1
|
Sridharan N, Salem A, Little RA, Tariq M, Cheung S, Dubec MJ, Faivre-Finn C, Parker GJM, Porta N, O'Connor JPB. Measuring repeatability of dynamic contrast-enhanced MRI biomarkers improves evaluation of biological response to radiotherapy in lung cancer. Eur Radiol 2024:10.1007/s00330-024-10970-7. [PMID: 39122855 DOI: 10.1007/s00330-024-10970-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVES To measure dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) biomarker repeatability in patients with non-small cell lung cancer (NSCLC). To use these statistics to identify which individual target lesions show early biological response. MATERIALS AND METHODS A single-centre, prospective DCE-MRI study was performed between September 2015 and April 2017. Patients with NSCLC were scanned before standard-of-care radiotherapy to evaluate biomarker repeatability and two weeks into therapy to evaluate biological response. Volume transfer constant (Ktrans), extravascular extracellular space volume fraction (ve) and plasma volume fraction (vp) were measured at each timepoint along with tumour volume. Repeatability was assessed using a within-subject coefficient of variation (wCV) and repeatability coefficient (RC). Cohort treatment effects on biomarkers were estimated using mixed-effects models. RC limits of agreement revealed which individual target lesions changed beyond that expected with biomarker daily variation. RESULTS Fourteen patients (mean age, 67 years +/- 12, 8 men) had 22 evaluable lesions (12 primary tumours, 8 nodal metastases, 2 distant metastases). The wCV (in 8/14 patients) was between 9.16% to 17.02% for all biomarkers except for vp, which was 42.44%. Cohort-level changes were significant for Ktrans and ve (p < 0.001) and tumour volume (p = 0.002). Ktrans and tumour volume consistently showed the greatest number of individual lesions showing biological response. In distinction, no individual lesions had a real change in ve despite the cohort-level change. CONCLUSION Identifying individual early biological responders provided additional information to that derived from conventional cohort cohort-level statistics, helping to prioritise which parameters would be best taken forward into future studies. CLINICAL RELEVANCE STATEMENT Dynamic contrast-enhanced magnetic resonance imaging biomarkers Ktrans and tumour volume are repeatable and detect early treatment-induced changes at both cohort and individual lesion levels, supporting their use in further evaluation of radiotherapy and targeted therapeutics. KEY POINTS Few literature studies report quantitative imaging biomarker precision, by measuring repeatability or reproducibility. Several DCE-MRI biomarkers of lung cancer tumour microenvironment were highly repeatable. Repeatability coefficient measurements enabled lesion-specific evaluation of early biological response to therapy, improving conventional assessment.
Collapse
Affiliation(s)
- Nivetha Sridharan
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK.
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK.
| | - Ahmed Salem
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ross A Little
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Maira Tariq
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Susan Cheung
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Michael J Dubec
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - Corinne Faivre-Finn
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Geoffrey J M Parker
- Bioxydyn Ltd, Manchester, UK
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Nuria Porta
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - James P B O'Connor
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK.
- Division of Cancer Sciences, University of Manchester, Manchester, UK.
- Radiology Department, The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
2
|
Iyer KK, van Erp NP, Tauriello DV, Verheul HM, Poel D. Lost in translation: Revisiting the use of tyrosine kinase inhibitors in colorectal cancer. Cancer Treat Rev 2022; 110:102466. [DOI: 10.1016/j.ctrv.2022.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
|
3
|
Sprowls SA, Saralkar P, Arsiwala T, Adkins CE, Blethen KE, Pizzuti VJ, Shah N, Fladeland R, Lockman PR. A Review of Mathematics Determining Solute Uptake at the Blood-Brain Barrier in Normal and Pathological Conditions. Pharmaceutics 2021; 13:pharmaceutics13050756. [PMID: 34069733 PMCID: PMC8160855 DOI: 10.3390/pharmaceutics13050756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
The blood-brain barrier (BBB) limits movement of solutes from the lumen of the brain microvascular capillary system into the parenchyma. The unidirectional transfer constant, Kin, is the rate at which transport across the BBB occurs for individual molecules. Single and multiple uptake experiments are available for the determination of Kin for new drug candidates using both intravenous and in situ protocols. Additionally, the single uptake method can be used to determine Kin in heterogeneous pathophysiological conditions such as stroke, brain cancers, and Alzheimer's disease. In this review, we briefly cover the anatomy and physiology of the BBB, discuss the impact of efflux transporters on solute uptake, and provide an overview of the single-timepoint method for determination of Kin values. Lastly, we compare preclinical Kin experimental results with human parallels.
Collapse
Affiliation(s)
- Samuel A. Sprowls
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | - Pushkar Saralkar
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | - Tasneem Arsiwala
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | | | - Kathryn E. Blethen
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | - Vincenzo J. Pizzuti
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | - Neal Shah
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Department of Dermatology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Ross Fladeland
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
| | - Paul R. Lockman
- Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA;
- Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA; (S.A.S.); (P.S.); (T.A.); (K.E.B.); (V.J.P.); (R.F.)
- Correspondence: ; Tel.: +1-304-293-0944
| |
Collapse
|
4
|
Beaton L, Tregidgo HFJ, Znati SA, Forsyth S, Clarkson MJ, Bandula S, Chouhan M, Lowe HL, Zaw Thin M, Hague J, Sharma D, Pollok JM, Davidson BR, Raja J, Munneke G, Stuckey DJ, Bascal ZA, Wilde PE, Cooper S, Ryan S, Czuczman P, Boucher E, Hartley JA, Lewis AL, Jansen M, Meyer T, Sharma RA. VEROnA Protocol: A Pilot, Open-Label, Single-Arm, Phase 0, Window-of-Opportunity Study of Vandetanib-Eluting Radiopaque Embolic Beads (BTG-002814) in Patients With Resectable Liver Malignancies. JMIR Res Protoc 2019; 8:e13696. [PMID: 31579027 PMCID: PMC6777276 DOI: 10.2196/13696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Transarterial chemoembolization (TACE) is the current standard of care for patients with intermediate-stage hepatocellular carcinoma (HCC) and is also a treatment option for patients with liver metastases from colorectal cancer. However, TACE is not a curative treatment, and tumor progression occurs in more than half of the patients treated. Despite advances and technical refinements of TACE, including the introduction of drug-eluting beads-TACE, the clinical efficacy of TACE has not been optimized, and improved arterial therapies are required. OBJECTIVE The primary objectives of the VEROnA study are to evaluate the safety and tolerability of vandetanib-eluting radiopaque embolic beads (BTG-002814) in patients with resectable liver malignancies and to determine concentrations of vandetanib and the N-desmethyl metabolite in plasma and resected liver following treatment with BTG-002814. METHODS The VEROnA study is a first-in-human, open-label, single-arm, phase 0, window-of-opportunity study of BTG-002814 (containing 100 mg vandetanib) delivered transarterially, 7 to 21 days before surgery in patients with resectable liver malignancies. Eligible patients have a diagnosis of colorectal liver metastases, or HCC (Childs Pugh A), diagnosed histologically or radiologically, and are candidates for liver surgery. All patients are followed up for 28 days following surgery. Secondary objectives of this study are to evaluate the anatomical distribution of BTG-002814 on noncontrast-enhanced imaging, to evaluate histopathological features in the surgical specimen, and to assess changes in blood flow on dynamic contrast-enhanced magnetic resonance imaging following treatment with BTG-002814. Exploratory objectives of this study are to study blood biomarkers with the potential to identify patients likely to respond to treatment and to correlate the distribution of BTG-002814 on imaging with pathology by 3-dimensional modeling. RESULTS Enrollment for the study was completed in February 2019. Results of a planned interim analysis were reviewed by a safety committee after the first 3 patients completed follow-up. The recommendation of the committee was to continue the study without any changes to the dose or trial design, as there were no significant unexpected toxicities related to BTG-002814. CONCLUSIONS The VEROnA study is studying the feasibility of administering BTG-002814 to optimize the use of this novel technology as liver-directed therapy for patients with primary and secondary liver cancer. TRIAL REGISTRATION ClinicalTrial.gov NCT03291379; https://clinicaltrials.gov/ct2/show/NCT03291379. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/13696.
