1
|
A family-based study of genetic and epigenetic effects across multiple neurocognitive, motor, social-cognitive and social-behavioral functions. Behav Brain Funct 2022; 18:14. [PMID: 36457050 PMCID: PMC9714039 DOI: 10.1186/s12993-022-00198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
Many psychiatric and neurodevelopmental disorders are known to be heritable, but studies trying to elucidate the genetic architecture of such traits often lag behind studies of somatic traits and diseases. The reasons as to why relatively few genome-wide significant associations have been reported for such traits have to do with the sample sizes needed for the detection of small effects, the difficulty in defining and characterizing the phenotypes, partially due to overlaps in affected underlying domains (which is especially true for cognitive phenotypes), and the complex genetic architectures of the phenotypes, which are not wholly captured in traditional case-control GWAS designs. We aimed to tackle the last two issues by performing GWASs of eight quantitative neurocognitive, motor, social-cognitive and social-behavioral traits, which may be considered endophenotypes for a variety of psychiatric and neurodevelopmental conditions, and for which we employed models capturing both general genetic association and parent-of-origin effects, in a family-based sample comprising 402 children and their parents (mostly family trios). We identified 48 genome-wide significant associations across several traits, of which 3 also survived our strict study-wide quality criteria. We additionally performed a functional annotation of implicated genes, as most of the 48 associations were with variants within protein-coding genes. In total, our study highlighted associations with five genes (TGM3, CACNB4, ANKS1B, CSMD1 and SYNE1) associated with measures of working memory, processing speed and social behavior. Our results thus identify novel associations, including previously unreported parent-of-origin associations with relevant genes, and our top results illustrate new potential gene → endophenotype → disorder pathways.
Collapse
|
2
|
Dougherty JD, Marrus N, Maloney SE, Yip B, Sandin S, Turner TN, Selmanovic D, Kroll KL, Gutmann DH, Constantino JN, Weiss LA. Can the "female protective effect" liability threshold model explain sex differences in autism spectrum disorder? Neuron 2022; 110:3243-3262. [PMID: 35868305 PMCID: PMC9588569 DOI: 10.1016/j.neuron.2022.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/09/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Male sex is a strong risk factor for autism spectrum disorder (ASD). The leading theory for a "female protective effect" (FPE) envisions males and females have "differing thresholds" under a "liability threshold model" (DT-LTM). Specifically, this model posits that females require either a greater number or larger magnitude of risk factors (i.e., greater liability) to manifest ASD, which is supported by the finding that a greater proportion of females with ASD have highly penetrant genetic mutations. Herein, we derive testable hypotheses from the DT-LTM for ASD, investigating heritability, familial recurrence, correlation between ASD penetrance and sex ratio, population traits, clinical features, the stability of the sex ratio across diagnostic changes, and highlight other key prerequisites. Our findings reveal that several key predictions of the DT-LTM are not supported by current data, requiring us to establish a different conceptual framework for evaluating alternate models that explain sex differences in ASD.
Collapse
Affiliation(s)
- Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin Yip
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Sven Sandin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Seaver Autism Center for Research and Treatment at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tychele N Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Din Selmanovic
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristen L Kroll
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - John N Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Lauren A Weiss
- Institute for Human Genetics, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Perfilyeva A, Bespalova K, Perfilyeva Y, Skvortsova L, Musralina L, Zhunussova G, Khussainova E, Iskakova U, Bekmanov B, Djansugurova L. Integrative Functional Genomic Analysis in Multiplex Autism Families from Kazakhstan. DISEASE MARKERS 2022; 2022:1509994. [PMID: 36199823 PMCID: PMC9529466 DOI: 10.1155/2022/1509994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
The study of extended pedigrees containing autism spectrum disorder- (ASD-) related broader autism phenotypes (BAP) offers a promising approach to the search for ASD candidate variants. Here, a total of 650,000 genetic markers were tested in four Kazakhstani multiplex families with ASD and BAP to obtain data on de novo mutations (DNMs), common, and rare inherited variants that may contribute to the genetic risk for developing autistic traits. The variants were analyzed in the context of gene networks and pathways. Several previously well-described enriched pathways were identified, including ion channel activity, regulation of synaptic function, and membrane depolarization. Perhaps these pathways are crucial not only for the development of ASD but also for ВАР. The results also point to several additional biological pathways (circadian entrainment, NCAM and BTN family interactions, and interaction between L1 and Ankyrins) and hub genes (CFTR, NOD2, PPP2R2B, and TTR). The obtained results suggest that further exploration of PPI networks combining ASD and BAP risk genes can be used to identify novel or overlooked ASD molecular mechanisms.
