1
|
Fang X, Fan F, Border JJ, Roman RJ. Cerebrovascular Dysfunction in Alzheimer's Disease and Transgenic Rodent Models. JOURNAL OF EXPERIMENTAL NEUROLOGY 2024; 5:42-64. [PMID: 38434588 PMCID: PMC10906803 DOI: 10.33696/neurol.5.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Alzheimer's Disease (AD) and Alzheimer's Disease-Related Dementia (ADRD) are the primary causes of dementia that has a devastating effect on the quality of life and is a tremendous economic burden on the healthcare system. The accumulation of extracellular beta-amyloid (Aβ) plaques and intracellular hyperphosphorylated tau-containing neurofibrillary tangles (NFTs) in the brain are the hallmarks of AD. They are also thought to be the underlying cause of inflammation, neurodegeneration, brain atrophy, and cognitive impairments that accompany AD. The discovery of APP, PS1, and PS2 mutations that increase Aβ production in families with early onset familial AD led to the development of numerous transgenic rodent models of AD. These models have provided new insight into the role of Aβ in AD; however, they do not fully replicate AD pathology in patients. Familial AD patients with mutations that elevate the production of Aβ represent only a small fraction of dementia patients. In contrast, those with late-onset sporadic AD constitute the majority of cases. This observation, along with the failure of previous clinical trials targeting Aβ or Tau and the modest success of recent trials using Aβ monoclonal antibodies, has led to a reappraisal of the view that Aβ accumulation is the sole factor in the pathogenesis of AD. More recent studies have established that cerebral vascular dysfunction is one of the earliest changes seen in AD, and 67% of the candidate genes linked to AD are expressed in the cerebral vasculature. Thus, there is an increasing appreciation of the vascular contribution to AD, and the National Institute on Aging (NIA) and the Alzheimer's Disease Foundation recently prioritized it as a focused research area. This review summarizes the strengths and limitations of the most commonly used transgenic AD animal models and current views about the contribution of Aβ accumulation versus cerebrovascular dysfunction in the pathogenesis of AD.
Collapse
Affiliation(s)
- Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fan Fan
- Department of Physiology, Augusta University, Augusta, GA 30912, USA
| | - Jane J. Border
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
2
|
Wang Q, Shin B, Oh S, Shin YS, Na DL, Kim KW. A pilot study to explore the effect of udenafil on cerebral hemodynamics in older adults. Ann Clin Transl Neurol 2023; 10:933-943. [PMID: 37013976 PMCID: PMC10270257 DOI: 10.1002/acn3.51774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/05/2023] Open
Abstract
OBJECTIVE Phosphodiesterase-5 inhibitors (PDE5Is) enhance vasodilation. We investigated the effects of PDE5I on cerebral hemodynamics during cognitive tasks using functional near-infrared spectroscopy (fNIRS). METHODS This study used a crossover design. Twelve cognitively healthy men participants (mean age, 59 ± 3 years; range, 55-65 years) were recruited and randomly assigned to the experimental or control arm, then the experimental and control arm were exchanged after 1 week. Udenafil 100 mg was administered to participants in the experimental arm once daily for 3 days. We measured the fNIRS signal during the resting state and four cognitive tasks three times for each participant: at baseline, in the experimental arm, and in the control arm. RESULTS Behavioral data did not show a significant difference between the experimental and control arms. The fNIRS signal showed significant decreases in the experimental arm compared to the control arm during several cognitive tests: verbal fluency test (left dorsolateral prefrontal cortex, T = -3.02, p = 0.014; left frontopolar cortex, T = -4.37, p = 0.002; right dorsolateral prefrontal cortex, T = -2.59, p = 0.027), Korean-color word Stroop test (left orbitofrontal cortex, T = -3.61, p = 0.009), and social event memory test (left dorsolateral prefrontal cortex, T = -2.35, p = 0.043; left frontopolar cortex, T = -3.35, p = 0.01). INTERPRETATION Our results showed a paradoxical effect of udenafil on cerebral hemodynamics in older adults. This contradicts our hypothesis, but it suggests that fNIRS is sensitive to changes in cerebral hemodynamics in response to PDE5Is.
