1
|
Barros O, D'Agostino VG, Lara Santos L, Vitorino R, Ferreira R. Shaping the future of oral cancer diagnosis: advances in salivary proteomics. Expert Rev Proteomics 2024; 21:149-168. [PMID: 38626289 DOI: 10.1080/14789450.2024.2343585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/19/2024] [Indexed: 04/18/2024]
Abstract
INTRODUCTION Saliva has gained increasing attention in the quest for disease biomarkers. Because it is a biological fluid that can be collected is an easy, painless, and safe way, it has been increasingly studied for the identification of oral cancer biomarkers. This is particularly important because oral cancer is often diagnosed at late stages with a poor prognosis. AREAS COVERED The review addresses the evolution of the experimental approaches used in salivary proteomics studies of oral cancer over the years and outlines advantages and pitfalls related to each one. In addition, examines the current landscape of oral cancer biomarker discovery and translation focusing on salivary proteomic studies. This discussion is based on an extensive literature search (PubMed, Scopus and Google Scholar). EXPERT OPINION The introduction of mass spectrometry has revolutionized the study of salivary proteomics. In the future, the focus will be on refining existing methods and introducing powerful experimental techniques such as mass spectrometry with selected reaction monitoring, which, despite their effectiveness, are still underutilized due to their high cost. In addition, conducting studies with larger cohorts and establishing standardized protocols for salivary proteomics are key challenges that need to be addressed in the coming years.
Collapse
Affiliation(s)
- Oriana Barros
- Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) and Surgical Department of Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Vito G D'Agostino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Lucio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) and Surgical Department of Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network) and Surgical Department of Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
- UnIC, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Wei D, Sun J, Luo Z, Zhang G, Liu Y, Zhang H, Xie Z, Gu Z, Tao WA. Targeted Phosphoproteomics of Human Saliva Extracellular Vesicles via Multiple Reaction Monitoring Cubed (MRM 3). Anal Chem 2024; 96:1223-1231. [PMID: 38205554 DOI: 10.1021/acs.analchem.3c04464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Oral squamous cell carcinoma (OSCC) has become a global health problem due to its increasing incidence and high mortality rate. Early intervention through monitoring of the diagnostic biomarker levels during OSCC treatment is critical. Extracellular vesicles (EVs) are emerging surrogates in intercellular communication through transporting biomolecule cargo and have recently been identified as a potential source of biomarkers such as phosphoproteins for many diseases. Here, we developed a multiple reaction monitoring cubed (MRM3) method coupled with a novel sample preparation strategy, extracellular vesicles to phosphoproteins (EVTOP), to quantify phosphoproteins using a minimal amount of saliva (50 μL) samples from OSCC patients with high specificity and sensitivity. Our results established differential patterns in the phosphopeptide content of healthy, presurgery, and postsurgery OSCC patient groups. Notably, we discovered significantly increased salivary phosphorylated alpha-amylase (AMY) in the postsurgery group compared to the presurgery group. We hereby present the first targeted MS method with extremely high sensitivity for measuring endogenous phosphoproteins in human saliva EVs.
Collapse
Affiliation(s)
- Dong Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhuojun Luo
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Guiyuan Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Yufeng Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Hao Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - W Andy Tao
- Department of Chemistry and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Verscheure E, Stierum R, Schlünssen V, Lund Würtz AM, Vanneste D, Kogevinas M, Harding BN, Broberg K, Zienolddiny-Narui S, Erdem JS, Das MK, Makris KC, Konstantinou C, Andrianou X, Dekkers S, Morris L, Pronk A, Godderis L, Ghosh M. Characterization of the internal working-life exposome using minimally and non-invasive sampling methods - a narrative review. ENVIRONMENTAL RESEARCH 2023; 238:117001. [PMID: 37683788 DOI: 10.1016/j.envres.2023.117001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
During recent years, we are moving away from the 'one exposure, one disease'-approach in occupational settings and towards a more comprehensive approach, taking into account the totality of exposures during a life course by using an exposome approach. Taking an exposome approach however is accompanied by many challenges, one of which, for example, relates to the collection of biological samples. Methods used for sample collection in occupational exposome studies should ideally be minimally invasive, while at the same time sensitive, and enable meaningful repeated sampling in a large population and over a longer time period. This might be hampered in specific situations e.g., people working in remote areas, during pandemics or with flexible work hours. In these situations, using self-sampling techniques might offer a solution. Therefore, our aim was to identify existing self-sampling techniques and to evaluate the applicability of these techniques in an occupational exposome context by conducting a literature review. We here present an overview of current self-sampling methodologies used to characterize the internal exposome. In addition, the use of different biological matrices was evaluated and subdivided based on their level of invasiveness and applicability in an occupational exposome context. In conclusion, this review and the overview of self-sampling techniques presented herein can serve as a guide in the design of future (occupational) exposome studies while circumventing sample collection challenges associated with exposome studies.