Collapse
Affiliation(s)
| | - Kira Bespalova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
- Al-Farabi Kazakh National University, 71 Al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Yuliya Perfilyeva
- M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, 86 Dosmukhamedov St., Almaty 050012, Kazakhstan
- Branch of the National Center for Biotechnology, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Liliya Skvortsova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Lyazzat Musralina
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Gulnur Zhunussova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Elmira Khussainova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Ulzhan Iskakova
- Kazakh National Medical University, 94 Tole Bi St., Almaty 050000, Kazakhstan
| | - Bakhytzhan Bekmanov
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| | - Leyla Djansugurova
- Institute of Genetics and Physiology, 93 Al-Farabi Ave., Almaty 050060, Kazakhstan
| |
Collapse
|
4
|
Kaneko A, Ohshima R, Noda H, Matsumaru T, Iwanaga R, Ide M. Sensory and Social Subtypes of Japanese Individuals with Autism Spectrum Disorders. J Autism Dev Disord 2022:10.1007/s10803-022-05577-0. [PMID: 35596829 DOI: 10.1007/s10803-022-05577-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
Abstract
Studies have proposed that individuals with autism spectrum disorder (ASD) can be divided into several subtypes depending on their sensory features. However, consideration of social communication features is also crucial for configuring ASD subtypes, because social and sensory features are tightly interrelated. In this study, we asked Japanese individuals with ASD to answer the Short Sensory Profile (SSP) and the Social Responsiveness Scale, Second Edition (SRS-2), which measure sensory and social aspects, respectively. Consequent latent profile analysis demonstrated that the participants could be divided into five subgroups: two groups exhibited opposite or inconsistent patterns between the SSP and SRS-2 scores, while the other groups exhibited consistent patterns. Our findings indicate the existence of diverse phenotypes in individuals with ASD.
Collapse
Affiliation(s)
- Ayako Kaneko
- Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Saitama, Japan. .,Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan. .,Department of Psychology, Rikkyo University, Niiza, Saitama, Japan. .,Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons With Disabilities, 4-1, Namiki, Tokorozawa, Saitama, 359-8555, Japan.
| | - Remi Ohshima
- Faculty of Psychology, Mejiro University, Shinjuku, Tokyo, Japan
| | - Haruka Noda
- Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Saitama, Japan.,Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan.,Department of Occupational Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Tomoko Matsumaru
- Faculty of Human Sciences, Mejiro University, Shinjuku, Tokyo, Japan
| | - Ryoichiro Iwanaga
- Department of Occupational Therapy Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Nagasaki, Japan
| | - Masakazu Ide
- Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Saitama, Japan. .,Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons With Disabilities, 4-1, Namiki, Tokorozawa, Saitama, 359-8555, Japan.
| |
Collapse
|
5
|
John TS, Estes A, Begay KK, Munson J, Reiter MA, Dager SR, Kleinhans N. Characterizing Social Functioning in School-Age Children with Sensory Processing Abnormalities. J Autism Dev Disord 2022; 52:1361-1373. [PMID: 33956254 PMCID: PMC8854314 DOI: 10.1007/s10803-021-05050-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2021] [Indexed: 11/04/2022]
Abstract
Children with sensory abnormalities (SAs) have a variety of social problems resulting in poorer social functioning than children with typical development (TD). We describe the relationship between SAs and social functioning in school-age children with SAs, children with TD and a clinical comparison sample of children with autism spectrum disorder (ASD). Children with SAs demonstrated impaired social functioning on standardized measures. Children with SAs demonstrated worse social functioning than children with TD and equivalent social functioning to children with ASD. Increased SAs were associated with poorer social functioning across all groups. The results suggest that children with SAs experience clinically significant problems with social functioning and future research is needed to develop interventions to support social functioning in this population.
Collapse
Affiliation(s)
- T St John
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA.
- University of Washington Autism Center, University of Washington, Seattle, WA, USA.
- Center On Human Development and Disability, University of Washington, Seattle, WA, USA.
