertility restoration and germ cell generation after bone marrow transplantation in both animal models and humans. A potential link between HSPCs and germinal lineage might be represented by very small embryonic-like stem cells (VSELs), which have been found in adult human bone marrow, peripheral blood, and umbilical cord blood, express a specific pattern of pluripotency, germinal lineage, and hematopoiesis, and are proposed to persist in adult tissues and organs from the embryonic period of life. Stem cell populations, similar to VSELs, expressing several genes related to pluripotency and germinal lineage, especially to PGCs, have been discovered in adult human reproductive organs, ovaries and testicles, and were related to primitive germ cell-like cell development in vitro, thus supporting the idea of VSELs as a potential link between germinal lineage and hematopoiesis.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynecology, University Medical Center Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
25
|
Novel Action of FSH on Stem Cells in Adult Mammalian Ovary Induces Postnatal Oogenesis and Primordial Follicle Assembly. Stem Cells Int 2015; 2016:5096596. [PMID: 26635884 PMCID: PMC4655292 DOI: 10.1155/2016/5096596] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/08/2015] [Indexed: 01/27/2023] Open
Abstract
Adult mammalian ovary has been under the scanner for more than a decade now since it was proposed to harbor stem cells that undergo postnatal oogenesis during reproductive period like spermatogenesis in testis. Stem cells are located in the ovary surface epithelium and exist in adult and menopausal ovary as well as in ovary with premature failure. Stem cells comprise two distinct populations including spherical, very small embryonic-like stem cells (VSELs which express nuclear OCT-4 and other pluripotent and primordial germ cells specific markers) and slightly bigger ovarian germ stem cells (OGSCs with cytoplasmic OCT-4 which are equivalent to spermatogonial stem cells in the testes). These stem cells have the ability to spontaneously differentiate into oocyte-like structures in vitro and on exposure to a younger healthy niche. Bone marrow may be an alternative source of these stem cells. The stem cells express FSHR and respond to FSH by undergoing self-renewal, clonal expansion, and initiating neo-oogenesis and primordial follicle assembly. VSELs are relatively quiescent and were recently reported to survive chemotherapy and initiate oogenesis in mice when exposed to FSH. This emerging understanding and further research in the field will help evolving novel strategies to manage ovarian pathologies and also towards oncofertility.
Collapse
|
26
|
Abstract
In spite of generally accepted dogma that the total number of follicles and oocytes is established in human ovaries during the fetal period of life rather than forming de novo in adult ovaries, some new evidence in the field challenges this understanding. Several studies have shown that different populations of stem cells, such as germinal stem cells and small round stem cells with diameters of 2 to 4 μm, that resembled very small embryonic-like stem cells and expressed several genes related to primordial germ cells, pluripotency, and germinal lineage are present in adult human ovaries and originate in ovarian surface epithelium. These small stem cells were pushed into the germinal direction of development and formed primitive oocyte-like cells in vitro. Moreover, oocyte-like cells were also formed in vitro from embryonic stem cells and induced pluripotent stem cells. This indicates that postnatal oogenesis is not excluded. It is further supported by the occurrence of mesenchymal stem cells that can restore the function of sterilized ovaries and lead to the formation of new follicles and oocytes in animal models. Both oogenesis in vitro and transplantation of stem cell-derived "oocytes" into the ovarian niche to direct their natural maturation represent a big challenge for reproductive biomedicine in the treatment of female infertility in the future and needs to be explored and interpreted with caution, but it is still very important for clinical practice in the field of reproductive medicine.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
27
|
Bhartiya D, Hinduja I, Patel H, Bhilawadikar R. Making gametes from pluripotent stem cells--a promising role for very small embryonic-like stem cells. Reprod Biol Endocrinol 2014; 12:114. [PMID: 25421462 PMCID: PMC4255929 DOI: 10.1186/1477-7827-12-114] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/01/2014] [Indexed: 01/15/2023] Open
Abstract
The urge to have one's own biological child supersedes any desire in life. Several options have been used to obtain gametes including pluripotent stem cells (embryonic ES and induced pluripotent iPS stem cells); gonadal stem cells (spermatogonial SSCs, ovarian OSCs stem cells), bone marrow, mesenchymal cells and fetal skin. However, the field poses a huge challenge including inefficient existing protocols for differentiation, epigenetic and genetic changes associated with extensive in vitro manipulation and also ethical/regulatory constraints. A tremendous leap in the field occurred using mouse ES and iPS cells wherein they were first differentiated into epiblast-like cells and then primordial germ cell-like cells. These on further development produced sperm, oocytes and live offspring (had associated genetic problems). Evidently differentiating pluripotent stem cells into primordial germ cells (PGCs) remains a major bottleneck. Against this backdrop, we propose that a novel population of pluripotent stem cells termed very small embryonic-like stem cells (VSELs) may serve as an alternative, potential source of autologus gametes, keeping in mind that they are indeed PGCs surviving in adult mammalian ovaries and testes. Both VSELs and PGCs are pluripotent, relatively quiescent because of epigenetic modifications of parentally imprinted genes loci like Igf2-H19 and KCNQ1p57, share several markers like Stella, Fragilis, Mvh, Dppa2, Dppa4, Sall4, Blimp1 and functional receptors. VSELs are localized in the basement membrane of seminiferous tubules in testis and in the ovary surface epithelium. Ovarian stem cells from mouse, rabbit, sheep, marmoset and humans (menopausal women and those with premature ovarian failure) spontaneously differentiate into oocyte-like structures in vitro with no additional requirement of growth factors. Thus a more pragmatic option to obtain autologus gametes may be the pluripotent VSELs and if we could manipulate them in vivo - existing ethical and epigenetic/genetic concerns associated with in vitro culture may also be minimized. The field of oncofertility may undergo a sea-change and existing strategies of cryopreservation of gametes and gonadal tissue for fertility preservation in cancer patients will necessitate a revision. However, first the scientific community needs to arrive at a consensus about VSELs in the gonads and then work towards exploiting their potential.