Collapse
Affiliation(s)
- Eline Verscheure
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Vivi Schlünssen
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Anne Mette Lund Würtz
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Dorian Vanneste
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Manolis Kogevinas
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Barbara N Harding
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Mrinal K Das
- National Institute of Occupational Health, Oslo, Norway
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Xanthi Andrianou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Susan Dekkers
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | | | - Anjoeka Pronk
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at work, Heverlee, Belgium.
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Head and neck cancer biomarkers: Systematic review and meta-analysis. Clin Chim Acta 2023; 542:117280. [PMID: 36878379 DOI: 10.1016/j.cca.2023.117280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
PURPOSE To perform a systematic review and meta-analysis of the diagnostic capabilities of various biological markers in the plasma, serum, tissue, and saliva of patients with head and neck cancer (HNC). METHODS We performed manual and digital searches using specific keywords and found English-language literature published up to October 28, 2022. PubMed, ScienceDirect, Scopus, MEDLINE Complete, and EMBASE databases were used. Studies comparing biomarkers for the diagnosis of HNC versus healthy controls were evaluated. RESULTS Seventeen studies using varied sources of biomarkers, both individually and combined, were identified. The sensitivity and specificity of biomarkers ranged from 29.5% to 100% and 57.1% to 100%, respectively. The combined biomarkers demonstrated higher therapeutic applicability in terms of sensitivity and specificity than the individual biomarkers. Furthermore, the heterogeneity of the sensitivity/specificity for individual and combined biomarker was 534.45/1.66 and 247.41/14.62, respectively. CONCLUSION Combined biomarkers may aid in the diagnosis of HNC. Further studies are required to verify the accuracy of these biomarkers.
Collapse
|
5
|
Miranda LFB, Lima CV, Pagin R, Costa RC, Pereira MMA, de Avila ED, Bertolini M, Retamal-Valdes B, Shibli JA, Feres M, Barão VAR, Souza JGS. Effect of Processing Methods of Human Saliva on the Proteomic Profile and Protein-Mediated Biological Processes. J Proteome Res 2023; 22:857-870. [PMID: 36779809 DOI: 10.1021/acs.jproteome.2c00652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The use of saliva as a protein source prior to microbiological and biological assays requires previous processing. However, the effect of these processing methods on the proteomic profile of saliva has not been tested. Stimulated human saliva was collected from eight healthy volunteers. Non-processed saliva was compared with 0.22 μm filtered, 0.45 μm filtered, and pasteurized saliva, by liquid chromatography-mass spectrometry. Data are available via ProteomeXchange with identifier PXD039248. The effect of processed saliva on microbial adhesion was tested using bacterial and fungus species and in biological cell behavior using HaCaT immortalized human keratinocytes. Two hundred and seventy-eight proteins were identified in non-processed saliva, of which 54 proteins (≈19%) were exclusive. Saliva processing reduced identified proteins to 222 (≈80%) for the 0.22 μm group, 219 (≈79%) for the 0.45 μm group, and 201 (≈72%) for the pasteurized saliva, compared to non-processed saliva. The proteomic profile showed similar molecular functions and biological processes. The different saliva processing methods did not alter microbial adhesion (ANOVA, p > 0.05). Interestingly, pasteurized saliva reduced keratinocyte cell viability. Saliva processing methods tested reduced the proteomic profile diversity of saliva but maintained similar molecular functions and biological processes, not interfering with microbial adhesion and cell viability, except for pasteurization, which reduced cell viability.