| | - A Estes
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA, USA
- University of Washington Autism Center, University of Washington, Seattle, WA, USA
- Center On Human Development and Disability, University of Washington, Seattle, WA, USA
| | - K K Begay
- School of Education, University of Washington, Tacoma, WA, USA
| | - J Munson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
| | - M A Reiter
- San Diego State University/ UC San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - S R Dager
- Center On Human Development and Disability, University of Washington, Seattle, WA, USA
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - N Kleinhans
- Center On Human Development and Disability, University of Washington, Seattle, WA, USA
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
6
|
Jyoti V, Gupta S, Lahiri U. Understanding the Role of Objects in Joint Attention Task Framework for Children With Autism. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2020.2983333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Benítez-Burraco A, Fernández-Urquiza M, Jiménez-Romero MS. Language Impairment with a Partial Duplication of DOCK8. Mol Syndromol 2021; 11:243-263. [PMID: 33510598 DOI: 10.1159/000511972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Duplications of the distal region of the short arm of chromosome 9 are rare, but are associated with learning disabilities and behavioral disturbances. We report in detail the cognitive and language features of a child with a duplication in the 9p24.3 region, arr[hg19] 9p24.3(266,045-459,076)×3. The proband exhibits marked expressive and receptive problems, which affect both structural and functional aspects of language. These problems might result from a severe underlying deficit in working memory. Regarding the molecular causes of the observed symptoms, they might result from the altered expression of selected genes involved in procedural learning, particularly some of components of the SLIT/ROBO/FOXP2 network, strongly related to the development and evolution of language. Dysregulation of specific components of this network can result in turn from an altered interaction between DOCK8, affected by the microduplication, and CDC42, acting as the hub component of the network encompassing language-related genes.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), University of Seville, Seville, Spain
| | | | | |
Collapse
|
8
|
Mihailov A, Philippe C, Gloaguen A, Grigis A, Laidi C, Piguet C, Houenou J, Frouin V. Cortical signatures in behaviorally clustered autistic traits subgroups: a population-based study. Transl Psychiatry 2020; 10:207. [PMID: 32594096 PMCID: PMC7320967 DOI: 10.1038/s41398-020-00894-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
Extensive heterogeneity in autism spectrum disorder (ASD) has hindered the characterization of consistent biomarkers, which has led to widespread negative results. Isolating homogenized subtypes could provide insight into underlying biological mechanisms and an overall better understanding of ASD. A total of 1093 participants from the population-based "Healthy Brain Network" cohort (Child Mind Institute in the New York City area, USA) were selected based on score availability in behaviors relevant to ASD, aged 6-18 and IQ >= 70. All participants underwent an unsupervised clustering analysis on behavioral dimensions to reveal subgroups with ASD traits, identified by the presence of social deficits. Analysis revealed three socially impaired ASD traits subgroups: (1) high in emotionally dysfunctional traits, (2) high in ADHD-like traits, and (3) high in anxiety and depressive symptoms. 527 subjects had good quality structural MRI T1 data. Site effects on cortical features were adjusted using the ComBat method. Neuroimaging analyses compared cortical thickness, gyrification, and surface area, and were controlled for age, gender, and IQ, and corrected for multiple comparisons. Structural neuroimaging analyses contrasting one combined heterogeneous ASD traits group against controls did not yield any significant differences. Unique cortical signatures, however, were observed within each of the three individual ASD traits subgroups versus controls. These observations provide evidence of ASD traits subtypes, and confirm the necessity of applying dimensional approaches to extract meaningful differences, thus reducing heterogeneity and paving the way to better understanding ASD traits.
Collapse
Affiliation(s)
- Angeline Mihailov
- Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191, France.
| | - Cathy Philippe
- grid.460789.40000 0004 4910 6535Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191 France
| | - Arnaud Gloaguen
- grid.460789.40000 0004 4910 6535Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191 France ,CNRS-Centrale Supélec, 3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France
| | - Antoine Grigis
- grid.460789.40000 0004 4910 6535Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191 France
| | - Charles Laidi
- grid.460789.40000 0004 4910 6535Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191 France ,APHP, Mondor Univ. Hospitals, DMU IMPACT, INSERM, U955, Translational Neuropsychiatry Team, University of Paris-Est Créteil, 94000 Créteil, France
| | - Camille Piguet
- grid.460789.40000 0004 4910 6535Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191 France ,grid.8591.50000 0001 2322 4988Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Josselin Houenou
- grid.460789.40000 0004 4910 6535Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191 France ,APHP, Mondor Univ. Hospitals, DMU IMPACT, INSERM, U955, Translational Neuropsychiatry Team, University of Paris-Est Créteil, 94000 Créteil, France
| | - Vincent Frouin
- grid.460789.40000 0004 4910 6535Neurospin, Institut Joliot, CEA, Université Paris-Saclay, Gif-sur-Yvette, 91191 France
| |
Collapse
|
9
|
Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics. Cells 2020; 9:cells9040835. [PMID: 32244264 PMCID: PMC7226772 DOI: 10.3390/cells9040835] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Rho family GTPases are small G proteins that act as molecular switches shuttling between active and inactive forms. Rho GTPases are regulated by two classes of regulatory proteins, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho GTPases transduce the upstream signals to downstream effectors, thus regulating diverse cellular processes, such as growth, migration, adhesion, and differentiation. In particular, Rho GTPases play essential roles in regulating neuronal morphology and function. Recent evidence suggests that dysfunction of Rho GTPase signaling contributes substantially to the pathogenesis of autism spectrum disorder (ASD). It has been found that 20 genes encoding Rho GTPase regulators and effectors are listed as ASD risk genes by Simons foundation autism research initiative (SFARI). This review summarizes the clinical evidence, protein structure, and protein expression pattern of these 20 genes. Moreover, ASD-related behavioral phenotypes in animal models of these genes are reviewed, and the therapeutic approaches that show successful treatment effects in these animal models are discussed.