Collapse
Affiliation(s)
- Laura Beaton
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Henry F J Tregidgo
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Sami A Znati
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Sharon Forsyth
- Cancer Research UK University College London Cancer Trials Centre, London, United Kingdom
| | - Matthew J Clarkson
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Steven Bandula
- University College London Centre for Medical Imaging, University College London, London, United Kingdom
| | - Manil Chouhan
- University College London Centre for Medical Imaging, University College London, London, United Kingdom
| | - Helen L Lowe
- University College London Experimental Cancer Medicine Centre Good Clinical Laboratory Practice Facility, University College London, London, United Kingdom
| | - May Zaw Thin
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | - Julian Hague
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Dinesh Sharma
- Division of Transplantation and Immunology, Royal Free Hospital NHS Foundation Trust, London, United Kingdom
| | - Joerg-Matthias Pollok
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- Hepatopancreatobiliary Surgery and Liver Transplantation, Royal Free Hospital NHS Foundation Trust, London, United Kingdom
| | - Brian R Davidson
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- Hepatopancreatobiliary Surgery and Liver Transplantation, Royal Free Hospital NHS Foundation Trust, London, United Kingdom
| | - Jowad Raja
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Graham Munneke
- University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
| | | | | | | | | | | | | | - John A Hartley
- University College London Cancer Institute, University College London, London, United Kingdom
| | | | - Marnix Jansen
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Tim Meyer
- University College London Cancer Institute, University College London, London, United Kingdom
- Department of Oncology, Royal Free Hospital NHS Foundation Trust, London, United Kingdom
| | - Ricky A Sharma
- National Institute for Health Research University College London Hospitals Biomedical Centre, University College London Cancer Institute, London, United Kingdom
| |
Collapse
|
5
|
Goel G. Evolution of regorafenib from bench to bedside in colorectal cancer: Is it an attractive option or merely a "me too" drug? Cancer Manag Res 2018; 10:425-437. [PMID: 29563833 PMCID: PMC5844550 DOI: 10.2147/cmar.s88825] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is a major public health problem in the United States with an estimated 50,260 deaths in 2017. Over the past two decades, several agents have been approved by the US Food and Drug Administration (FDA) for the treatment of patients with metastatic CRC (mCRC). Regorafenib (BAY 73-4506) is a small-molecule multikinase inhibitor that was approved for the treatment of mCRC in 2012. This agent is a novel oral diphenylurea-based multikinase inhibitor that is active against several angiogenic receptor tyrosine kinases (RTKs; VEGFR-1, VEGFR-2, VEGFR-3, TIE-2), oncogenic RTKs (c-KIT, RET), stromal RTKs (PDGFR-B, FGFR-1), and intracellular signaling kinases (c-RAF/RAF-1, BRAF, BRAFV600E). Preclinical studies have documented its broad-spectrum activity against different solid tumor types including CRC. Phase I studies showed that it had an acceptable safety profile in advanced refractory mCRC. A subsequent Phase III trial (CORRECT) demonstrated significant clinical efficacy of regorafenib in patients with refractory or advanced mCRC, which eventually led to its FDA approval for the treatment of mCRC in September 2012. However, the drug was associated with significant toxicity in clinical practice when administered at the approved doses, which necessitated a thorough reassessment of its dosing schedule and toxicity profile. This review summarizes the development of regorafenib from the initial preclinical studies to the Phase III trials and critically examines the current clinical space occupied by regorafenib in the treatment of mCRC, at 5 years after its initial FDA approval.
Collapse
Affiliation(s)
- Gaurav Goel
- Division of Hematology-Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Ahn SY, Goo JM, Lee KH, Ha S, Paeng JC. Monitoring tumor response to the vascular disrupting agent CKD-516 in a rabbit VX2 intramuscular tumor model using PET/MRI: Simultaneous evaluation of vascular and metabolic parameters. PLoS One 2018; 13:e0192706. [PMID: 29438381 PMCID: PMC5811032 DOI: 10.1371/journal.pone.0192706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 01/29/2018] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES To determine whether the CKD-516 produces a significant change in vascular and metabolic parameters in PET/MRI. MATERIALS AND METHODS With institutional Animal Care and Use Committee approval, 18 VX2 carcinoma tumors implanted in bilateral back muscles of 9 rabbits were evaluated. Serial PET/MRI were performed before, 4 hours after and 1-week after vascular disrupting agent, CKD-516 at a dose of 0.7 mg/kg (treated group, n = 10) or saline (control group, n = 8) administration. PET/MRI-derived parameters and their interval changes were compared between the treated and control group by using the linear mixed model. Each parameter within each group was also compared by using the linear mixed model. RESULTS Changes of the volume transfer coefficient (Ktrans) and the initial area under the gadolinium concentration-time curve until 60 seconds (iAUC) in the treated group were significantly larger compared with those in the control group at 4-hour follow-up (mean, -39.91% vs. -6.04%, P = 0.018; and -49.71% vs. +6.23%, P = 0.013). Change of metabolic tumor volume (MTV) in the treated group was significantly smaller compared with that in the control group at 1-week follow-up (mean, +118.34% vs. +208.87%, P = 0.044). Serial measurements in the treated group revealed that Ktrans and iAUC decreased at 4-hour follow-up (P < 0.001) and partially recovered at 1-week follow-up (P = 0.001 and 0.024, respectively). MTV increased at a 4-hour follow-up (P = 0.038) and further increased at a 1-week follow-up (P < 0.001), while total lesion glycolysis (TLG) did not show a significant difference between the time points. SUVmax and SUVmean did not show significant interval changes between time points (P > 0.05). CONCLUSIONS PET/MRI is able to monitor the changes of vascular and metabolic parameters at different time points simultaneously, and confirmed that vascular changes precede the metabolic changes by VDA, CKD-516.
Collapse
Affiliation(s)
- Su Yeon Ahn
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Jin Mo Goo
- Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
- * E-mail:
| | - Kyung Hee Lee
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - Seunggyun Ha
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Antiangiogenic tyrosine kinase inhibitors in colorectal cancer: is there a path to making them more effective? Cancer Chemother Pharmacol 2017; 80:661-671. [PMID: 28721456 DOI: 10.1007/s00280-017-3389-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/10/2017] [Indexed: 01/07/2023]
Abstract
Antiangiogenic therapy has a proven survival benefit in metastatic colorectal cancer. Inhibition of the VEGF pathway using a variety of extracellular antibody approaches has clear benefit in combination with chemotherapy, while intracellular blockade using tyrosine kinase inhibitors (TKIs) such as sorafenib and regorafenib has had more limited success. Pharmacodynamic modeling using modalities such as DCE-MRI indicates potent antiangiogenic effects of these TKIs, yet numerous combination therapies, primarily with chemotherapy, have failed to demonstrate an additive benefit. The sole comparative study of a single agent TKI against placebo showed a survival benefit of regorafenib in patients with advanced, refractory disease. Preclinical data demonstrate synergy between antiantiogenic TKIs and targeted interventions including autophagy inhibition, and together with a renewed effort to define markers of susceptibility, such combinations may be a way to improve the limited efficacy of this once-promising drug class.
Collapse
|
8
|
Chen BB, Hsu CY, Yu CW, Liang PC, Hsu C, Hsu CH, Cheng AL, Shih TTF. Early perfusion changes within 1 week of systemic treatment measured by dynamic contrast-enhanced MRI may predict survival in patients with advanced hepatocellular carcinoma. Eur Radiol 2016; 27:3069-3079. [PMID: 27957638 DOI: 10.1007/s00330-016-4670-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To correlate early changes in the parameters of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) within 1 week of systemic therapy with overall survival (OS) in patients with advanced hepatocellular carcinoma (HCC). METHODS Eighty-nine patients with advanced HCC underwent DCE-MRI before and within 1 week following systemic therapy. The relative changes of six DCE-MRI parameters (Peak, Slope, AUC, Ktrans, Kep and Ve) of the tumours were correlated with OS using the Kaplan-Meier model and the double-sided log-rank test. RESULTS All patients died and the median survival was 174 days. Among the six DCE-MRI parameters, reductions in Peak, AUC, and Ktrans, were significantly correlated with one another. In addition, patients with a high Peak reduction following treatment had longer OS (P = 0.023) compared with those with a low Peak reduction. In multivariate analysis, a high Peak reduction was an independent favourable prognostic factor in all patients [hazard ratio (HR), 0.622; P = 0.038] after controlling for age, sex, treatment methods, tumour size and stage, and Eastern Cooperative Oncology Group performance status. CONCLUSIONS Early perfusion changes within 1 week following systemic therapy measured by DCE-MRI may aid in the prediction of the clinical outcome in patients with advanced HCC. KEY POINTS • DCE-MRI is helpful to evaluate perfusion changes of HCC after systemic treatment. • Early perfusion changes within 1 week after treatment may predict overall survival. • High Peak reduction was an independent favourable prognostic factor after systemic treatment.
Collapse
Affiliation(s)
- Bang-Bin Chen
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Chao-Yu Hsu
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan.,Department of Radiology, Taipei Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Chih-Wei Yu
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Po-Chin Liang
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Chiun Hsu
- Department of Oncology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Chih-Hung Hsu
- Department of Oncology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Tiffany Ting-Fang Shih
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan. .,Department of Medical Imaging, Taipei City Hospital, Taipei City, Taiwan. .,Department of Medical Imaging, National Taiwan University Hospital, No 7, Chung-Shan South Rd, Taipei, 10016, Taiwan.
| |
Collapse
|
9
|
Abstract
Cancer therapy is mainly based on different combinations of surgery, radiotherapy, and chemotherapy. Additionally, targeted therapies (designed to disrupt specific tumor hallmarks, such as angiogenesis, metabolism, proliferation, invasiveness, and immune evasion), hormonotherapy, immunotherapy, and interventional techniques have emerged as alternative oncologic treatments. Conventional imaging techniques and current response criteria do not always provide the necessary information regarding therapy success particularly to targeted therapies. In this setting, MR imaging offers an attractive combination of anatomic, physiologic, and molecular information, which may surpass these limitations, and is being increasingly used for therapy response assessment.