Collapse
Affiliation(s)
- Deepa Bhartiya
- />Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR), Mumbai, 400 012 India
| | - Indira Hinduja
- />Hinduja IVF Centre, PD Hinduja Hospital and Medical Research Centre, Veer Savarkar Marg, Mumbai, 400 016 India
| | - Hiren Patel
- />Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR), Mumbai, 400 012 India
| | - Rashmi Bhilawadikar
- />Hinduja IVF Centre, PD Hinduja Hospital and Medical Research Centre, Veer Savarkar Marg, Mumbai, 400 016 India
| |
Collapse
|
28
|
Gheorghisan-Galateanu AA, Hinescu ME, Enciu AM. Ovarian adult stem cells: hope or pitfall? J Ovarian Res 2014; 7:71. [PMID: 25018783 PMCID: PMC4094411 DOI: 10.1186/1757-2215-7-71] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 06/29/2014] [Indexed: 12/22/2022] Open
Abstract
For many years, ovarian biology has been based on the dogma that oocytes reserve in female mammals included a finite number, established before or at birth and it is determined by the number and quality of primordial follicles developed during the neonatal period. The restricted supply of oocytes in adult female mammals has been disputed in recent years by supporters of postnatal neo-oogenesis. Recent experimental data showed that ovarian surface epithelium and cortical tissue from both mouse and human were proved to contain very low proportion of cells able to propagate themselves, but also to generate immature oocytes in vitro or in vivo, when transplanted into immunodeficient mice ovaries. By mentioning several landmarks of ovarian stem cell reserve and addressing the exciting perspective of translation into clinical practice as treatment for infertility pathologies, the purpose of this article is to review the knowledge about adult mammalian ovarian stem cells, a topic that, since the first approach quickly attracted the attention of both the scientific media and patients.
Collapse
Affiliation(s)
- Ancuta Augustina Gheorghisan-Galateanu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania ; C.I.Parhon National Institute of Endocrinology, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Mihail Eugen Hinescu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania ; V.Babes National Institute of Pathology, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| | - Ana Maria Enciu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania ; V.Babes National Institute of Pathology, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania
| |
Collapse
|
29
|
Grymula K, Piotrowska K, Słuczanowska-Głąbowska S, Mierzejewska K, Tarnowski M, Tkacz M, Poniewierska-Baran A, Pędziwiatr D, Suszyńska E, Laszczyńska M, Ratajczak MZ. Positive effects of prolonged caloric restriction on the population of very small embryonic-like stem cells - hematopoietic and ovarian implications. J Ovarian Res 2014; 7:68. [PMID: 24987461 PMCID: PMC4076763 DOI: 10.1186/1757-2215-7-68] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/16/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Low calorie intake, or calorie restriction (CR) without malnutrition, has been demonstrated in several animal species, including mice, to increase both median and maximum lifespan as well as delay reproductive senescence. Our previous work demonstrated a positive correlation between life span and the number of very small embryonic-like stem cells (VSELs) in long living Laron dwarf mice. These animals have very low levels of circulating insulin-like growth factor 1 (IGF-1) in peripheral blood (PB), maintain higher numbers of hematopoietic stem cells (HSPCs) in bone marrow (BM), and display prolonged fecundity compared with wild type littermates. Since CR lowers the level of IGF-1 in PB, we become interested in the effect of CR on the number of VSELs and HSPCs in BM as well as on the morphology of ovaries and testes. METHODS In our studies four-week-old female and male mice were subjected to CR by employing an alternate-day ad libitum feeding diet for a period of 9 months. RESULTS We observed that mice on CR had a higher number of BM-residing VSELs than control mice fed ad libitum. These changes correlated with higher numbers of HSPCs in BM, spleen, and peripheral blood (PB) as well as with an increase in the number of primordial and primary follicles in ovaries. At the same time, however, no changes were observed in the testes of mice under CR. CONCLUSION We conclude that CR positively affects the pool of VSELs in adult tissues and explains the positive effect of CR on longevity.