Collapse
|
10
|
Jyoti V, Lahiri U. Human-Computer Interaction based Joint Attention cues: Implications on functional and physiological measures for children with autism spectrum disorder. COMPUTERS IN HUMAN BEHAVIOR 2020. [DOI: 10.1016/j.chb.2019.106163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Woodbury-Smith M, Paterson AD, O'Connor I, Zarrei M, Yuen RKC, Howe JL, Thompson A, Parlier M, Fernandez B, Piven J, Scherer SW, Vieland V, Szatmari P. A genome-wide linkage study of autism spectrum disorder and the broad autism phenotype in extended pedigrees. J Neurodev Disord 2018; 10:20. [PMID: 29890955 PMCID: PMC5996536 DOI: 10.1186/s11689-018-9238-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Although several genetic variants for autism spectrum disorder (ASD) have now been identified, these largely occur sporadically or are de novo. Much less progress has been made in identifying inherited variants, even though the disorder itself is familial in the majority of cases. The objective of this study was to identify chromosomal regions that harbor inherited variants increasing the risk for ASD using an approach that examined both ASD and the broad autism phenotype (BAP) among a unique sample of extended pedigrees. METHODS ASD and BAP were assessed using standardized tools in 28 pedigrees from Canada and the USA, each with at least three ASD-diagnosed individuals from two nuclear families. Genome-wide linkage analysis was performed using the posterior probability of linkage (PPL) statistic, a quasi-Bayesian method that provides strength of evidence for or against linkage in an essentially model-free manner, with outcomes on the probability scale. RESULTS The results confirm appreciable interfamilial heterogeneity as well as a high level of intrafamilial heterogeneity. Both ASD and combined ASD/BAP specific loci are apparent. CONCLUSIONS Inclusion of subclinical phenotypes such as BAP should be more widely employed in genetic studies of ASD as a way of identifying inherited genetic variants for the disorder. Moreover, the results underscore the need for approaches to identifying genetic risk factors in extended pedigrees that are robust to high levels of inter/intrafamilial locus and allelic heterogeneity.
Collapse
Affiliation(s)
- Marc Woodbury-Smith
- Institute of Neuroscience, Newcastle University, Sir James Spence Institute, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK. .,Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Andrew D Paterson
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Irene O'Connor
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Mehdi Zarrei
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ryan K C Yuen
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer L Howe
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ann Thompson
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Morgan Parlier
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Bridget Fernandez
- Provincial Medical Genetics Program, Health Sciences Centre, St. John's, Newfoundland, Canada
| | - Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Stephen W Scherer
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Veronica Vieland
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Peter Szatmari
- Centre for Addiction and Mental Health, The Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Rubenstein E, Chawla D. Broader autism phenotype in parents of children with autism: a systematic review of percentage estimates. JOURNAL OF CHILD AND FAMILY STUDIES 2018; 27:1705-1720. [PMID: 29731598 PMCID: PMC5933863 DOI: 10.1007/s10826-018-1026-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The broader autism phenotype (BAP) is a collection of sub-diagnostic autistic traits more common in families of individuals with autism spectrum disorder (ASD) than in the general population. BAP is a latent construct that can be defined using different domains, measured using multiple instruments, and reported using different techniques. Therefore, estimates of BAP may vary greatly across studies. Our objective was to systematically review studies that reported occurrence of BAP in parents of children with ASD in order to quantify and describe heterogeneity in estimates. We systematically searched PubMed and Scopus using PRISMA guidelines for studies quantifying percentage of parents of children with ASD who had BAP We identified 41 studies that measured BAP in parents of children with ASD. These studies used eight different instruments, four different forms of data collection, and had a wide range of sample sizes (N=4 to N=3299). Percentage with BAP ranged from 2.6% to 80%. BAP was more prevalent in fathers than mothers. Parental BAP may be an important tool for parsing heterogeneity in ASD etiology and for developing parent-mediated ASD interventions. However, the variety in measurement instruments and variability in study samples limits our ability to synthesize estimates. To improve measurement of BAP and increase consistency across studies, universal methods should be accepted and adopted across studies. A more consistent approach to BAP measurement may enable efficient etiologic research that can be meta-analyzed and may allow for a larger evidence base that can be used to account for BAP when developing parent-mediated interventions.
Collapse
Affiliation(s)
- Eric Rubenstein
- University of North Carolina Gillings School of Global Public Health, Department of Epidemiology, Chapel Hill, NC
- University of Wisconsin-Madison, Waisman Center, Madison, WI
| | - Devika Chawla
- University of North Carolina Gillings School of Global Public Health, Department of Epidemiology, Chapel Hill, NC
| |
Collapse
|
13
|
Woodbury-Smith M, Scherer SW. Progress in the genetics of autism spectrum disorder. Dev Med Child Neurol 2018; 60:445-451. [PMID: 29574884 DOI: 10.1111/dmcn.13717] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2018] [Indexed: 12/16/2022]
Abstract
UNLABELLED A genetic basis for autism spectrum disorder (ASD) is now well established, and with the availability of high-throughput microarray and sequencing platforms, major advances have been made in our understanding of genetic risk factors. Rare, often de novo, copy number and single nucleotide variants are both implicated, with many ASD-implicated genes showing pleiotropy and variable penetrance. Additionally, common variants are also known to play a role in ASD's genetic etiology. These new insights into the architecture of ASD's genetic etiology offer opportunities for the identification of molecular targets for novel interventions, and provide new insight for families seeking genetic counselling. WHAT THE PAPER ADDS A number of rare genetic variants are implicated in autism spectrum disorder (ASD), with some showing recurrence. Common genetic variants are also important and a number of loci are now being uncovered. Genetic testing for individuals with ASD offers the opportunity to identify relevant genetic etiology.