Collapse
|
10
|
Dynamic contrast enhanced MR imaging for evaluation of angiogenesis of hepatocellular nodules in liver cirrhosis in N-nitrosodiethylamine induced rat model. Eur Radiol 2016; 27:2086-2094. [PMID: 27488851 DOI: 10.1007/s00330-016-4505-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/12/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE To investigate whether dynamic contrast -enhanced MRI (DCE-MRI) can distinguish the type of liver nodules in a rat model with N-nitrosodiethylamine- induced cirrhosis. METHODS Liver nodules in cirrhosis were induced in 60 male Wistar rats via 0.01 % N-nitrosodiethylamine in the drinking water for 35-100 days. The nodules were divided into three groups: regenerative nodule (RN), dysplastic nodule (DN), and hepatocellular carcinoma (HCC). DCE-MRI was performed, and parameters including transfer constant (Ktrans), rate constant (Kep), extravascular extracellular space volume fraction (Ve), and initial area under the contrast concentration versus time curve (iAUC) were measured and compared. RESULTS The highest Ktrans and iAUC values were seen in HCC, followed by DN and RN (all P < 0.05). The area under the receiver operating characteristic curve (AUROC) for DN and HCC were 0.738 and 0.728 for Ktrans and iAUC, respectively. The AUROC for HCC were 0.850 and 0.840 for Ktrans and iAUC, respectively. Ordinal logistic regression analysis showed that Ktrans had a high goodness of fit (0.970, 95 % confidence interval, 13.751-24.958). CONCLUSION DCE-MRI is a promising method to differentiate of liver nodules. Elevated Ktrans suggested that the nodules may be transformed into HCC. KEY POINTS • DCE-MRI is promising for differentiating among RN, DN, and HCC • K trans and iAUC positively correlated with malignancy degree of liver nodules • Elevated K trans suggests that the nodules may be transformed into HCC.
Collapse
|
11
|
Khalifa F, Soliman A, El-Baz A, Abou El-Ghar M, El-Diasty T, Gimel'farb G, Ouseph R, Dwyer AC. Models and methods for analyzing DCE-MRI: a review. Med Phys 2015; 41:124301. [PMID: 25471985 DOI: 10.1118/1.4898202] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To present a review of most commonly used techniques to analyze dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), discusses their strengths and weaknesses, and outlines recent clinical applications of findings from these approaches. METHODS DCE-MRI allows for noninvasive quantitative analysis of contrast agent (CA) transient in soft tissues. Thus, it is an important and well-established tool to reveal microvasculature and perfusion in various clinical applications. In the last three decades, a host of nonparametric and parametric models and methods have been developed in order to quantify the CA's perfusion into tissue and estimate perfusion-related parameters (indexes) from signal- or concentration-time curves. These indexes are widely used in various clinical applications for the detection, characterization, and therapy monitoring of different diseases. RESULTS Promising theoretical findings and experimental results for the reviewed models and techniques in a variety of clinical applications suggest that DCE-MRI is a clinically relevant imaging modality, which can be used for early diagnosis of different diseases, such as breast and prostate cancer, renal rejection, and liver tumors. CONCLUSIONS Both nonparametric and parametric approaches for DCE-MRI analysis possess the ability to quantify tissue perfusion.
Collapse
Affiliation(s)
- Fahmi Khalifa
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292 and Electronics and Communication Engineering Department, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Soliman
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292
| | - Ayman El-Baz
- BioImaging Laboratory, Department of Bioengineering, University of Louisville, Louisville, Kentucky 40292
| | - Mohamed Abou El-Ghar
- Radiology Department, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Tarek El-Diasty
- Radiology Department, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Georgy Gimel'farb
- Department of Computer Science, University of Auckland, Auckland 1142, New Zealand
| | - Rosemary Ouseph
- Kidney Transplantation-Kidney Disease Center, University of Louisville, Louisville, Kentucky 40202
| | - Amy C Dwyer
- Kidney Transplantation-Kidney Disease Center, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
12
|
Jiang Y, Allen D, Kersemans V, Devery AM, Bokobza SM, Smart S, Ryan AJ. Acute vascular response to cediranib treatment in human non-small-cell lung cancer xenografts with different tumour stromal architecture. Lung Cancer 2015; 90:191-8. [PMID: 26323213 PMCID: PMC4641245 DOI: 10.1016/j.lungcan.2015.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/11/2015] [Accepted: 08/15/2015] [Indexed: 01/25/2023]
Abstract
We studied cediranib, a VEGFR tyrosine kinase inhibitor in lung cancer xenografts. Gadolinium-enhanced DCE-MRI was used to study acute vascular responses. Acute vascular response was associated with tumour stromal architecture. Tumour growth inhibition by cediranib was linked to acute vascular response. Acute vascular changes are a potential predictive marker of response to cediranib.
Objectives Tumours can be categorised based on their stromal architecture into tumour vessel and stromal vessel phenotypes, and the phenotypes have been suggested to define tumour response to chronic treatment with a VEGFR2 antibody. However, it is unclear whether the vascular phenotypes of tumours associate with acute vascular response to VEGFR tyrosine kinase inhibitors (TKI), or whether the early changes in vascular function are associated with subsequent changes in tumour size. This study was sought to address these questions by using xenograft models of human non-small cell lung cancer (NSCLC) representing stromal vessel phenotype (Calu-3) and tumour vessel phenotype (Calu-6), respectively. Methods For dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), nude mice bearing established Calu-3 or Calu-6 xenografts were treated with a potent pan-VEGFR TKI, cediranib (6 mg/kg), at 0 h and 22 h. DCE-MRI was performed 2 h before the first dose and 2 h after the second dose of cediranib to examine acute changes in tumour vessel perfusion. Tumours were harvested for hypoxia detection by CA9 immunohistochemistry. For tumour growth study, mice carrying established Calu-3 or Calu-6 tumours were treated with cediranib once daily for 5 days. Results Twenty-four hours after cediranib administration, the perfusion of Calu-3 tumours was markedly reduced, with a significant increase in hypoxia. In contrast, neither perfusion nor hypoxia was significantly affected in Calu-6 tumours. Tumour regressions were induced in Calu-3 xenografts, but not in Calu-6 xenografts, although there was a trend towards tumour growth inhibition after 5 days of cediranib treatment. Conclusion These findings suggest that tumour stromal architecture may associate with acute tumour vascular response to VEGFR TKI, and this acute tumour vascular response may be a promising early predictive marker of response to VEGFR TKI in NSCLC.
Collapse
Affiliation(s)
- Yanyan Jiang
- CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Danny Allen
- CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Veerle Kersemans
- CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Aoife M Devery
- CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Sivan M Bokobza
- CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Sean Smart
- CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Anderson J Ryan
- CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom.
| |
Collapse
|
13
|
Joo I, Lee JM, Grimm R, Han JK, Choi BI. Monitoring Vascular Disrupting Therapy in a Rabbit Liver Tumor Model: Relationship between Tumor Perfusion Parameters at IVIM Diffusion-weighted MR Imaging and Those at Dynamic Contrast-enhanced MR Imaging. Radiology 2015. [PMID: 26200601 DOI: 10.1148/radiol.2015141974] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To investigate whether perfusion-related intravoxel incoherent motion (IVIM) diffusion-weighted (DW) magnetic resonance (MR) imaging parameters correlate with dynamic contrast material-enhanced MR imaging parameters in between-subject and/or within-subject longitudinal settings for monitoring the therapeutic effects of a vascular disrupting agent (VDA) (CKD-516) in rabbit VX2 liver tumors. MATERIALS AND METHODS With institutional Animal Care and Use Committee approval, 21 VX2 liver tumor-bearing rabbits (treated, n = 15; control, n = 6) underwent IVIM DW imaging with 12 b values (0-800 sec/mm(2)) and dynamic contrast-enhanced MR imaging performed before (baseline) CKD-516 administration and 4 hours, 24 hours, and 7 days after administration. Perfusion-related IVIM DW imaging parameters of the tumors, including the pseudodiffusion coefficient (D*) and perfusion fraction (f), as well as dynamic contrast-enhanced MR imaging parameters, including the volume transfer coefficient (K(trans)) and initial area under the gadolinium concentration-time curve until 60 seconds (iAUC), were measured. IVIM DW imaging parameters were correlated with dynamic contrast-enhanced MR imaging parameters by using Pearson correlation analysis between subjects at each given time and by using a linear mixed model for within-subject longitudinal data. RESULTS In the treated group, D*, f, K(trans), and iAUC significantly decreased (-40.7% to -26.3%) at 4-hour follow-up compared with these values in the control group (-6.9% to +5.9%) (P < .05). For longitudinal monitoring of CKD-516 treatment, D* and f showed significant positive correlations with K(trans) and iAUC (P = .004 and P = .02; P < .001 and P = .006, respectively), while no significant correlations were observed between IVIM DW imaging and dynamic contrast-enhanced MR imaging parameters between subjects at any given time (P > .05). CONCLUSION In a rabbit tumor model, perfusion parameters serially quantified with IVIM DW imaging can be used as alternatives to dynamic contrast-enhanced MR imaging parameters in reflecting the dynamic changes in tumor perfusion during the within-subject longitudinal monitoring of VDA treatment.