Collapse
Affiliation(s)
- Katarzyna Grymula
- Department of Physiology at Pomeranian, Medical University, Szczecin, Poland
| | | | | | | | - Maciej Tarnowski
- Department of Physiology at Pomeranian, Medical University, Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology at Pomeranian, Medical University, Szczecin, Poland
| | | | - Daniel Pędziwiatr
- Department of Physiology at Pomeranian, Medical University, Szczecin, Poland
| | - Ewa Suszyńska
- Department of Physiology at Pomeranian, Medical University, Szczecin, Poland
| | - Maria Laszczyńska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Szczecin, Poland
| | - Mariusz Z Ratajczak
- Department of Physiology at Pomeranian, Medical University, Szczecin, Poland ; Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY 40202, USA
| |
Collapse
|
30
|
Meng C, Kuster B, Culhane AC, Gholami AM. A multivariate approach to the integration of multi-omics datasets. BMC Bioinformatics 2014; 15:162. [PMID: 24884486 PMCID: PMC4053266 DOI: 10.1186/1471-2105-15-162] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/14/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND To leverage the potential of multi-omics studies, exploratory data analysis methods that provide systematic integration and comparison of multiple layers of omics information are required. We describe multiple co-inertia analysis (MCIA), an exploratory data analysis method that identifies co-relationships between multiple high dimensional datasets. Based on a covariance optimization criterion, MCIA simultaneously projects several datasets into the same dimensional space, transforming diverse sets of features onto the same scale, to extract the most variant from each dataset and facilitate biological interpretation and pathway analysis. RESULTS We demonstrate integration of multiple layers of information using MCIA, applied to two typical "omics" research scenarios. The integration of transcriptome and proteome profiles of cells in the NCI-60 cancer cell line panel revealed distinct, complementary features, which together increased the coverage and power of pathway analysis. Our analysis highlighted the importance of the leukemia extravasation signaling pathway in leukemia that was not highly ranked in the analysis of any individual dataset. Secondly, we compared transcriptome profiles of high grade serous ovarian tumors that were obtained, on two different microarray platforms and next generation RNA-sequencing, to identify the most informative platform and extract robust biomarkers of molecular subtypes. We discovered that the variance of RNA-sequencing data processed using RPKM had greater variance than that with MapSplice and RSEM. We provided novel markers highly associated to tumor molecular subtype combined from four data platforms. MCIA is implemented and available in the R/Bioconductor "omicade4" package. CONCLUSION We believe MCIA is an attractive method for data integration and visualization of several datasets of multi-omics features observed on the same set of individuals. The method is not dependent on feature annotation, and thus it can extract important features even when there are not present across all datasets. MCIA provides simple graphical representations for the identification of relationships between large datasets.
Collapse
Affiliation(s)
- Chen Meng
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
- Center for Integrated Protein Science Munich, Freising, Germany
| | - Aedín C Culhane
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02215, USA
| | | |
Collapse
|
31
|
Suszynska M, Zuba-Surma EK, Maj M, Mierzejewska K, Ratajczak J, Kucia M, Ratajczak MZ. The proper criteria for identification and sorting of very small embryonic-like stem cells, and some nomenclature issues. Stem Cells Dev 2014; 23:702-13. [PMID: 24299281 DOI: 10.1089/scd.2013.0472] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Evidence has accumulated that both murine and human adult tissues contain early-development stem cells with a broader differentiation potential than other adult monopotent stem cells. These cells, being pluripotent or multipotent, exist at different levels of specification and most likely represent overlapping populations of cells that, depending on the isolation strategy, ex vivo expansion protocol, and markers employed for their identification, have been given different names. In this review, we will discuss a population of very small embryonic-like stem cells (VSELs) in the context of other stem cells that express pluripotent/multipotent markers isolated from adult tissues as well as review the most current, validated working criteria on how to properly identify and isolate these very rare cells. VSELs have been successfully purified in several laboratories; however, a few have failed to isolate them, which has raised some unnecessary controversy in the field. Therefore, in this short review, we will address the most important reasons that some investigators have experienced problems in isolating these very rare cells and discuss some still unresolved challenges which should be overcome before these cells can be widely employed in the clinic.
Collapse
Affiliation(s)
- Malwina Suszynska
- 1 Stem Cell Institute at the James Graham Brown Cancer Center, University of Louisville , Louisville, Kentucky
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
SummaryFor decades, scientists have considered that female mammals are born with a lifetime reserve of oocytes in the ovary, irrevocably fated to decline after birth. However, controversy in the matter of the possible presence of oocytes and granulosa cells that originate from stem cells in the adult mammalian ovaries has been expanded. The restricted supply of oocytes in adult female mammals has been disputed in recent years by supporters of neo-oogenesis, who claim that germline stem cells (GSCs) exist in the ovarian surface epithelium (OSE) or the bone marrow (BM). Differentiation of ovarian stem cells (OSCs) into oocytes, fibroblast-like cells, granulosa phenotype, neural and mesenchymal type cells and generation of germ cells from OSCs under the contribution of an OSC niche that consists of immune system-related cells and hormonal signalling has been claimed. Although these arguments have met with intense suspicion, their confirmation would necessitate the revision of the current classic knowledge of female reproductive biology.
Collapse
|