Collapse
Affiliation(s)
- Marc Woodbury-Smith
- Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK.,Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W Scherer
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,McLaughlin Centre, University of Toronto, ON, Canada
| |
Collapse
|
14
|
A missense mutation in Katnal1 underlies behavioural, neurological and ciliary anomalies. Mol Psychiatry 2018; 23:713-722. [PMID: 28373692 PMCID: PMC5761721 DOI: 10.1038/mp.2017.54] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 02/02/2017] [Accepted: 02/10/2017] [Indexed: 02/01/2023]
Abstract
Microtubule severing enzymes implement a diverse range of tissue-specific molecular functions throughout development and into adulthood. Although microtubule severing is fundamental to many dynamic neural processes, little is known regarding the role of the family member Katanin p60 subunit A-like 1, KATNAL1, in central nervous system (CNS) function. Recent studies reporting that microdeletions incorporating the KATNAL1 locus in humans result in intellectual disability and microcephaly suggest that KATNAL1 may play a prominent role in the CNS; however, such associations lack the functional data required to highlight potential mechanisms which link the gene to disease symptoms. Here we identify and characterise a mouse line carrying a loss of function allele in Katnal1. We show that mutants express behavioural deficits including in circadian rhythms, sleep, anxiety and learning/memory. Furthermore, in the brains of Katnal1 mutant mice we reveal numerous morphological abnormalities and defects in neuronal migration and morphology. Furthermore we demonstrate defects in the motile cilia of the ventricular ependymal cells of mutants, suggesting a role for Katnal1 in the development of ciliary function. We believe the data we present here are the first to associate KATNAL1 with such phenotypes, demonstrating that the protein plays keys roles in a number of processes integral to the development of neuronal function and behaviour.
Collapse
|
15
|
Woodbury-Smith M, Bilder DA, Morgan J, Jerominski L, Darlington T, Dyer T, Paterson AD, Coon H. Combined genome-wide linkage and targeted association analysis of head circumference in autism spectrum disorder families. J Neurodev Disord 2017; 9:5. [PMID: 28289475 PMCID: PMC5304400 DOI: 10.1186/s11689-017-9187-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/20/2017] [Indexed: 11/24/2022] Open
Abstract
Background It has long been recognized that there is an association between enlarged head circumference (HC) and autism spectrum disorder (ASD), but the genetics of HC in ASD is not well understood. In order to investigate the genetic underpinning of HC in ASD, we undertook a genome-wide linkage study of HC followed by linkage signal targeted association among a sample of 67 extended pedigrees with ASD. Methods HC measurements on members of 67 multiplex ASD extended pedigrees were used as a quantitative trait in a genome-wide linkage analysis. The Illumina 6K SNP linkage panel was used, and analyses were carried out using the SOLAR implemented variance components model. Loci identified in this way formed the target for subsequent association analysis using the Illumina OmniExpress chip and imputed genotypes. A modification of the qTDT was used as implemented in SOLAR. Results We identified a linkage signal spanning 6p21.31 to 6p22.2 (maximum LOD = 3.4). Although targeted association did not find evidence of association with any SNP overall, in one family with the strongest evidence of linkage, there was evidence for association (rs17586672, p = 1.72E−07). Conclusions Although this region does not overlap with ASD linkage signals in these same samples, it has been associated with other psychiatric risk, including ADHD, developmental dyslexia, schizophrenia, specific language impairment, and juvenile bipolar disorder. The genome-wide significant linkage signal represents the first reported observation of a potential quantitative trait locus for HC in ASD and may be relevant in the context of complex multivariate risk likely leading to ASD. Electronic supplementary material The online version of this article (doi:10.1186/s11689-017-9187-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Woodbury-Smith
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON Canada.,Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada.,St Joseph's Healthcare, West 5th Campus, 100 West 5th Street, Hamilton, ON Canada
| | - D A Bilder
- Department of Psychiatry, University of Utah, Salt Lake City, UT USA
| | - J Morgan
- Department of Psychiatry, University of Utah, Salt Lake City, UT USA
| | - L Jerominski
- Department of Psychiatry, University of Utah, Salt Lake City, UT USA
| | - T Darlington
- Department of Psychiatry, University of Utah, Salt Lake City, UT USA
| | - T Dyer
- University of Texas Rio Grande Valley School of Medicine and South Texas Diabetes and Obesity Institute, Harlingen, TX USA
| | - A D Paterson
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON Canada.,Division of Epidemiology and Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON Canada
| | - H Coon
- Department of Psychiatry, University of Utah, Salt Lake City, UT USA
| |
Collapse
|
16
|