Collapse
Affiliation(s)
- Qi Wang
- Medical SchoolJeonbuk National UniversityJeonjuSouth Korea
| | - Byoung‐Soo Shin
- Department of NeurologyJeonbuk National University Medical School and HospitalJeonjuSouth Korea
- Research Institute of Clinical Medicine of Jeonbuk National University‐Biomedical Research Institute of Jeonbuk National University HospitalJeonjuSouth Korea
| | - Sun‐Young Oh
- Department of NeurologyJeonbuk National University Medical School and HospitalJeonjuSouth Korea
- Research Institute of Clinical Medicine of Jeonbuk National University‐Biomedical Research Institute of Jeonbuk National University HospitalJeonjuSouth Korea
| | - Yu Seob Shin
- Research Institute of Clinical Medicine of Jeonbuk National University‐Biomedical Research Institute of Jeonbuk National University HospitalJeonjuSouth Korea
- Department of UrologyJeonbuk National University Medical School and HospitalJeonjuSouth Korea
| | - Duk L. Na
- Department of NeurologySungkyunkwan University School of Medicine, Samsung Medical CenterSeoulSouth Korea
| | - Ko Woon Kim
- Department of NeurologyJeonbuk National University Medical School and HospitalJeonjuSouth Korea
- Research Institute of Clinical Medicine of Jeonbuk National University‐Biomedical Research Institute of Jeonbuk National University HospitalJeonjuSouth Korea
| |
Collapse
|
3
|
Justo AFO, Toscano ECDB, Farias-Itao DS, Suemoto CK. The action of phosphodiesterase-5 inhibitors on β-amyloid pathology and cognition in experimental Alzheimer's disease: A systematic review. Life Sci 2023; 320:121570. [PMID: 36921685 DOI: 10.1016/j.lfs.2023.121570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia worldwide. The etiology of AD is partially explained by the deposition of β-amyloid in the brain. Despite extensive research on the pathogenesis of AD, the current treatments are ineffective. Here, we systematically reviewed studies that investigated whether phosphodiesterase 5 inhibitors (PDE5i) are efficient in reducing the β-amyloid load in hippocampi and improving cognitive decline in rodent models with β-amyloid accumulation. We identified ten original studies, which used rodent models with β-amyloid accumulation, were treated with PDE5i, and β-amyloid was measured in the hippocampi. PDE5i was efficient in reducing the β-amyloid levels, except for one study that exclusively used female rodents and the treatment did not affect β-amyloid levels. Interestingly, PDE5i prevented cognitive decline in all studies. This study supports the potential therapeutic use of PDE5i for the reduction of the β-amyloid load in hippocampi and cognitive decline. However, we highlight the importance of conducting additional experimental studies to evaluate the PDE5i-related molecular mechanisms involved in β-amyloid removal in male and female animals.
Collapse
Affiliation(s)
- Alberto Fernando Oliveira Justo
- Physiopathology in Aging Laboratory (LIM-22), Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil.
| | - Eliana Cristina de Brito Toscano
- Physiopathology in Aging Laboratory (LIM-22), Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil; Department of Pathology, Federal University of Juiz de Fora Medical School, Juiz de Fora, Brazil; Post-graduation Program in Health, Federal University of Juiz de Fora Medical School, Juiz de Fora, Brazil.
| | | | - Claudia Kimie Suemoto
- Physiopathology in Aging Laboratory (LIM-22), Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil; Division of Geriatrics, Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil.
| |
Collapse
|
4
|
Inocencio IM, Kaur N, Tran NT, Wong FY. Cerebral haemodynamic response to somatosensory stimulation in preterm lambs is enhanced following sildenafil and inhaled nitric oxide administration. Front Physiol 2023; 14:1101647. [PMID: 36760535 PMCID: PMC9905131 DOI: 10.3389/fphys.2023.1101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Background: Neurovascular coupling (NVC) leads to an increase in local cerebral blood flow and oxygenation in response to increased neural activity and metabolic demand. Impaired or immature NVC reported in the preterm brain, potentially reduces cerebral oxygenation following increased neural activity, predisposing to cerebral tissue hypoxia. Endogenous nitric oxide (NO) is a potent vasodilator and a major mediator of NVC and the cerebral haemodynamic response. NO modulators, such as inhaled nitric oxide (iNO) and sildenafil, induce vasodilation and are used clinically to treat pulmonary hypertension in preterm neonates. However, their impact on NVC in the preterm brain are unknown. We aimed to characterise the cerebral functional haemodynamic response in the preterm brain exposed to NO modulators. We hypothesized that iNO and sildenafil in clinical dosages would increase the baseline cerebral perfusion and the cerebral haemodynamic response to neural activation. Methods: Preterm lambs (126-7 days' gestation) were delivered and mechanically ventilated. The cerebral functional haemodynamic response was measured using near infrared spectroscopy as changes in cerebral oxy- and deoxyhaemoglobin (ΔoxyHb, ΔdeoxyHb), following left median nerve stimulations of 1.8, 4.8, and 7.8 s durations in control preterm lambs (n = 11), and following 4.8 and 7.8 s stimulations in preterm lambs receiving either sildenafil citrate (n = 6, 1.33 mcg/kg/hr) or iNO (n = 8, 20 ppm). Results: Following 1.8, 4.8, and 7.8 s stimulations, ∆oxyHb in the contralateral cortex increased (positive functional response) in 7/11 (64%), 7/11 (64%), and 4/11 (36%) control lambs respectively (p < 0.05). Remaining lambs showed decreased ΔoxyHb (negative functional response). Following 4.8 s stimulations, more lambs receiving sildenafil or iNO (83% and 100% respectively) showed positive functional response compared to the controls (p < 0.05). No significant difference between the three groups was observed at 7.8 s stimulations. Conclusion: In the preterm brain, prolonged somatosensory stimulations increased the incidence of negative functional responses with decreased cerebral oxygenation, suggesting that cerebral oxygen delivery may not match the oxygen demand. Sildenafil and iNO increased the incidence of positive functional responses, potentially enhancing NVC, and cerebral oxygenation.