Collapse
Affiliation(s)
- Luis Fernando B Miranda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sa̅o Paulo 13414-903, Brazil
| | - Carolina V Lima
- Department of Restorative Dentistry, Federal University of Paraná (UFPR), Curitiba, Paraná 80210-170, Brazil
| | - Rafaela Pagin
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, Sa̅o Paulo 07023-070, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sa̅o Paulo 13414-903, Brazil
| | - Marta Maria A Pereira
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo 14801-385, Brazil
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo 14801-385, Brazil.,Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo 16066-840, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Belén Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, Sa̅o Paulo 07023-070, Brazil
| | - Jamil A Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, Sa̅o Paulo 07023-070, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, Sa̅o Paulo 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sa̅o Paulo 13414-903, Brazil
| | - João Gabriel S Souza
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, Sa̅o Paulo 07023-070, Brazil.,Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| |
Collapse
|
6
|
Salivary Biomarkers in Oral Squamous Cell Carcinoma: A Proteomic Overview. Proteomes 2022; 10:proteomes10040037. [PMID: 36412636 PMCID: PMC9680331 DOI: 10.3390/proteomes10040037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most frequent cancers worldwide. Endoscopic methods may be useful in the evaluation of oral injuries even though the diagnostic gold standard is a biopsy. Targeted screenings could be considered the best way to prevent the occurrence of oral cancer. Aimed to elucidate the potential identification of specific biomarkers of OSCC, the use of saliva is convenient and noninvasive. Many studies reported more than a hundred putative saliva biomarkers for OSCC, and proteogenomic approaches were fundamental to disclosing this issue. METHODS Relevant literature published in the last few years was systematically searched on PubMed and we focused on articles about the use and study of salivary biomarkers in the diagnostics of head and neck cancer (n = 110). Thereafter, we performed a selection focusing on diagnosis with salivary proteomics in OSCC (n = 8). RESULTS Saliva proteomics can be a source of biomarkers for OSCC. We reviewed literature of biomarker proteins in saliva that could also be evaluated as probable targets for non-invasive screening of oral neoplasm such as cytokines, matrix metalloproteinases, and acute-phase response proteins. CONCLUSIONS The measurement of salivary biomarkers is a highly hopeful technique for the diagnosis of OSCC. Proteogenomic approaches could permit an accurate and early diagnosis of OSCC. This review seeks to generate an up-to-date view on translational OSCC issues by raising awareness of researchers, physicians, and surgeons. Renewed clinical studies, which will validate the sensitivity and specificity of salivary biomarkers, are necessary to translate these results into possible strategies for early diagnosis of OSCC, thus improving patient outcomes.
Collapse
|
7
|
Ferrara F, Zoupanou S, Primiceri E, Ali Z, Chiriacò MS. Beyond liquid biopsy: Toward non-invasive assays for distanced cancer diagnostics in pandemics. Biosens Bioelectron 2021; 196:113698. [PMID: 34688113 PMCID: PMC8527216 DOI: 10.1016/j.bios.2021.113698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Liquid biopsy technologies have seen a significant improvement in the last decade, offering the possibility of reliable analysis and diagnosis from several biological fluids. The use of these technologies can overcome the limits of standard clinical methods, related to invasiveness and poor patient compliance. Along with this there are now mature examples of lab-on-chips (LOC) which are available and could be an emerging and breakthrough technology for the present and near-future clinical demands that provide sample treatment, reagent addition and analysis in a sample-in/answer-out approach. The possibility of combining non-invasive liquid biopsy and LOC technologies could greatly assist in the current need for minimizing exposure and transmission risks. The recent and ongoing pandemic outbreak of SARS-CoV-2, indeed, has heavily influenced all aspects of life worldwide. Ordinary tasks have been forced to switch from “in presence” to “distanced”, limiting the possibilities for a large number of activities in all fields of life outside of the home. Unfortunately, one of the settings in which physical distancing has assumed noteworthy consequences is the screening, diagnosis and follow-up of diseases. In this review, we analyse biological fluids that are easily collected without the intervention of specialized personnel and the possibility that they may be used -or not-for innovative diagnostic assays. We consider their advantages and limitations, mainly due to stability and storage and their integration into Point-of-Care diagnostics, demonstrating that technologies in some cases are mature enough to meet current clinical needs.
Collapse
Affiliation(s)
- Francesco Ferrara
- STMicroelectronics s.r.l., via per Monteroni, 73100, Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy.