Havdahl KA, Bal VH, Huerta M, Pickles A, Øyen AS, Stoltenberg C, Lord C, Bishop SL. Multidimensional Influences on Autism Symptom Measures: Implications for Use in Etiological Research. J Am Acad Child Adolesc Psychiatry 2016; 55:1054-1063.e3. [PMID: 27871640 PMCID: PMC5131801 DOI: 10.1016/j.jaac.2016.09.490] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/12/2016] [Accepted: 09/21/2016] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Growing awareness that symptoms of autism spectrum disorder (ASD) transcend multiple diagnostic categories, and major advances in the identification of genetic syndromes associated with ASD, have led to widespread use of ASD symptom measures in etiologic studies of neurodevelopmental disorders. Insufficient consideration of potentially confounding factors such as cognitive ability or behavior problems can have important negative consequences in interpretation of findings, including erroneous estimation of associations between ASD and etiologic factors. METHOD Participants were 388 children 2 to 13 years old with diagnoses of ASD or another neurodevelopmental disorder without ASD. Receiver operating characteristics methods were used to assess the influence of IQ and emotional and behavioral problems on the discriminative ability of 3 widely used ASD symptom measures: the Social Responsiveness Scale (SRS), the Autism Diagnostic Interview-Revised (ADI-R), and the Autism Diagnostic Observation Schedule (ADOS). RESULTS IQ influenced the discriminative thresholds of the SRS and ADI-R, and emotional and behavioral problems affected the discriminative thresholds of the SRS, ADI-R, and ADOS. This resulted in low specificity of ASD cutoffs on the SRS and ADI-R for children with intellectual disability without ASD (27-42%) and low specificity across all 3 instruments for children without ASD with increased emotional and behavioral problems (36-59%). Adjustment for these characteristics resulted in improved discriminative ability for all of the ASD measures. CONCLUSION The findings indicate that scores on ASD symptom measures reflect far more than ASD symptoms. Valid interpretation of scores on these measures requires steps to account for the influences of IQ and emotional and behavioral problems.
Collapse
Affiliation(s)
| | | | | | | | - Anne-Siri Øyen
- Norwegian Institute of Public Health and Lovisenberg Hospital, Oslo, Norway
| | - Camilla Stoltenberg
- Norwegian Institute of Public Health, Oslo, Norway and University of Bergen, Norway
| | | | | |
Collapse
|
17
|
Nato AQ, Chapman NH, Sohi HK, Nguyen HD, Brkanac Z, Wijsman EM. PBAP: a pipeline for file processing and quality control of pedigree data with dense genetic markers. Bioinformatics 2015; 31:3790-8. [PMID: 26231429 PMCID: PMC4668752 DOI: 10.1093/bioinformatics/btv444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/07/2015] [Accepted: 07/25/2015] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Huge genetic datasets with dense marker panels are now common. With the availability of sequence data and recognition of importance of rare variants, smaller studies based on pedigrees are again also common. Pedigree-based samples often start with a dense marker panel, a subset of which may be used for linkage analysis to reduce computational burden and to limit linkage disequilibrium between single-nucleotide polymorphisms (SNPs). Programs attempting to select markers for linkage panels exist but lack flexibility. RESULTS We developed a pedigree-based analysis pipeline (PBAP) suite of programs geared towards SNPs and sequence data. PBAP performs quality control, marker selection and file preparation. PBAP sets up files for MORGAN, which can handle analyses for small and large pedigrees, typically human, and results can be used with other programs and for downstream analyses. We evaluate and illustrate its features with two real datasets. AVAILABILITY AND IMPLEMENTATION PBAP scripts may be downloaded from http://faculty.washington.edu/wijsman/software.shtml. CONTACT wijsman@uw.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | | | - Hiep D Nguyen
- Division of Medical Genetics, Department of Medicine
| | | | - Ellen M Wijsman
- Division of Medical Genetics, Department of Medicine, Department of Biostatistics and Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Ramirez-Garcia SA, Flores-Alvarado LJ, Topete-González LR, Charles-Niño C, Mazariegos-Rubi M, Dávalos-Rodríguez NO. [High frequency of ancestral allele of the TJP1 polymorphism rs2291166 in Mexican population, conformational effect and applications in surgery and medicine]. CIR CIR 2015; 84:28-36. [PMID: 26259745 DOI: 10.1016/j.circir.2015.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND TJP1 gene encodes a ZO-1 protein that is required for the recruitment of occludins and claudins in tight junction, and is involved in cell polarisation. It has different variations, the frequency of which has been studied in different populations. In Mexico there are no studies of this gene. These are required because their polymorphisms can be used in studies associated with medicine and surgery. Therefore, the aim of this study was to estimate the frequency of alleles and genotypes of rs2291166 gene polymorphism TJP1 in Mexico Mestizos population, and to estimate the conformational effect of an amino acid change. MATERIAL AND METHODS A total of 473 individuals were included. The rs2291166 polymorphism was identified PASA PCR-7% PAGE, and stained with silver nitrate. The conformational effect of amino acid change was performed in silico, and was carried out with servers ProtPraram Tool and Search Database with Fasta. RESULTS The most frequent allele in the two populations is the ancestral allele (T). A genotype distribution similar to other populations was found. The polymorphism is in Hardy-Weinberg, p>0.05. Changing aspartate to alanine produced a conformational change. CONCLUSIONS The study reveals a high frequency of the ancestral allele at rs2291166 polymorphism in the Mexican population.