Collapse
Affiliation(s)
- Ijin Joo
- From the Department of Radiology (I.J., J.M.L., J.K.H., B.I.C.) and Institute of Radiation Medicine (J.M.L., J.K.H., B.I.C.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea; and Siemens, Healthcare Sector, Erlangen, Germany (R.G.)
| | - Jeong Min Lee
- From the Department of Radiology (I.J., J.M.L., J.K.H., B.I.C.) and Institute of Radiation Medicine (J.M.L., J.K.H., B.I.C.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea; and Siemens, Healthcare Sector, Erlangen, Germany (R.G.)
| | - Robert Grimm
- From the Department of Radiology (I.J., J.M.L., J.K.H., B.I.C.) and Institute of Radiation Medicine (J.M.L., J.K.H., B.I.C.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea; and Siemens, Healthcare Sector, Erlangen, Germany (R.G.)
| | - Joon Koo Han
- From the Department of Radiology (I.J., J.M.L., J.K.H., B.I.C.) and Institute of Radiation Medicine (J.M.L., J.K.H., B.I.C.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea; and Siemens, Healthcare Sector, Erlangen, Germany (R.G.)
| | - Byung Ihn Choi
- From the Department of Radiology (I.J., J.M.L., J.K.H., B.I.C.) and Institute of Radiation Medicine (J.M.L., J.K.H., B.I.C.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea; and Siemens, Healthcare Sector, Erlangen, Germany (R.G.)
| |
Collapse
|
14
|
Zhang W, Kong X, Wang ZJ, Luo S, Huang W, Zhang LJ. Dynamic Contrast-Enhanced Magnetic Resonance Imaging with Gd-EOB-DTPA for the Evaluation of Liver Fibrosis Induced by Carbon Tetrachloride in Rats. PLoS One 2015; 10:e0129621. [PMID: 26076199 PMCID: PMC4468155 DOI: 10.1371/journal.pone.0129621] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 05/11/2015] [Indexed: 01/09/2023] Open
Abstract
Purpose To investigate the utility of dynamic contrast-enhanced MRI (DCE-MRI) with Gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) for detecting liver fibrosis induced by carbon tetrachloride (CCl4) in rats. Methods This study was approved by the institutional animal care and use committee. Liver fibrosis in rats was induced by intraperitoneal injection of 1 mL/kg 50% CCl4 twice a week for 4-13 weeks. Control rats were injected with saline. Liver fibrosis was graded using the Metaviar score: no fibrosis (F0), mild fibrosis (F1-F2) and advanced fibrosis (F3-F4). DCE-MRI with Gd-EOB-DTPA was performed for all rats. Ktrans, Kep, Ve and iAUC of the liver parenchyma were measured. Relative enhancement (RE) value of the liver was calculated on T1-weighted images at 15, 20 and 25 min after Gd-EOB-DTPA administration. Results Thirty-five rats were included: no fibrosis (n=13), mild fibrosis (n=11) and advanced fibrosis (n=11). Ktrans and iAUC values were highest in advanced fibrosis group and lowest in no fibrosis group (P<0.05). The area under the receiver operating characteristic curve (AUROC) for fibrosis (stages F1 and greater) were 0.773 and 0.882 for Ktrans and iAUC, respectively. AUROC for advanced fibrosis were 0.835 and 0.867 for Ktrans and iAUC, respectively. Kep and RE values were not able to differentiate fibrosis stages (all P>0.05). Conclusion Ktrans and iAUC obtained from DCE-MRI with Gd-EOB-DTPA are useful for the detection and staging of rat liver fibrosis induced by CCl4.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Xiang Kong
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Zhen J. Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States of America
| | - Song Luo
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Wei Huang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
- * E-mail: (WH); (LJZ)
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China
- * E-mail: (WH); (LJZ)
| |
Collapse
|
15
|
De Robertis R, Tinazzi Martini P, Demozzi E, Puntel G, Ortolani S, Cingarlini S, Ruzzenente A, Guglielmi A, Tortora G, Bassi C, Pederzoli P, D’Onofrio M. Prognostication and response assessment in liver and pancreatic tumors: The new imaging. World J Gastroenterol 2015; 21:6794-6808. [PMID: 26078555 PMCID: PMC4462719 DOI: 10.3748/wjg.v21.i22.6794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023] Open
Abstract
Diffusion-weighted imaging (DWI), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and perfusion computed tomography (CT) are technical improvements of morphologic imaging that can evaluate functional properties of hepato-bilio-pancreatic tumors during conventional MRI or CT examinations. Nevertheless, the term “functional imaging” is commonly used to describe molecular imaging techniques, as positron emission tomography (PET) CT/MRI, which still represent the most widely used methods for the evaluation of functional properties of solid neoplasms; unlike PET or single photon emission computed tomography, functional imaging techniques applied to conventional MRI/CT examinations do not require the administration of radiolabeled drugs or specific equipments. Moreover, DWI and DCE-MRI can be performed during the same session, thus providing a comprehensive “one-step” morphological and functional evaluation of hepato-bilio-pancreatic tumors. Literature data reveal that functional imaging techniques could be proposed for the evaluation of these tumors before treatment, given that they may improve staging and predict prognosis or clinical outcome. Microscopic changes within neoplastic tissues induced by treatments can be detected and quantified with functional imaging, therefore these techniques could be used also for post-treatment assessment, even at an early stage. The aim of this editorial is to describe possible applications of new functional imaging techniques apart from molecular imaging to hepatic and pancreatic tumors through a review of up-to-date literature data, with a particular emphasis on pathological correlations, prognostic stratification and post-treatment monitoring.
Collapse
|
16
|
Abstract
Liver perfusion magnetic resonance (MR) imaging is currently being actively investigated as a functional imaging technique that provides physiologic information on the microcirculation and microenvironment of liver tumors and the underlying liver. It has gained importance in light of antiangiogenic therapy for hepatocellular carcinoma and colorectal liver metastases. This article explains the various model-free and model-based approaches for liver perfusion MR imaging and their relative clinical utility. Relevant published works are summarized for each approach so that the reader can understand their relative strengths and weaknesses, to make an informed choice when performing liver perfusion MR imaging studies.
Collapse
Affiliation(s)
- Choon Hua Thng
- Duke-NUS Graduate Medical School, Singapore 169857, Republic of Singapore; Department of Oncologic Imaging, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Republic of Singapore
| | - Tong San Koh
- Department of Oncologic Imaging, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Republic of Singapore; Center for Quantitative Biology, Duke-NUS Graduate Medical School, Singapore 169857, Republic of Singapore
| | - David Collins
- Cancer Research UK Cancer Imaging Centre, Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden Hospital, Downs Road, Sutton SM2 5PT, UK.