| | - Sofia Zoupanou
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy; University of Salento, Dept. of Mathematics & Physics E. de Giorgi, Via Arnesano, 73100, Lecce, Italy
| | - Elisabetta Primiceri
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | - Zulfiqur Ali
- University of Teesside, School of Health & Life Sciences, Healthcare Innovation Centre, Middlesbrough, TS1 3BX, Tees Valley, England, UK
| | | |
Collapse
|
8
|
Faria PCB, Carneiro AP, Binato R, Nascimento R, Santos PS, Fagundes D, da Silva SJ, Loyola AM, Abdelhay E, Goulart LR. Upregulation of tropomyosin alpha-4 chain in patients' saliva with oral squamous cell carcinoma as demonstrated by Phage display. Sci Rep 2019; 9:18399. [PMID: 31804537 PMCID: PMC6895045 DOI: 10.1038/s41598-019-54686-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/11/2019] [Indexed: 12/09/2022] Open
Abstract
Patients with oral squamous cell carcinoma (OSCC) present significant alterations in their saliva proteome. We have used the shotgun Phage Display (PD) technology to identify candidate proteins that were upregulated in saliva of OSCC by selecting ligands to salivary proteins from a single-chain variable fragment (scFv) PD combinatorial library. After two selection cycles, the highly reactive clone scFv-D09 was able to distinguish saliva of OSCC patients from healthy subjects by enzyme-linked immunosorbent assay (ELISA) with sensitivity and specificity of 96.67%. Additionally, the scFv-D09 clone presented a positive immunostaining for invasive malignant epithelial cells in the connective tissue, keratin pearls in the OSCC, and ducts of salivary glands. We have further identified the target protein as the tropomyosin alpha-4 chain (TPM4) by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry, and its binding to the scFV-D09 was demonstrated by bioinformatics. Briefly, we have identified TPM4 as upregulated salivary protein in patients with OSCC, which plays a central role in stabilizing cytoskeleton actin filaments, probably linked with tumor tissue remodeling. Long-term longitudinal studies are needed to validate TPM4 as a potential marker of a malignant process.
Collapse
Affiliation(s)
- Paula Cristina Batista Faria
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Ana Paula Carneiro
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Renata Binato
- Stem Cell Laboratory, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Rafael Nascimento
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Paula Souza Santos
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Deborah Fagundes
- Oral Pathology Laboratory, Clinical Hospital, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Sindeval José da Silva
- Head and Neck Service, Clinical Hospital, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Adriano Mota Loyola
- Oral Pathology Laboratory, Clinical Hospital, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Eliana Abdelhay
- Stem Cell Laboratory, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, RJ, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil.
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
9
|
Seredin P, Goloshchapov D, Ippolitov Y, Vongsvivut P. Pathology-specific molecular profiles of saliva in patients with multiple dental caries-potential application for predictive, preventive and personalised medical services. EPMA J 2018; 9:195-203. [PMID: 29896318 PMCID: PMC5972136 DOI: 10.1007/s13167-018-0135-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Improving the quality of life is part of the global agenda. The focus is predominantly on prevention of socially significant diseases. Combating dental caries-related diseases is a top priority as it has a huge impact on people's social lives. Therefore, the purpose of the work was to study the changes in the molecular composition of saliva from subjects with multiple caries lesions using spectroscopic methods of analysis to identify potential tissue markers of caries development for predictive, preventive and personalised medical services. OBJECTIVES AND METHODS The molecular composition of mixed saliva (oral fluid) from subjects with and without multiple caries was analysed with the use of spectroscopic techniques, FTIR with synchrotron radiation for the excitation. The IR spectra of the oral fluid as well as the calculated mineral-organic, carbon-phosphate, Amide II/Amide I and protein/thiocyanate ratios were compared between subjects with and without multiple caries. RESULTS This complex analysis of the obtained experimental data determined that the molecular composition of the oral fluid from those with multiple caries differed from those without caries; the organic-mineral balance in the oral fluid of those with multiple caries shifted towards a reduction in the mineral complexes, accompanied by an increase in the organic component. The thiocyanate content increased more than twofold, accompanied by increased carboxyl groups of esters, lipids and carbohydrates. CONCLUSION The detected features in the IR spectra of mixed saliva as well as the calculated changes in the ratios between organic and inorganic components can be used as biomarkers of cariogenesis in the oral cavity, as a diagnostic criterion in the analysis of the oral fluid samples.