Collapse
Affiliation(s)
- Sergio Alberto Ramirez-Garcia
- Universidad de la Sierra Sur, Instituto de Investigaciones sobre la Salud Pública, Sistema de Universidades Estatales de Oaxaca (SUNEO), Miahuatlán de Porfirio Díaz, Oaxaca, México
| | | | - Luz Rosalba Topete-González
- Laboratorio de Patología Clínica, Hospital Regional Valentín Gómez Farías, Instituto de Seguridad y Servicios Sociales de los trabajadores del Estado, Guadalajara, Jalisco, México
| | - Claudia Charles-Niño
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Benemérita Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Manuel Mazariegos-Rubi
- Laboratorio de Variación Genética y Enfermedad del Instituto de Genética Humana, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Benemérita Universidad de Guadalajara, Jalisco, México
| | - Nory Omayra Dávalos-Rodríguez
- Laboratorio de Variación Genética y Enfermedad del Instituto de Genética Humana, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Benemérita Universidad de Guadalajara, Jalisco, México.
| | | |
Collapse
|
19
|
Geschwind DH, State MW. Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol 2015; 14:1109-20. [PMID: 25891009 DOI: 10.1016/s1474-4422(15)00044-7] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/21/2015] [Accepted: 04/08/2015] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder is typical of the majority of neuropsychiatric syndromes in that it is defined by signs and symptoms, rather than by aetiology. Not surprisingly, the causes of this complex human condition are manifold and include a substantial genetic component. Recent developments in gene-hunting technologies and methods, and the resulting plethora of genetic findings, promise to open new avenues to understanding of disease pathophysiology and to contribute to improved clinical management. Despite remarkable genetic heterogeneity, evidence is emerging for converging pathophysiology in autism spectrum disorder, but how this notion of convergent pathways will translate into therapeutics remains to be established. Leveraging genetic findings through advances in model systems and integrative genomic approaches could lead to the development of new classes of therapies and a personalised approach to treatment.
Collapse
Affiliation(s)
- Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, and Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Matthew W State
- Department of Psychiatry, Langley Porter Psychiatric Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
20
|
Lowe JK, Werling DM, Constantino JN, Cantor RM, Geschwind DH. Social responsiveness, an autism endophenotype: genomewide significant linkage to two regions on chromosome 8. Am J Psychiatry 2015; 172:266-75. [PMID: 25727539 PMCID: PMC4523091 DOI: 10.1176/appi.ajp.2014.14050576] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Autism spectrum disorder is characterized by deficits in social function and the presence of repetitive and restrictive behaviors. Following a previous test of principle, the authors adopted a quantitative approach to discovering genes contributing to the broader autism phenotype by using social responsiveness as an endophenotype for autism spectrum disorder. METHOD Linkage analyses using scores from the Social Responsiveness Scale were performed in 590 families from the Autism Genetic Resource Exchange, a largely multiplex autism spectrum disorder cohort. Regional and genomewide association analyses were performed to search for common variants contributing to social responsiveness. RESULTS Social Responsiveness Scale scores were unimodally distributed in male offspring from multiplex autism families, in contrast with a bimodal distribution observed in female offspring. In correlated analyses differing by Social Responsiveness Scale respondent, genomewide significant linkage for social responsiveness was identified at chr8p21.3 (multipoint LOD=4.11; teacher/parent scores) and chr8q24.22 (multipoint LOD=4.54; parent-only scores), respectively. Genomewide or linkage-directed association analyses did not detect common variants contributing to social responsiveness. CONCLUSIONS The sex-differential distributions of Social Responsiveness Scale scores in multiplex autism families likely reflect mechanisms contributing to the sex ratio for autism observed in the general population and form a quantitative signature of reduced penetrance of inherited liability to autism spectrum disorder among females. The identification of two strong loci for social responsiveness validates the endophenotype approach for the identification of genetic variants contributing to complex traits such as autism spectrum disorder. While causal mutations have yet to be identified, these findings are consistent with segregation of rare genetic variants influencing social responsiveness and underscore the increasingly recognized role of rare inherited variants in the genetic architecture of autism spectrum disorder.