Collapse
Affiliation(s)
- Ishmael Miguel Inocencio
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Navneet Kaur
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia,Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Nhi T. Tran
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Flora Y. Wong
- The Ritchie Centre, The Hudson Institute of Medical Research, Melbourne, VIC, Australia,Department of Paediatrics, Monash University, Melbourne, VIC, Australia,Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia,*Correspondence: Flora Y. Wong,
| |
Collapse
|
5
|
Sildenafil alters biogenic amines and increases oxidative damage in brain regions of insulin-hypoglycemic rats. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:121-127. [PMID: 31677373 DOI: 10.2478/acph-2020-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/30/2019] [Indexed: 01/19/2023]
Abstract
The aim of the present study was to determine the effect of sildenafil on dopamine, 5-hydroxyindol acetic acid (5-HIAA) and selected biomarkers of oxidative stress in the brain of hypoglycemic rats. The animals were treated intraperitoneally as follows: group 1 (control), saline solution; group 2, insulin (10 U per rat or 50 U kg-1); group 3, insulin + single dose of sildenafil (50 U kg-1 + 50 mg kg-1); group 4, insulin + three doses of sildenafil every 24 hours (50 U kg-1 + 50 mg kg-1). In groups 2, 3 and 4, insulin was administered every 24 hours for 10 days. Blood glucose was measured after the last treatment. On the last day of the treatment, the animals´ brains were extracted to measure the levels of oxidative stress markers [H2O2, Ca2+,Mg2+-ATPase, glutathione and lipid peroxidation (TBARS)], dopamine and 5-HIAA in the cortex, striatum and cerebellum/medulla oblongata by validated methods. The results suggest that administration of insulin in combination with sildenafil induces hypoglycemia and hypotension, enhances oxidative damage and provokes changes in the brain metabolism of biogenic amines. Administration of insulin and sildenafil promotes biometabolic responses in glucose control, namely, it induces hypoglycemia and hypotension. It also enhances oxidative damage and provokes changes in the brain metabolism of biogenic amines.