| |
Collapse
|
17
|
García-Figueiras R, Padhani AR, Beer AJ, Baleato-González S, Vilanova JC, Luna A, Oleaga L, Gómez-Caamaño A, Koh DM. Imaging of Tumor Angiogenesis for Radiologists--Part 2: Clinical Utility. Curr Probl Diagn Radiol 2015; 44:425-36. [PMID: 25863438 DOI: 10.1067/j.cpradiol.2015.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 12/26/2022]
Abstract
Angiogenesis is a key cancer hallmark involved in tumor growth and metastasis development. Angiogenesis and tumor microenvironment significantly influence the response of tumors to therapies. Imaging techniques have changed our understanding of the process of angiogenesis, the resulting vascular performance, and the tumor microenvironment. This article reviews the status and potential clinical value of the imaging modalities used to assess the status of tumor vasculature in vivo, before, during, and after treatment.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- Department of Radiology, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England, UK
| | - Ambros J Beer
- Klinik für Nuklearmedizin, Universitätsklinikum Ulm; Ulm, Germany
| | - Sandra Baleato-González
- Department of Radiology, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Joan C Vilanova
- Department of Radiology, Clínica Girona, IDI, University of Girona, Girona, Spain
| | - Antonio Luna
- Advanced Medical Imaging, Clinica Las Nieves, SERCOSA (Servicio Radiologia Computerizada), Grupo Health Time, Jaén, Spain; Department of Radiology, Case Western Reserve University, Cleveland, OH
| | - Laura Oleaga
- Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain
| | - Antonio Gómez-Caamaño
- Department of Radiotherapy, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Dow-Mu Koh
- Functional Imaging, Royal Marsden Hospital, Sutton, Surrey, England, UK
| |
Collapse
|
18
|
Johnston RA, Rawling T, Chan T, Zhou F, Murray M. Selective Inhibition of Human Solute Carrier Transporters by Multikinase Inhibitors. Drug Metab Dispos 2014; 42:1851-7. [DOI: 10.1124/dmd.114.059097] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
19
|
Mross K, Büchert M, Frost A, Medinger M, Stopfer P, Studeny M, Kaiser R. Vascular effects, efficacy and safety of nintedanib in patients with advanced, refractory colorectal cancer: a prospective phase I subanalysis. BMC Cancer 2014; 14:510. [PMID: 25012508 PMCID: PMC4105047 DOI: 10.1186/1471-2407-14-510] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 07/04/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Nintedanib is a potent, oral angiokinase inhibitor that targets VEGF, PDGF and FGF signalling, as well as RET and Flt3. The maximum tolerated dose of nintedanib was evaluated in a phase I study of treatment-refractory patients with advanced solid tumours. In this preplanned subanalysis, the effect of nintedanib on the tumour vasculature, along with efficacy and safety, was assessed in 30 patients with colorectal cancer (CRC). METHODS Patients with advanced CRC who had failed conventional treatment, or for whom no therapy of proven efficacy existed, were treated with nintedanib ranging from 50-450 mg once-daily (n = 14) or 150-250 mg twice-daily (n = 16) for 28 days. After a 1-week rest, further courses were permitted in the absence of progression or undue toxicity. The primary objective was the effect on the tumour vasculature using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and expressed as the initial area under the DCE-MRI contrast agent concentration-time curve after 60 seconds (iAUC60) or the volume transfer constant between blood plasma and extravascular extracellular space (Ktrans). RESULTS Patients received a median of 4.0 courses (range: 1-13). Among 21 evaluable patients, 14 (67%) had a ≥40% reduction from baseline in Ktrans and 13 (62%) had a ≥40% decrease from baseline in iAUC60, representing clinically relevant effects on tumour blood flow and permeability, respectively. A ≥40% reduction from baseline in Ktrans was positively associated with non-progressive tumour status (Fisher's exact: p = 0.0032). One patient achieved a partial response at 250 mg twice-daily and 24 (80%) achieved stable disease lasting ≥8 weeks. Time to tumour progression (TTP) at 4 months was 26% and median TTP was 72.5 days (95% confidence interval: 65-114). Common drug-related adverse events (AEs) included nausea (67%), vomiting (53%) and diarrhoea (40%); three patients experienced drug-related AEs ≥ grade 3. Four patients treated with nintedanib once-daily had an alanine aminotransferase and/or aspartate aminotransferase increase ≥ grade 3. No increases > grade 2 were seen in the twice-daily group. CONCLUSIONS Nintedanib modulates tumour blood flow and permeability in patients with advanced, refractory CRC, while achieving antitumour activity and maintaining an acceptable safety profile.
Collapse
Affiliation(s)
- Klaus Mross
- Tumor Biology Center, Department of Medical Oncology, Breisacherstrasse 117, D-79106 Freiburg in Breisgau, Germany
| | - Martin Büchert
- Magnetic Resonance Development and Application Center, Department of Radiology, University Medical Center Freiburg, Freiburg, Germany
| | - Annette Frost
- Tumor Biology Center, Department of Medical Oncology, Breisacherstrasse 117, D-79106 Freiburg in Breisgau, Germany
| | - Michael Medinger
- Tumor Biology Center, Department of Medical Oncology, Breisacherstrasse 117, D-79106 Freiburg in Breisgau, Germany
| | - Peter Stopfer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Matus Studeny
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Rolf Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
20
|
Fennessy FM, McKay RR, Beard CJ, Taplin ME, Tempany CM. Dynamic contrast-enhanced magnetic resonance imaging in prostate cancer clinical trials: potential roles and possible pitfalls. Transl Oncol 2014; 7:120-9. [PMID: 24772215 PMCID: PMC3998683 DOI: 10.1593/tlo.13922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 12/21/2022] Open
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) evaluates the tissue microvasculature and may have a role in assessing and predicting therapeutic response in prostate cancer (PCa). In this review, we review principles of DCE-MRI and present the potential quantitative information that can be obtained. We discuss how it may be used as a biomarker for treatment with antiangiogenic and antivascular agents and potentially identify patients with PCa who may benefit from this form of therapy. Likewise, DCE-MRI may play a role in assessing response to combined androgen deprivation therapy and radiation therapy and theoretically could be a prognostic biomarker in evaluating second-generation hormone therapies. We also address the challenges of using DCE-MRI in PCa clinical trials and discuss the difficulties with standardization of this methodology to allow for biomarker validation, with particular reference to PCa.
Collapse
Affiliation(s)
- Fiona M Fennessy
- Department of Radiology, Brigham and Women's Hospital, Boston, MA ; Department of Radiology, Dana-Farber Cancer Institute, Boston, MA
| | - Rana R McKay
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Clair J Beard
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Clare M Tempany
- Department of Radiology, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
21
|
Mross K, Richly H, Fischer R, Scharr D, Büchert M, Stern A, Gille H, Audoly LP, Scheulen ME. First-in-human phase I study of PRS-050 (Angiocal), an Anticalin targeting and antagonizing VEGF-A, in patients with advanced solid tumors. PLoS One 2013; 8:e83232. [PMID: 24349470 PMCID: PMC3862718 DOI: 10.1371/journal.pone.0083232] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/30/2013] [Indexed: 01/17/2023] Open
Abstract
Background To report the nonrandomized first-in-human phase I trial of PRS-050, a novel, rationally engineered Anticalin based on human tear lipocalin that targets and antagonizes vascular endothelial growth factor A (VEGF-A). Methods Patients with advanced solid tumors received PRS-050 at 0.1 mg/kg to 10 mg/kg by IV in successive dosing cohorts according to the 3+3 escalation scheme. The primary end point was safety. Results Twenty-six patients were enrolled; 25 were evaluable. Two patients experienced dose-limiting toxicity, comprising grade (G) 3 hypertension and G3 pyrexia, respectively. The maximum tolerated dose was not reached. Most commonly reported treatment-emergent adverse events (AEs) included chills (52%; G3, 4%), fatigue (52%; G3, 4%), hypertension (44%; G3, 16%), and nausea (40%, all G1/2). No anti–PRS-050 antibodies following multiple administration of the drug were detected. PRS-050 showed dose-proportional pharmacokinetics (PK), with a terminal half-life of approximately 6 days. Free VEGF-A was detectable at baseline in 9/25 patients, becoming rapidly undetectable after PRS-050 infusion for up to 3 weeks. VEGF-A/PRS-050 complex was detectable for up to 3 weeks at all dose levels, including in patients without detectable baseline-free VEGF-A. We also detected a significant reduction in circulating matrix metalloproteinase 2, suggesting this end point could be a pharmacodynamic (PD) marker of the drug’s activity. Conclusions PRS-050, a novel Anticalin with high affinity for VEGF-A, was well-tolerated when administered at the highest dose tested, 10 mg/kg. Based on target engagement and PK/PD data, the recommended phase II dose is 5 mg/kg every 2 weeks administered as a 120-minute infusion. Trial Registration ClinicalTrials.gov NCT01141257 http://clinicaltrials.gov/ct2/show/NCT01141257
Collapse
Affiliation(s)
- Klaus Mross
- Klinik für Tumorbiologie, Albert-Ludwigs Universität, Freiburg, Germany
- * E-mail:
| | - Heike Richly
- Department of Medical Oncology, West German Cancer Center, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Richard Fischer
- Department of Gastroenterology, University Medical Center, Freiburg, German
| | - Dirk Scharr
- Klinik für Tumorbiologie, Albert-Ludwigs Universität, Freiburg, Germany
| | - Martin Büchert
- Magnetic Resonance Development and Application Center, University Medical Center, Freiburg, Germany
| | | | | | | | - Max E. Scheulen
- Department of Medical Oncology, West German Cancer Center, University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
22
|
Abstract
Anatomical-based imaging is used widely for the evaluation of diffuse and focal liver, including detection, characterization, and therapy response assessment. However, a limitation of anatomical-based imaging is that structural changes may occur relatively late in a disease process. By applying conventional anatomical-imaging methods in a more functional manner, specific pathophysiologic alterations of the liver may be assessed and quantified. There has been an increasing interest in both the clinical and research settings, with the expectation that functional-imaging techniques may help solve common diagnostic dilemmas that conventional imaging alone cannot. This review considers the most common functional magnetic resonance imaging, computed tomography, and ultrasound imaging techniques that may be applied to the liver.