Collapse
Affiliation(s)
- Pavel Seredin
- Present Address: Department of Solid State Physics and Nanostructures, Voronezh State University, University sq. 1, Voronezh, 394006 Russia
| | - Dmitry Goloshchapov
- Present Address: Department of Solid State Physics and Nanostructures, Voronezh State University, University sq. 1, Voronezh, 394006 Russia
| | - Yuri Ippolitov
- Department of Pediatric Dentistry with Orthodontia, Voronezh State Medical University, Studentcheskaya st. 11, Voronezh, 394006 Russia
| | - Pimm Vongsvivut
- Australian Synchrotron (Synchrotron Light Source Australia Pty LTD), 800 Blackburn Rd, Clayton, VIC 3168 Australia
| |
Collapse
|
10
|
Castagnola M, Scarano E, Passali GC, Messana I, Cabras T, Iavarone F, Di Cintio G, Fiorita A, De Corso E, Paludetti G. Salivary biomarkers and proteomics: future diagnostic and clinical utilities. ACTA OTORHINOLARYNGOLOGICA ITALICA 2018; 37:94-101. [PMID: 28516971 PMCID: PMC5463528 DOI: 10.14639/0392-100x-1598] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
Saliva testing is a non-invasive and inexpensive test that can serve as a source of information useful for diagnosis of disease. As we enter the era of genomic technologies and -omic research, collection of saliva has increased. Recent proteomic platforms have analysed the human salivary proteome and characterised about 3000 differentially expressed proteins and peptides: in saliva, more than 90% of proteins in weight are derived from the secretion of three couples of "major" glands; all the other components are derived from minor glands, gingival crevicular fluid, mucosal exudates and oral microflora. The most common aim of proteomic analysis is to discriminate between physiological and pathological conditions. A proteomic protocol to analyze the whole saliva proteome is not currently available. It is possible distinguish two type of proteomic platforms: top-down proteomics investigates intact naturally-occurring structure of a protein under examination; bottom-up proteomics analyses peptide fragments after pre-digestion (typically with trypsin). Because of this heterogeneity, many different biomarkers may be proposed for the same pathology. The salivary proteome has been characterised in several diseases: oral squamous cell carcinoma and oral leukoplakia, chronic graft-versus-host disease Sjögren's syndrome and other autoimmune disorders such as SAPHO, schizophrenia and bipolar disorder, and genetic diseases like Down's Syndrome and Wilson disease. The results of research reported herein suggest that in the near future human saliva will be a relevant diagnostic fluid for clinical diagnosis and prognosis.
Collapse
Affiliation(s)
- M Castagnola
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Istituto di Chimica del Riconoscimento Molecolare C.N.R. Rome, Italy
| | - E Scarano
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - G C Passali
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - I Messana
- Life and Enviromental Sciences Department, University of Cagliari, and Istituto di Chimica del Riconoscimento Molecolare C.N.R. Rome, Italy
| | - T Cabras
- Life and Enviromental Sciences Department, University of Cagliari, Italy
| | - F Iavarone
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - G Di Cintio
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - A Fiorita
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - E De Corso
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - G Paludetti
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| |
Collapse
|
11
|
Arantes LMRB, De Carvalho AC, Melendez ME, Lopes Carvalho A. Serum, plasma and saliva biomarkers for head and neck cancer. Expert Rev Mol Diagn 2017; 18:85-112. [PMID: 29134827 DOI: 10.1080/14737159.2017.1404906] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Head and neck squamous cell carcinoma (HNSCC) encompasses tumors arising from several locations (oral and nasal cavities, paranasal sinuses, salivary glands, pharynx, and larynx) and currently stands as the sixth most common cancer worldwide. The most important risk factors identified so far are tobacco and alcohol consumption, and, for a subgroup of HNSCCs, infection with high-risk types of human papillomavirus (HPV). Despite several improvements in the treatment of these tumors in the last decades, overall survival rates have only improved marginally, mainly due to the advanced clinical stage at diagnosis and the high rates of treatment failure associated with this late diagnosis. Areas covered: This review will focus on the feasibility of evaluating molecular-based biomarkers (mRNA, microRNA, lncRNA, DNA methylation and protein expression) in body fluids (serum, plasma, and saliva) as markers for diagnosis, prognosis, and surveillance. Expert commentary: The potential use of those markers in the clinical setting would allow for early diagnosis, prediction of treatment response, improvement in treatment selection and provide disease monitoring for early detection of tumor recurrence. It can ultimately be translated into better survival rates and improved quality of life for HNSCC patients.