Collapse
|
6
|
Ölmestig J, Marlet IR, Hansen RH, Rehman S, Krawcyk RS, Rostrup E, Lambertsen KL, Kruuse C. Tadalafil may improve cerebral perfusion in small-vessel occlusion stroke-a pilot study. Brain Commun 2020; 2:fcaa020. [PMID: 33033800 PMCID: PMC7530832 DOI: 10.1093/braincomms/fcaa020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/22/2019] [Accepted: 12/28/2019] [Indexed: 01/29/2023] Open
Abstract
New treatments for cerebral small-vessel disease are needed to reduce the risk of small-vessel occlusion stroke and vascular cognitive impairment. We investigated an approach targeted to the signalling molecule cyclic guanosine monophosphate, using the phosphodiesterase 5 inhibitor tadalafil, to explore if it improves cerebral blood flow and endothelial function in patients with cerebral small-vessel disease and stroke. In a randomized, double-blinded, placebo-controlled, cross-over pilot trial (NCT02801032), we included patients who had a previous (>6 months) small-vessel occlusion stroke. They received a single dose of either 20 mg tadalafil or placebo on 2 separate days at least 1 week apart. We measured the following: baseline MRI for lesion load, repeated measurements of blood flow velocity in the middle cerebral artery by transcranial Doppler, blood oxygen saturation in the cortical microvasculature by near-infrared spectroscopy, peripheral endothelial response by EndoPAT and endothelial-specific blood biomarkers. Twenty patients with cerebral small-vessel disease stroke (3 women, 17 men), mean age 67.1 ± 9.6, were included. The baseline mean values ± standard deviations were as follows: blood flow velocity in the middle cerebral artery, 57.4 ± 10.8 cm/s; blood oxygen saturation in the cortical microvasculature, 67.0 ± 8.2%; systolic blood pressure, 145.8 ± 19.5 mmHg; and diastolic blood pressure, 81.3 ± 9.1 mmHg. We found that tadalafil significantly increased blood oxygen saturation in the cortical microvasculature at 180 min post-administration with a mean difference of 1.57 ± 3.02%. However, we saw no significant differences in transcranial Doppler measurements over time. Tadalafil had no effects on peripheral endothelial function assessed by EndoPAT and endothelial biomarker results conflicted. Our findings suggest that tadalafil may improve vascular parameters in patients with cerebral small-vessel disease stroke, although the effect size was small. Increased oxygenation of cerebral microvasculature during tadalafil treatment indicated improved perfusion in the cerebral microvasculature, theoretically presenting an attractive new therapeutic target in cerebral small-vessel disease. Future studies of the effect of long-term tadalafil treatment on cerebrovascular reactivity and endothelial function are needed to evaluate general microvascular changes and effects in cerebral small-vessel disease and stroke.
Collapse
Affiliation(s)
- Joakim Ölmestig
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark
| | - Ida R Marlet
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark
| | - Rasmus H Hansen
- Department of Radiology, Herlev Gentofte Hospital, Herlev 2730, Denmark
| | - Shazia Rehman
- Department of Radiology, Herlev Gentofte Hospital, Herlev 2730, Denmark
| | - Rikke Steen Krawcyk
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark.,Department of Physiotherapy and Occupational Therapy, Herlev Gentofte Hospital, Herlev 2730, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Capital Region Psychiatry, Glostrup 2600, Denmark
| | - Kate L Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense 5000, Denmark.,Department of Neurology, Odense University Hospital, Odense 5000, Denmark.,BRIDGE-Brain Research Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense 5000, Denmark
| | - Christina Kruuse
- Department of Neurology, Neurovascular Research Unit, Herlev Gentofte Hospital, University of Copenhagen, Herlev 2730, Denmark.,Institute for Clinical Medicine, University of Copenhagen, 2200 Copenhagen N, Denmark
| |
Collapse
|
7
|
Wen Y, Liu G, Zhang Y, Li H. MicroRNA-205 is associated with diabetes mellitus-induced erectile dysfunction via down-regulating the androgen receptor. J Cell Mol Med 2019; 23:3257-3270. [PMID: 30729682 PMCID: PMC6484320 DOI: 10.1111/jcmm.14212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 12/12/2018] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
As a major class of regulatory genes in majority metazoans, microRNAs (miRs) play an important role in various diseases including diabetes mellitus (DM). Lack of androgens has previously been associated with DM-induced erectile dysfunction (DMED). In addition, the biological functioning of androgen is mediated by androgen receptor (AR). Herein, we sought to investigate whether miRs participate in AR-associated DMED. Sprague-Dawlay rats were employed to establish DMED models. After modelling, levels of miR-205 and AR in their cavernous bodies were measured. The relationship between miR-205 and AR was verified using a dual-luciferase reporter gene assay. The underlying regulatory mechanisms of miR-205 were investigated in concert with the treatment of mimics or inhibitors of miR-205, or AR overexpression in the cavernous smooth muscle cells (CSMCs) isolated from rats with DMED. Meanwhile, the effects of miR-205 and AR on cell proliferation and apoptosis were evaluated using MTT assay and flow cytometry respectively. Rats with DMED presented with increased miR-205 and decreased AR levels in the cavernous bodies. AR was identified as a target gene of miR-205. Down-regulation of miR-205 or up-regulation of AR could increase proliferation and inhibits apoptosis of CSMCs in addition to improvements in the erectile functioning of rats with DMED. In summary, miR-205 may contribute to the pathogenesis of DMED via down-regulation of AR expressions.