Collapse
Affiliation(s)
- Vicky Goh
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| | | | | |
Collapse
|
23
|
Scoazec JY. Angiogenesis in neuroendocrine tumors: therapeutic applications. Neuroendocrinology 2013; 97:45-56. [PMID: 22538258 DOI: 10.1159/000338371] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 03/18/2012] [Indexed: 01/21/2023]
Abstract
The considerable research efforts devoted to the understanding of the mechanisms of tumor angiogenesis have resulted in the development of targeted anti-angiogenic therapies and finally in their introduction in clinical practice. Neuroendocrine tumors (NETs), which are characterized by a high vascular supply and a strong expression of VEGF-A, one of the most potent pro-angiogenic factors, are an attractive indication for these new treatments. However, several lines of evidence show that the dense vascular networks associated with low-grade NETs are more likely to be a marker of differentiation than a marker of aggressiveness, as in other epithelial tumors. These observations form the basis for the so-called 'neuroendocrine paradox', according to which the most vascularized are the most differentiated and the less angiogenic NETs. This must be kept in mind when discussing the role of anti-angiogenic strategies in the treatment of NETs. Nevertheless, several targeted therapies, with direct or indirect anti-angiogenic properties, including anti-VEGF antibodies, tyrosine kinase inhibitors (sunitinib) and mTOR inhibitors (everolimus), have recently proven to be of clinical benefit. In addition, some drugs already used in NET treatment, such as somatostatin analogues and interferon-α, may also have anti-angiogenic properties. The main challenges for the next future are to validate biomarkers for the selection of patients and the prediction of their response to refine the indications of anti-angiogenic targeted therapies and to overcome the mechanisms of resistance, which explain the limited duration of action of most of these treatments.
Collapse
Affiliation(s)
- Jean-Yves Scoazec
- Service d'Anatomie Pathologique, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
24
|
Balyasnikova S, Löfgren J, de Nijs R, Zamogilnaya Y, Højgaard L, Fischer BM. PET/MR in oncology: an introduction with focus on MR and future perspectives for hybrid imaging. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2012; 2:458-474. [PMID: 23145362 PMCID: PMC3484424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/21/2012] [Indexed: 06/01/2023]
Abstract
After more than 20 years of research, a fully integrated PET/MR scanner was launched in 2010 enabling simultaneous acquisition of PET and MR imaging. Currently, no clinical indication for combined PET/MR has been established, however the expectations are high. In this paper we will discuss some of the challenges inherent in this new technology, but focus on potential applications for simultaneous PET/MR in the field of oncology. Methods and tracers for use with the PET technology will be familiar to most readers of this journal; thus this paper aims to provide a short and basic introduction to a number of different MRI techniques, such as DWI-MR (diffusion weighted imaging MR), DCE-MR (dynamic contrast enhanced MR), MRS (MR spectroscopy) and MR for attenuation correction of PET. All MR techniques presented in this paper have shown promising results in the treatment of patients with solid tumors and could be applied together with PET increasing the amount of information about the tissues of interest. The potential clinical benefit of applying PET/MR in staging, radiotherapy planning and treatment evaluation in oncology, as well as the research perspectives for the use of PET/MR in the development of new tracers and drugs will be discussed.
Collapse
Affiliation(s)
- Svetlana Balyasnikova
- Department of Radiology, The N. N. Blokhin Cancer Research Center, Russian Academy of Medical Sciences 24, Kashirskoe Shosse, Moscow, 115478, Russia
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
INTRODUCTION Regorafenib (BAY 73-4506) is a novel, orally active, diphenylurea multikinase inhibitor of VEGFR1-3, c-KIT, TIE-2, PDGFR-β, FGFR-1, RET, RAF-1, BRAF and p38 MAP kinase. AREAS COVERED This review covers the preclinical development of regorafenib as well as the pivotal Phase I studies. The safety profile of regorafenib is discussed in context with other oral multikinase inhibitors bearing a similar target profile. Current clinical developments, especially in colorectal cancer (CRC) and gastrointestinal stromal tumor (GIST), are addressed. Open questions on clinically useful biomarkers predicting response with regard to a personalized therapy strategy are also being discussed. EXPERT OPINION Regorafenib (BAY 73-4506) is a novel, orally active multikinase inhibitor that is well tolerated in preclinical mouse models as well as clinically according to Phase I - III trials performed. The toxicity profile is comparable with other oral multikinase inhibitors with similar molecular targets. Regorafenib has promising antineoplastic activity in various tumor types. Two large, randomized Phase III pivotal registration studies in patients with GIST and CRC, respectively, already completed enrolment, with final results being awaited. Further extensive clinical development as a single agent or in combination with standard chemotherapeutic agents in various malignant tumors is ongoing. Moreover, regorafenib has recently been granted Orphan Drug Status for GIST tumors and 'fast track' status for both GIST and CRC by the FDA.
Collapse
Affiliation(s)
- Dirk Strumberg
- University of Bochum, Marienhospital Herne, Department of Hematology and Medical Oncology, 40, 44625 Herne, Germany.
| | | |
Collapse
|
26
|
Contrast agents as a biological marker in magnetic resonance imaging of the liver: conventional and new approaches. ACTA ACUST UNITED AC 2012; 37:164-79. [PMID: 21516381 DOI: 10.1007/s00261-011-9734-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Liver imaging is an important clinical area in everyday practice. The clinical meaning of different lesion types in the liver can be quite different. Therefore, the result of imaging studies of the liver can change therapeutic concepts fundamentally. Contrast agents are used in the majority of MR examinations of the liver parenchyma-despite the already good soft-tissue contrast in plain MRI. This can be explained by the advantages in lesion detection and characterization of contrast-enhanced MRI of the liver. Beyond the qualitative evaluation of contrast-enhanced liver MR examinations, quantification of parameters will be the demand of the future. This can be achieved by perfusion MRI, also called dynamic contrast-enhanced MRI (DCE-MRI) of the liver. Its basic principles and different clinical applications will be discussed in this article. Definite cut-off values to determine disease or therapeutic response will help to increase the objectivity and reliability of liver MRI in future. This is especially important in the oncological setting, where modern therapies cannot be assessed based on changes in size only.
Collapse
|
27
|
Boult JKR, Jamin Y, Jacobs V, Gilmour LD, Walker-Samuel S, Halliday J, Elvin P, Ryan AJ, Waterton JC, Robinson SP. False-negative MRI biomarkers of tumour response to targeted cancer therapeutics. Br J Cancer 2012; 106:1960-6. [PMID: 22596237 PMCID: PMC3388570 DOI: 10.1038/bjc.2012.208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 04/19/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Non-invasive quantitative imaging biomarkers are essential for the evaluation of novel targeted therapeutics. Before deployment in clinical trials, such imaging biomarkers require qualification, typically through pre-clinical identification of imaging-pathology correlates. METHODS First, in investigating imaging biomarkers of invasion, the response of orthotopic murine PC3 prostate xenografts to the Src inhibitor saracatinib was assessed using susceptibility contrast MRI. Second, the longitudinal response of chemically induced rat mammary adenocarcinomas to the VEGFR2 inhibitor vandetanib was monitored by intrinsic susceptibility MRI, to identify the time window of transient vascular normalisation. RESULTS No significant differences in fractional blood volume (%), vessel calibre (μm), native T(1) (ms) or apparent water diffusion coefficient were determined, despite reduced expression of activated Fak and paxillin in the saracatinib cohort. Treatment with vandetanib elicited a 60% antitumour response (P<0.01), 80% inhibition in vessel density (P<0.05) and reduction in hypoxia (P<0.05). There was, however, no significant change in tumour baseline R(2)* (s(-1)) or carbogen-induced ΔR(2)* with treatment. CONCLUSION Reporting negative imaging biomarker responses is important, to avoid the risk of clinical trials using the same biomarkers being undertaken with a false expectation of success, and the abandonment of promising new therapeutics based on a false-negative imaging biomarker response being mistaken for a true-negative.