Collapse
Affiliation(s)
| | | | - Matias Eliseo Melendez
- a Molecular Oncology Research Center , Barretos Cancer Hospital , Barretos - SP , Brazil
| | - André Lopes Carvalho
- a Molecular Oncology Research Center , Barretos Cancer Hospital , Barretos - SP , Brazil
| |
Collapse
|
12
|
Chen YT, Chen HW, Wu CF, Chu LJ, Chiang WF, Wu CC, Yu JS, Tsai CH, Liang KH, Chang YS, Wu M, Ou Yang WT. Development of a Multiplexed Liquid Chromatography Multiple-Reaction-Monitoring Mass Spectrometry (LC-MRM/MS) Method for Evaluation of Salivary Proteins as Oral Cancer Biomarkers. Mol Cell Proteomics 2017; 16:799-811. [PMID: 28235782 PMCID: PMC5417822 DOI: 10.1074/mcp.m116.064758] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 02/22/2017] [Indexed: 11/06/2022] Open
Abstract
Multiple (selected) reaction monitoring (MRM/SRM) of peptides is a growing technology for target protein quantification because it is more robust, precise, accurate, high-throughput, and multiplex-capable than antibody-based techniques. The technique has been applied clinically to the large-scale quantification of multiple target proteins in different types of fluids. However, previous MRM-based studies have placed less focus on sample-preparation workflow and analytical performance in the precise quantification of proteins in saliva, a noninvasively sampled body fluid. In this study, we evaluated the analytical performance of a simple and robust multiple reaction monitoring (MRM)-based targeted proteomics approach incorporating liquid chromatography with mass spectrometry detection (LC-MRM/MS). This platform was used to quantitatively assess the biomarker potential of a group of 56 salivary proteins that have previously been associated with human cancers. To further enhance the development of this technology for assay of salivary samples, we optimized the workflow for salivary protein digestion and evaluated quantification performance, robustness and technical limitations in analyzing clinical samples. Using a clinically well-characterized cohort of two independent clinical sample sets (total n = 119), we quantitatively characterized these protein biomarker candidates in saliva specimens from controls and oral squamous cell carcinoma (OSCC) patients. The results clearly showed a significant elevation of most targeted proteins in saliva samples from OSCC patients compared with controls. Overall, this platform was capable of assaying the most highly multiplexed panel of salivary protein biomarkers, highlighting the clinical utility of MRM in oral cancer biomarker research.
Collapse
Affiliation(s)
- Yi-Ting Chen
- From the ‡Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan;
- §Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- ¶Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- ‖Department of Nephrology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Hsiao-Wei Chen
- §Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Feng Wu
- §Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Lichieh Julie Chu
- §Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- **Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wei-Fang Chiang
- ‡‡Department of Oral & Maxillofacial Surgery, Chi-Mei Medical Center, Liouying, Taiwan
- §§School of Dentistry, National Yang Ming University, Taipei, Taiwan
| | - Chih-Ching Wu
- §Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- ¶¶Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- ‖‖Department of Otolaryngology - Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Jau-Song Yu
- §Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- ¶Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- **Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Cheng-Han Tsai
- ¶Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kung-Hao Liang
- **Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yu-Sun Chang
- §Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- ¶Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- ‖‖Department of Otolaryngology - Head & Neck Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Maureen Wu
- §Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Ting Ou Yang
- §Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
13
|
Beregova TV, Neporada KS, Skrypnyk M, Falalyeyeva TM, Zholobak NM, Shcherbakov OB, Spivak MY, Bubnov RV. Efficacy of nanoceria for periodontal tissues alteration in glutamate-induced obese rats-multidisciplinary considerations for personalized dentistry and prevention. EPMA J 2017; 8:43-49. [PMID: 28620442 DOI: 10.1007/s13167-017-0085-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/13/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nowadays, we face the global epidemic of obesity, that is known to contribute to the development of many diseases, such as the oral cavity pathologies. Dental and oral pathologies are frequently caused by and overlapped with systemic multifactorial diseases such as obesity being its early indicators and risk factors. The aim was to study the influence of nanoceria on periodontal tissues alteration in glutamate (MSG)-induced obese rats. METHODS We included 52 Wistar rats of both genders and divided into four groups: newborn rats in group 1 (control) received subcutaneously 8 μl/g saline. Group 2 received 3 to 4 mg/g MSG subcutaneously on the second, fourth, sixth, eighth, and tenth day of life; group 3-intragastric administration of nanocrystalline cerium dioxide at a dose of 1 mg/kg volume of 2.9 ml/kg against the background of glutamate-induced obesity; the fourth group of animals was treated with a solution of sodium citrate intragastric volume of 2.9 ml/kg (solvent of nanocrystalline cerium). We determined the total proteolytic activity, the total antitrypsin activity, the content-free fucose and glycosaminoglycanes (GAG), content of TBA-active of products, the content of oxidation-modified proteins (OMB), and catalase activity in the homogenate of soft periodontal tissues of rats. RESULTS Intragastric injection of nanoceria prevents activation of proteolytic processes, reducing the catabolism of glycoproteins and proteoglycans of periodontal tissue in MSG-induced obese rats. Injection of nanoceria prevents activation of proteolytic processes, significantly decreases the total proteolytic activity, and inhibits the activation of free radical oxidation in periodontal tissues of rats compared with MSG-induced obesity model without corrections. Further, it significantly increases the total antitrypsin activity in periodontal tissues by 1.7 times, TBA-reagents by 1.7 times, and content of OMB by 1.4 times compared with glutamate-induced obese animals. CONCLUSIONS MSG-induced obesity triggers periodontal tissue alterations in the rat model. Nanoceria contributes to the corrections of pathological changes in periodontal tissues in glutamate-induced obese rats via balancing protein-inhibitory capacity and reducing the depolymerization of fucosylated proteins and proteoglycans and antioxidative activity.