Collapse
Affiliation(s)
- Yan Wen
- Department of EndocrinologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Guohui Liu
- Department of CardiologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Yun Zhang
- Department of UrologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Hai Li
- Department of UrologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
8
|
Extracellular Matrix Remodeling and Modulation of Inflammation and Oxidative Stress by Sulforaphane in Experimental Diabetic Peripheral Neuropathy. Inflammation 2018; 41:1460-1476. [DOI: 10.1007/s10753-018-0792-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Pauls MMH, Moynihan B, Barrick TR, Kruuse C, Madigan JB, Hainsworth AH, Isaacs JD. The effect of phosphodiesterase-5 inhibitors on cerebral blood flow in humans: A systematic review. J Cereb Blood Flow Metab 2018; 38:189-203. [PMID: 29256324 PMCID: PMC5951021 DOI: 10.1177/0271678x17747177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 11/29/2022]
Abstract
Agents that augment cerebral blood flow (CBF) could be potential treatments for vascular cognitive impairment. Phosphodiesterase-5 inhibitors are vasodilating drugs established in the treatment of erectile dysfunction (ED) and pulmonary hypertension. We reviewed published data on the effects of phosphodiesterase-5 inhibitors on CBF in adult humans. A systematic review according to PRISMA guidelines was performed. Embase, Medline and Cochrane Library Trials databases were searched. Sixteen studies with 353 participants in total were retrieved. Studies included healthy volunteers and patients with migraine, ED, type 2 diabetes, stroke, pulmonary hypertension, Becker muscular dystrophy and subarachnoid haemorrhage. Most studies used middle cerebral artery flow velocity to estimate CBF. Few studies employed direct measurements of tissue perfusion. Resting CBF velocity was unaffected by phosphodiesterase-5 inhibitors, but cerebrovascular regulation was improved in ED, pulmonary hypertension, diabetes, Becker's and a group of healthy volunteers. This evidence suggests that phosphodiesterase-5 inhibitors improve responsiveness of the cerebral vasculature, particularly in disease states associated with an impaired endothelial dilatory response. This supports the potential therapeutic use of phosphodiesterase-5 inhibitors in vascular cognitive impairment where CBF is reduced. Further studies with better resolution of deep CBF are warranted. The review is registered on the PROSPERO database (registration number CRD42016029668).
Collapse
Affiliation(s)
- Mathilde MH Pauls
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| | - Barry Moynihan
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
- Department of Geriatric and Stroke
Medicine, Beaumont Hospital, Dublin, Ireland
| | - Thomas R Barrick
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
| | - Christina Kruuse
- Department of Neurology, Neurovascular
Research Unit, Herlev Gentofte Hospital and University of Copenhagen, Denmark
| | - Jeremy B Madigan
- Department of Neuroradiology, St
George's University Hospitals NHS Foundation Trust, London, UK
| | - Atticus H Hainsworth
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| | - Jeremy D Isaacs
- Molecular and Clinical Sciences Research
Institute, St George's University of London, London, UK
- Department of Neurology, St George's
University Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
10
|
|
11
|
Li H, He WY, Lin F, Gou X. Panax notoginseng saponins improve erectile function through attenuation of oxidative stress, restoration of Akt activity and protection of endothelial and smooth muscle cells in diabetic rats with erectile dysfunction. Urol Int 2014; 93:92-9. [PMID: 24458001 DOI: 10.1159/000354878] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/07/2013] [Indexed: 11/19/2022]
Abstract
Panax notoginseng saponins (PNS), which have an antioxidant property, are a widely used traditional Chinese medicine. In this study we investigated whether PNS can improve erectile function in rats with erectile dysfunction and the underlying mechanism by using a rat diabetic erectile dysfunction model. The rats were randomly divided into four groups: three PNS-treated groups (50, 100 and 150 mg/kg) and one saline-treated control group. Four weeks post treatment, electrostimulation was applied to the cavernous nerve and intracavernous pressure was measured to assess erectile function. Malondialdehyde, superoxide dismutase and glutathione were detected in the penises of all rats. Ultrastructural changes in the penises were examined by electron microscopy. Expression of Akt was detected by immunohistochemistry. The results showed that intracavernous pressure was increased in PNS-treated groups (100 and 150 mg/kg) compared to the control group. The levels of superoxide dismutase, glutathione and Akt were increased (p < 0.05) while that of malondialdehyde was decreased in the PNS groups. Ruptured endothelium, impaired smooth muscle cells and thrombus in the penises were detected by electron microscopy in the control group, but not in the PNS groups (10 and 150 mg/kg). The results suggest that PNS improves erectile function in diabetic rats. This improvement was associated with increased Akt expression, suppressed oxidative stress and restored functions of endothelial cells and smooth muscle cells in the penis.
Collapse
Affiliation(s)
- Huan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | |
Collapse
|