Collapse
Affiliation(s)
- J K R Boult
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5NG, UK
| | - Y Jamin
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5NG, UK
| | - V Jacobs
- AstraZeneca, Alderley Park, Cheshire SK10 4TG, UK
| | - L D Gilmour
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5NG, UK
| | - S Walker-Samuel
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5NG, UK
| | - J Halliday
- AstraZeneca, Alderley Park, Cheshire SK10 4TG, UK
| | - P Elvin
- AstraZeneca, Alderley Park, Cheshire SK10 4TG, UK
| | - A J Ryan
- AstraZeneca, Alderley Park, Cheshire SK10 4TG, UK
| | - J C Waterton
- AstraZeneca, Alderley Park, Cheshire SK10 4TG, UK
| | - S P Robinson
- Cancer Research UK and EPSRC Cancer Imaging Centre, Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
28
|
Strumberg D, Scheulen ME, Schultheis B, Richly H, Frost A, Büchert M, Christensen O, Jeffers M, Heinig R, Boix O, Mross K. Regorafenib (BAY 73-4506) in advanced colorectal cancer: a phase I study. Br J Cancer 2012; 106:1722-7. [PMID: 22568966 PMCID: PMC3364125 DOI: 10.1038/bjc.2012.153] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/29/2012] [Accepted: 03/22/2012] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In a phase I dose-escalation study, regorafenib demonstrated tolerability and antitumour activity in solid tumour patients. The study was expanded to focus on patients with metastatic colorectal cancer (CRC). METHODS Patients received oral regorafenib 60-220 mg daily (160 mg daily in the extension cohort) in cycles of 21 days on, 7 days off treatment. Assessments included toxicity, response, pharmacokinetics and pharmacodynamics. RESULTS Thirty-eight patients with heavily pretreated CRC (median 4 prior lines of therapy, range 0-7) were enrolled in the dose-escalation and extension phases; 26 patients received regorafenib 160 mg daily. Median treatment duration was 53 days (range 7-280 days). The most common treatment-related toxicities included hand-foot skin reaction, fatigue, voice change and rash. Twenty-seven patients were evaluable for response: 1 achieved partial response and 19 had stable disease. Median progression-free survival was 107 days (95% CI, 66-161). At steady state, regorafenib and its active metabolites had similar systemic exposure. Pharmacodynamic assessment indicated decreased tumour perfusion in most patients. CONCLUSION Regorafenib showed tolerability and antitumour activity in patients with metastatic CRC. This expanded-cohort phase I study provided the foundation for further clinical trials of regorafenib in this patient population.
Collapse
Affiliation(s)
- D Strumberg
- Department of Hematology and Medical Oncology, University of Bochum, Marienhospital Herne, Hölkeskampring 40, D-44625 Herne, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang N, Zhang L, Qiu B, Meng L, Wang X, Hou BL. Correlation of volume transfer coefficient Ktrans with histopathologic grades of gliomas. J Magn Reson Imaging 2012; 36:355-63. [PMID: 22581762 DOI: 10.1002/jmri.23675] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 03/09/2012] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To evaluate the roles of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and optimum tracer kinetic parameters in the noninvasive grading of the glial brain tumors with histopathological grades (I-IV). MATERIALS AND METHODS Twenty-eight patients with histopathologically graded gliomas were imaged. Images with five flip angles were acquired before injection of gadolinium-DTPA and were processed to calculate the T(1) value of each region of interest (ROI). All the DCE-MRI data acquired during the injection were processed based on the MRI signal and pharmacokinetic models to establish concentration-time curves in the ROIs drawn within the tumors, contralateral normal areas, and area of the individual artery input functions (iAIF) of each patient. A nonlinear least-square-fitting method was used to obtain tracer kinetic parameters. Kruskal-Wallis H-test and Mann-Whitney U-test were applied to these parameters in different histopathological grade groups for statistical differences (P < 0.05). RESULTS Volume transfer coefficient (K(trans) ) and extravascular extracellular space volume fraction (V(e) ) calculated using iAIFs can be used not only to distinguish the low (ie, I and II) from the high (ie, III and IV) grade gliomas (P( Ktrans) < 0.001 and P(Ve) < 0.001), but also grade II from III (P( Ktrans) = 0.016 and P(Ve) = 0.033). CONCLUSION K(trans) is the most sensitive and specific parameter in noninvasive grading, distinguishing the high (III and IV) from the low (I and II) grade and high grade III from low grade II gliomas.
Collapse
Affiliation(s)
- Na Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key laboratory for MRI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | | | | | | | | |
Collapse
|
30
|
Vandetanib in patients with inoperable hepatocellular carcinoma: a phase II, randomized, double-blind, placebo-controlled study. J Hepatol 2012; 56:1097-1103. [PMID: 22245891 DOI: 10.1016/j.jhep.2011.12.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 11/01/2011] [Accepted: 12/13/2011] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Inhibitors of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) have shown anti-tumor activities in advanced hepatocellular carcinoma (HCC). The present study evaluated the efficacy and safety of vandetanib, an oral inhibitor of both VEGFR and EGFR, in patients with unresectable advanced HCC. METHODS Eligible patients were randomized 1:1:1 to receive vandetanib 300mg/day, vandetanib 100mg/day, or placebo. Upon disease progression, all patients had the option to receive open-label vandetanib 300mg/day. The primary objective was to evaluate tumor stabilization rate (complete response+partial response+stable disease ⩾4months). Secondary assessments included progression-free survival (PFS), overall survival (OS) and safety. Biomarker studies included circulating pro-angiogenic factors and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). RESULTS Sixty-seven patients were randomized to vandetanib 300mg (n=19), vandetanib 100mg (n=25) or placebo (n=23) groups. Twenty-nine patients entered open-label treatment. Vandetanib induced a significant increase in circulating VEGF and decrease in circulating VEGFR levels. In both vandetanib arms, tumor stabilization rate was not significantly different from placebo: 5.3% (vandetanib 300mg), 16.0% (vandetanib 100mg) and 8.7% (placebo). DCE-MRI did not detect significant vascular change after vandetanib treatment. Although trends of improved PFS and OS after vandetanib treatment were found, they were statistically insignificant. The most common adverse events were diarrhea and rash, whose incidence did not differ significantly between treatment groups. CONCLUSIONS Vandetanib has limited clinical activity in HCC. The safety profile was consistent with previous studies.
Collapse
|
31
|
Burrell JS, Walker-Samuel S, Baker LC, Boult JK, Jamin Y, Ryan AJ, Waterton JC, Halliday J, Robinson SP. Evaluation of novel combined carbogen USPIO (CUSPIO) imaging biomarkers in assessing the antiangiogenic effects of cediranib (AZD2171) in rat C6 gliomas. Int J Cancer 2012; 131:1854-62. [DOI: 10.1002/ijc.27460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 01/03/2012] [Indexed: 12/22/2022]
|
32
|
Mross K, Frost A, Steinbild S, Hedbom S, Büchert M, Fasol U, Unger C, Krätzschmar J, Heinig R, Boix O, Christensen O. A phase I dose-escalation study of regorafenib (BAY 73-4506), an inhibitor of oncogenic, angiogenic, and stromal kinases, in patients with advanced solid tumors. Clin Cancer Res 2012; 18:2658-67. [PMID: 22421192 DOI: 10.1158/1078-0432.ccr-11-1900] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Regorafenib is a novel oral multikinase inhibitor of angiogenic (VEGFR1-3, TIE2), stromal (PDGFR-β, FGFR), and oncogenic kinases (KIT, RET, and RAF). This first-in-man, phase I dose-escalation study assessed the safety, pharmacokinetic, pharmacodynamic, and efficacy profiles of regorafenib in patients with advanced solid tumors. PATIENTS AND METHODS Patients aged 18 years or older with advanced solid tumors refractory to standard treatment were recruited. Regorafenib was administered orally for 21 days on/seven days off in repeating cycles, until discontinuation due to toxicity or tumor progression. Adverse events (AE) were assessed using National Cancer Institute Common Terminology Criteria for Adverse Events v3.0. Pharmacokinetic profiles were measured after a single dose and on day 21. Pharmacodynamic and efficacy evaluations included tumor perfusion assessment using dynamic contrast-enhanced MRI, plasma cytokines, and tumor response using RECIST (v1.0). RESULTS Fifty-three patients were enrolled into eight cohorts at dose levels from 10 to 220 mg daily. The recommended dose for future studies was determined to be 160 mg daily, with a treatment schedule of 21 days on/seven days off in repeating 28-day cycles. The most common drug-related grade 3 or 4 AEs were dermatologic AEs (hand-foot skin reaction, rash), hypertension, and diarrhea. Pharmacokinetic analysis revealed a similar exposure at steady state for the parent compound and two pharmacologically active metabolites. Tumor perfusion and plasma cytokine analysis showed biologic activity of regorafenib. Three of 47 evaluable patients achieved a partial response (renal cell carcinoma, colorectal carcinoma, and osteosarcoma). CONCLUSION Regorafenib showed an acceptable safety profile and preliminary evidence of antitumor activity in patients with solid tumors.