Collapse
Affiliation(s)
- Tetyana V Beregova
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| | - Karine S Neporada
- Poltava Ukrainian Medical and Stomatological Academy, 23 Shevchenko str., Poltava, 36024 Ukraine
| | - Maksym Skrypnyk
- Poltava Ukrainian Medical and Stomatological Academy, 23 Shevchenko str., Poltava, 36024 Ukraine
| | - Tetyana M Falalyeyeva
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| | - Nadiya M Zholobak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Oleksandr B Shcherbakov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Mykola Ya Spivak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine.,LCL 'DIAPROF', Svitlycky Str., 35, Kyiv, 04123 Ukraine
| | - Rostyslav V Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine.,Clinical Hospital 'Pheophania' of State Affairs Department, Zabolotny str., 21, Kyiv, 03143 Ukraine
| |
Collapse
|
14
|
Sannam Khan R, Khurshid Z, Akhbar S, Faraz Moin S. Advances of Salivary Proteomics in Oral Squamous Cell Carcinoma (OSCC) Detection: An Update. Proteomes 2016; 4:proteomes4040041. [PMID: 28248250 PMCID: PMC5260973 DOI: 10.3390/proteomes4040041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/28/2016] [Accepted: 12/06/2016] [Indexed: 11/16/2022] Open
Abstract
Oral cancer refers to malignancies that have higher morbidity and mortality rates due to the late stage diagnosis and no early detection of a reliable diagnostic marker, while oral squamous cell carcinoma (OSCC) is amongst the world’s top ten most common cancers. Diagnosis of cancer requires highly sensitive and specific diagnostic tools which can support untraceable hidden sites of OSCC, yet to be unleashed, for which plenty of biomarkers are identified; the most recommended biomarker detection medium for OSCC includes biological fluids, such as blood and saliva. Saliva holds a promising future in the search for new clinical biomarkers that are easily accessible, less complex, accurate, and cost effective as well as being a non-invasive technique to follow, by analysing the malignant cells’ molecular pathology obtained from saliva through proteomic, genomic and transcriptomic approaches. However, protein biomarkers provide an immense potential for developing novel marker-based assays for oral cancer, hence this current review offers an overall focus on the discovery of a panel of candidates as salivary protein biomarkers, as well as the proteomic tools used for their identification and their significance in early oral cancer detection.
Collapse
Affiliation(s)
- Rabia Sannam Khan
- Department of Oral Pathology, College of Dentistry, Baqai University, Super Highway, P.O. Box: 2407, Karachi 74600, Pakistan.
| | - Zohaib Khurshid
- Department of Prosthodontics and Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| | - Shazia Akhbar
- Department of Oral Pathology, Dow Dental College, Dow University of Heath Sciences (DUHS), Baba-E-Urdu Road, Karachi 74200, Pakistan.
| | - Syed Faraz Moin
- National Center for Proteomics, University of Karachi, University Road, Karachi 75270, Pakistan.
| |
Collapse
|
15
|
Kobyliak NM, Falalyeyeva TM, Kuryk OG, Beregova TV, Bodnar PM, Zholobak NM, Shcherbakov OB, Bubnov RV, Spivak MY. Antioxidative effects of cerium dioxide nanoparticles ameliorate age-related male infertility: optimistic results in rats and the review of clinical clues for integrative concept of men health and fertility. EPMA J 2015; 6:12. [PMID: 26097523 PMCID: PMC4475301 DOI: 10.1186/s13167-015-0034-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 05/08/2015] [Indexed: 02/03/2023]
Abstract
Background Male infertility has largely idiopathic, multifactorial origin. Oxidative stress is a major factor that affects spermatogenesis, in particular in aging. Cerium dioxide nanoparticles (CNPs) due to their antioxidative properties are promising to impact on the development of male infertility. The aims of this study were to investigate the effects of CNPs on fertility parameters in 24-month male rats and to overview relevant literature in the field of personalized treatments, predictive diagnosis, and preventive measures for male health and fertility. Methods We included 30 24-month-old male rats. After a week of adaptation to the standard diet, the rats were randomly divided into three groups with ten rats in each. Group 1 (controls) received only a standard diet. The rats of group 2 and 3 in adjunct to the standard diet during 10 days received intragastrically 10 % sodium citrate and citrate-coated CNPs in dose 1 mg/kg, respectively. We assessed sex hormones, epididymal sperm parameters and spermatogenesis, ultrasound, and morphological data of rat reproductive organs. Results After a 10-day administration of CNPs, we revealed significant decrease of lipid peroxidation product levels in serum and increase of catalase and SOD activity, associated with increase of sperm count (p < 0.001) and improvement in quantitative sperm parameters (motility, viability, and percentage of spermatozoa). We found no significant changes between sperm quantitative parameters in citrate-treated rats and controls and observed age-related decrease of activated Leydig cell number and focal atrophy of the seminiferous tubules. In CNP group, we observed regeneration of seminiferous tubules, increase number and activation of Leydig cells, and 2.5-fold significant increase of serum testosterone. Ultrasound data showed the slight increase of linear measurement and volume of rat testes in CNP group. Review highlights the benefits for predictive diagnosis, preventive measures, and personalized approaches to manage male infertility in the general concept of male health also related to aging. Conclusion Citrate-coated 2–5-nm CNPs lead to increase in sex hormones levels, sperm count, and quality, as well as the activation of spermatogenesis in 24-month-old male rats. Nanoceria demonstrated the perspectives to be an effective infertility treatment via reduction of oxidative stress in male reproductive organs, in particular in aging.