Collapse
Affiliation(s)
- Klaus Mross
- Tumour Biology Center, University Hospital, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Pircher A, Hilbe W, Heidegger I, Drevs J, Tichelli A, Medinger M. Biomarkers in tumor angiogenesis and anti-angiogenic therapy. Int J Mol Sci 2011; 12:7077-99. [PMID: 22072937 PMCID: PMC3211028 DOI: 10.3390/ijms12107077] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/09/2011] [Indexed: 12/16/2022] Open
Abstract
Tumor angiogenesis has been identified to play a critical role in tumor growth and tumor progression, and is regulated by a balance of angiogenic and anti-angiogenic cytokines. Among them VEGF (vascular endothelial growth factor) and its signaling through its receptors are of crucial relevance. Inhibition of VEGF signaling by monoclonal antibodies or small molecules (kinase inhibitors) has already been successfully established for the treatment of different cancer entities and multiple new drugs are being tested in clinical trials. However not all patients are likely to respond to these therapies, but to date there are no reliable biomarkers available to predict therapy response. Many studies integrated biomarker programs in their study protocols, thus several potential biomarkers have been identified which are currently under clinical investigation in prospective randomized studies. This review intends to give an overview of the described potential biomarkers as well as different imaging techniques such as ultrasound and magnetic resonance imaging that can indicate benefit, resistance and toxicity to anti-angiogenic therapies.
Collapse
Affiliation(s)
- Andreas Pircher
- Hematology and Oncology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria; E-Mails: (A.P.); (W.H.)
| | - Wolfgang Hilbe
- Hematology and Oncology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria; E-Mails: (A.P.); (W.H.)
| | - Isabel Heidegger
- Department of Urology and Division of Experimental Urology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria; E-Mail:
| | - Joachim Drevs
- Tumor Center Unisantus, Custodisstrasse 3-17, 50679 Köln, Germany; E-Mail:
| | - André Tichelli
- Hematology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland; E-Mail:
| | - Michael Medinger
- Hematology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland; E-Mail:
| |
Collapse
|
35
|
Fasol U, Frost A, Büchert M, Arends J, Fiedler U, Scharr D, Scheuenpflug J, Mross K. Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis. Ann Oncol 2011; 23:1030-6. [PMID: 21693769 DOI: 10.1093/annonc/mdr300] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND EndoTAG-1 (ET), a novel formulation of cationic liposomes carrying embedded paclitaxel (Taxol), shows antitumoral activity, targeting tumor endothelial cells in solid tumors. Patients with advanced metastatic cancer were evaluated investigating effects on pharmacokinetics and tumor vasculature using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and contrast-enhanced ultrasound (CEUS). PATIENTS AND METHODS The pharmacokinetic (PK) profile of ET (22 mg/m(2) i.v.) was evaluated after single and repeated doses. DCE-MRI and CEUS explored hepatic metastases before, during and after the 4-week treatment cycle. Angiogenic biomarkers were assessed. Tumor response was evaluated by modified RECIST. RESULTS The PK profile demonstrated slight accumulation of paclitaxel after repeated doses. DCE-MRI parameters K(trans) and/or iAUC(60) showed a trend to decrease. Changes of blood flow-dependent parameters of DCE-MRI and CEUS were well correlated. Angiogenic biomarkers revealed no clear trend. ET was generally well tolerated; common toxic effects were fatigue and hypersensitivity reactions. Nine (9 of 18) patients had stable disease after the first treatment cycle. Four patients without disease progression continued treatment. CONCLUSIONS This study including multiple pretreated patients with different metastatic cancer revealed individually distinctive hemodynamic alterations by DCE-MRI. The PK profiles of ET were similar as observed previously.
Collapse
Affiliation(s)
- U Fasol
- Magnetic Resonance Development and Application Center, Department of Radiology, University Medical Center Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Berz D, Wanebo H. Targeting the growth factors and angiogenesis pathways: Small molecules in solid tumors. J Surg Oncol 2011; 103:574-86. [DOI: 10.1002/jso.21776] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Cabebe EC, Fisher GA, Sikic BI. A phase I trial of vandetanib combined with capecitabine, oxaliplatin and bevacizumab for the first-line treatment of metastatic colorectal cancer. Invest New Drugs 2011; 30:1082-7. [DOI: 10.1007/s10637-011-9656-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
|
38
|
Wanebo HJ, Berz D. The neoadjuvant therapy of colorectal hepatic metastases and the role of biologic sensitizing and resistance factors. J Surg Oncol 2011; 102:891-7. [PMID: 21165990 DOI: 10.1002/jso.21691] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Liver metastasis represents a common systemic complication of colorectal cancers (CRCs). Partial liver resection has been demonstrated to result in long-term survival in certain well-selected patients with otherwise well-controlled systemic disease. Neoadjuvant therapy has been demonstrated to result in improved resectability and potentially longer survival in patients with liver metastases from CRC. The addition of biologic agents to chemotherapy has been shown to improve response rates and overall survival in patients with metastatic CRC. Here, we are discussing the role of biologic agents in the treatment of patients with liver metastases from CRC. We also discuss the role of biomarkers for response and resistance to such novel therapies.
Collapse
Affiliation(s)
- Harold J Wanebo
- Division of Surgical Oncology, Landmark Medical Center, Woonsocket, Rhode Island, USA.
| | | |
Collapse
|
39
|
Assessment of acute antivascular effects of vandetanib with high-resolution dynamic contrast-enhanced computed tomographic imaging in a human colon tumor xenograft model in the nude rat. Neoplasia 2011; 12:697-707. [PMID: 20824046 DOI: 10.1593/neo.10292] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/11/2010] [Accepted: 06/15/2010] [Indexed: 11/18/2022] Open
Abstract
Tumor size is not a reliable marker for the assessment of early antivascular effects of antiangiogenics. In the present study, we used 200-microm in-plane high-resolution dynamic contrast-enhanced computed tomography (DCE-CT) to noninvasively assess the immediate antivascular effects of vandetanib in a subcutaneous human colon cancer (LoVo) xenograft model in nude rats and to investigate correlation between changes in CT perfusion parameters and tumor volume or immunohistochemical end points. At 3 to 4 weeks after LoVo cell implantation, the animal was gavaged with either vandetanib (50 mg/kg) or vehicle twice (22 hours apart) and scanned with a preclinical DCE-CT scanner before (0 hour) and after treatment (24 hours). Quantitative maps of blood flow (BF) and volume (BV) of the tumor were calculated from the acquired DCE-CT images. The rats were divided into nonhypovascular, hypovascular, and combined (regardless of vascularity) groups. In the nonhypovascular group, significant decreases in both tumor BF and BV were observed in the vandetanib-treated rats compared with increases in the vehicle-treated rats. A significant decrease in BV was detected in the vandetanib-treated rats in the combined group as well. No differences in tumor growth, vascular endothelial growth factor expression, microvessel density, or apoptosis were observed between vandetanib- and vehicle-treated rats in all three groups. These results demonstrate that BF and BV imaging biomarkers from DCE-CT imaging can be used for rapid monitoring of immediate (24 hours after) antimicrovascular effects of vandetanib on tumors, even in the absence of significant changes of tumor volume or clinically relevant immunohistochemical end points.
Collapse
|
40
|
Gule MK, Chen Y, Sano D, Frederick MJ, Zhou G, Zhao M, Milas ZL, Galer CE, Henderson YC, Jasser SA, Schwartz DL, Bankson JA, Myers JN, Lai SY. Targeted therapy of VEGFR2 and EGFR significantly inhibits growth of anaplastic thyroid cancer in an orthotopic murine model. Clin Cancer Res 2011; 17:2281-91. [PMID: 21220477 DOI: 10.1158/1078-0432.ccr-10-2762] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Anaplastic thyroid carcinoma (ATC) is one of the most lethal human cancers with a median survival of 6 months. The inhibition of epidermal growth factor receptor (EGFR) alone, or with VEGF receptor 2 (VEGFR2), represents an attractive approach for treatment of ATC. Several reports have examined agents that target these receptors. However, with the misidentification of as many as 60% of all commonly used ATC cell lines, the significance of these past findings is unclear. EXPERIMENTAL DESIGN Cell lines authenticated by short tandem repeat profiling were selected to establish xenograft tumors in an orthotopic murine model of ATC. These mice were then treated with vandetanib to evaluate its effects on ATC tumor growth. Dynamic contrast-enhanced (DCE) MRI was utilized to measure the impact of vandetanib on tumor vasculature. RESULTS Vandetanib inhibited tumor growth of the ATC cell lines Hth83 and 8505C in vivo by 69.3% (P < 0.001) and 66.6% (P < 0.05), respectively, when compared with control. Significant decreases in vascular permeability (P < 0.01) and vascular volume fraction (P < 0.05) were detected by DCE-MRI in the orthotopic xenograft tumors after 1 week of treatment with vandetanib as compared with control. CONCLUSION The inhibition of EGFR and VEGFR2 by vandetanib and its tremendous in vivo antitumor activity against ATC make it an attractive candidate for further preclinical and clinical development for the treatment of this particularly virulent cancer, which remains effectively untreatable. Vandetanib disrupts angiogenesis and DCE-MRI is an effective method to quantify changes in vascular function in vivo.
Collapse
Affiliation(s)
- Maria K Gule
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|