Collapse
Affiliation(s)
- Nazarii M Kobyliak
- Bogomolets National Medical University, T. Shevchenko boulevard, 13, Kyiv, 01601 Ukraine
| | - Tetyana M Falalyeyeva
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| | - Olena G Kuryk
- State Scientific Enterprise "Scientific Practical Center for Prophylactic and Clinical Medicine" State Management of Affairs Department, Kyiv, Ukraine, Verhnya str., 5, Kyiv, 01014 Ukraine
| | - Tetyana V Beregova
- Taras Shevchenko National University of Kyiv, Volodymyrska Str., 64/13, Kyiv, 01601 Ukraine
| | - Petro M Bodnar
- Bogomolets National Medical University, T. Shevchenko boulevard, 13, Kyiv, 01601 Ukraine
| | - Nadiya M Zholobak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03680 Ukraine
| | - Oleksandr B Shcherbakov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03680 Ukraine
| | - Rostyslav V Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03680 Ukraine ; Clinical Hospital 'Pheophania' of State Management of Affairs Department, Zabolotny Str., 21, Kyiv, 03680 Ukraine
| | - Mykola Ya Spivak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03680 Ukraine ; LCL "DIAPROF", Svitlycky Str., 35, Kyiv, 04123 Ukraine
| |
Collapse
|
16
|
Grech G, Zhan X, Yoo BC, Bubnov R, Hagan S, Danesi R, Vittadini G, Desiderio DM. EPMA position paper in cancer: current overview and future perspectives. EPMA J 2015; 6:9. [PMID: 25908947 PMCID: PMC4407842 DOI: 10.1186/s13167-015-0030-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/26/2015] [Indexed: 12/31/2022]
Abstract
At present, a radical shift in cancer treatment is occurring in terms of predictive, preventive, and personalized medicine (PPPM). Individual patients will participate in more aspects of their healthcare. During the development of PPPM, many rapid, specific, and sensitive new methods for earlier detection of cancer will result in more efficient management of the patient and hence a better quality of life. Coordination of the various activities among different healthcare professionals in primary, secondary, and tertiary care requires well-defined competencies, implementation of training and educational programs, sharing of data, and harmonized guidelines. In this position paper, the current knowledge to understand cancer predisposition and risk factors, the cellular biology of cancer, predictive markers and treatment outcome, the improvement in technologies in screening and diagnosis, and provision of better drug development solutions are discussed in the context of a better implementation of personalized medicine. Recognition of the major risk factors for cancer initiation is the key for preventive strategies (EPMA J. 4(1):6, 2013). Of interest, cancer predisposing syndromes in particular the monogenic subtypes that lead to cancer progression are well defined and one should focus on implementation strategies to identify individuals at risk to allow preventive measures and early screening/diagnosis. Implementation of such measures is disturbed by improper use of the data, with breach of data protection as one of the risks to be heavily controlled. Population screening requires in depth cost-benefit analysis to justify healthcare costs, and the parameters screened should provide information that allow an actionable and deliverable solution, for better healthcare provision.
Collapse
Affiliation(s)
- Godfrey Grech
- Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Division of Translational and Clinical Research I, Research Institute, National Cancer Center, Gyeonggi, 410-769 Republic of Korea
| | - Rostyslav Bubnov
- Clinical Hospital 'Pheophania' of State Management of Affairs Department, Kyiv, Ukraine ; Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Suzanne Hagan
- Dept of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Romano Danesi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Dominic M Desiderio
- Department of Neurology, University of Tennessee Center for Health Science, Memphis, USA
| |
Collapse
|