Collapse
Affiliation(s)
- Jennifer K. Lowe
- Neurogenetics Program and Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095,Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095,Center for Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Donna M. Werling
- Interdepartmental PhD Program in Neuroscience, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - John N. Constantino
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine, St Louis, MO 63110
| | - Rita M. Cantor
- Center for Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Daniel H. Geschwind
- Neurogenetics Program and Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095,Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095,Center for Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095,Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
21
|
Bartlett CW, Hou L, Flax JF, Hare A, Cheong SY, Fermano Z, Zimmerman-Bier B, Cartwright C, Azaro MA, Buyske S, Brzustowicz LM. A genome scan for loci shared by autism spectrum disorder and language impairment. Am J Psychiatry 2014; 171:72-81. [PMID: 24170272 PMCID: PMC4431698 DOI: 10.1176/appi.ajp.2013.12081103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The authors conducted a genetic linkage study of families that have both autism spectrum disorder (ASD) and language-impaired probands to find common communication impairment loci. The hypothesis was that these families have a high genetic loading for impairments in language ability, thus influencing the language and communication deficits of the family members with ASD. Comprehensive behavioral phenotyping of the families also enabled linkage analysis of quantitative measures, including normal, subclinical, and disordered variation in all family members for the three general autism symptom domains: social, communication, and compulsive behaviors. METHOD The primary linkage analysis coded persons with either ASD or specific language impairment as "affected." The secondary linkage analysis consisted of quantitative metrics of autism-associated behaviors capturing normal to clinically severe variation, measured in all family members. RESULTS Linkage to language phenotypes was established at two novel chromosomal loci, 15q23-26 and 16p12. The secondary analysis of normal and disordered quantitative variation in social and compulsive behaviors established linkage to two loci for social behaviors (at 14q and 15q) and one locus for repetitive behaviors (at 13q). CONCLUSION These data indicate shared etiology of ASD and specific language impairment at two novel loci. Additionally, nonlanguage phenotypes based on social aloofness and rigid personality traits showed compelling evidence for linkage in this study group. Further genetic mapping is warranted at these loci.
Collapse
Affiliation(s)
- Christopher W. Bartlett
- The Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Liping Hou
- The Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Judy F. Flax
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ
| | - Abby Hare
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ
| | - Soo Yeon Cheong
- The Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital and Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Zena Fermano
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ
| | - Barbie Zimmerman-Bier
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ,Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ
| | - Charles Cartwright
- Department of Psychiatry, University of Medicine and Dentistry of New Jersey – New Jersey Medical School, Newark, NJ
| | - Marco A. Azaro
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ
| | - Steven Buyske
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ,Department of Statistics and Biostatistics, Rutgers University, Rutgers University, Piscataway, NJ
| | - Linda M. Brzustowicz
- Department of Genetics and the Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ,Corresponding Author:
| |
Collapse
|
22
|
Piven J, Vieland VJ, Parlier M, Thompson A, O'Conner I, Woodbury-Smith M, Huang Y, Walters KA, Fernandez B, Szatmari P. A molecular genetic study of autism and related phenotypes in extended pedigrees. J Neurodev Disord 2013; 5:30. [PMID: 24093601 PMCID: PMC3851306 DOI: 10.1186/1866-1955-5-30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/23/2013] [Indexed: 12/19/2022] Open
Abstract
Background Efforts to uncover the risk genotypes associated with the familial nature of autism spectrum disorder (ASD) have had limited success. The study of extended pedigrees, incorporating additional ASD-related phenotypes into linkage analysis, offers an alternative approach to the search for inherited ASD susceptibility variants that complements traditional methods used to study the genetics of ASD. Methods We examined evidence for linkage in 19 extended pedigrees ascertained through ASD cases spread across at least two (and in most cases three) nuclear families. Both compound phenotypes (i.e., ASD and, in non-ASD individuals, the broad autism phenotype) and more narrowly defined components of these phenotypes, e.g., social and repetitive behavior, pragmatic language, and anxiety, were examined. The overarching goal was to maximize the aggregate information available on the maximum number of individuals and to disaggregate syndromic phenotypes in order to examine the genetic underpinnings of more narrowly defined aspects of ASD behavior. Results Results reveal substantial between-family locus heterogeneity and support the importance of previously reported ASD loci in inherited, familial, forms of ASD. Additional loci, not seen in the ASD analyses, show evidence for linkage to the broad autism phenotype (BAP). BAP peaks are well supported by multiple subphenotypes (including anxiety, pragmatic language, and social behavior) showing linkage to regions overlapping with the compound BAP phenotype. Whereas 'repetitive behavior’, showing the strongest evidence for linkage (Posterior Probability of Linkage = 62% at 6p25.2-24.3, and 69% at 19p13.3), appears to be linked to novel regions not detected with other compound or narrow phenotypes examined in this study. Conclusions These results provide support for the presence of key features underlying the complexity of the genetic architecture of ASD: substantial between-family locus heterogeneity, that the BAP appears to correspond to sets of subclinical features segregating with ASD within pedigrees, and that different features of the ASD phenotype segregate independently of one another. These findings support the additional study of larger, even more individually informative pedigrees, together with measurement of multiple, behavioral- and biomarker-based phenotypes, in both affected and non-affected individuals, to elucidate the complex genetics of familial ASD.
Collapse
Affiliation(s)
- Joseph Piven
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, School of Medicine, CB# 3367, Chapel Hill, NC 27599, USA
| | - Veronica J Vieland
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA.,Department of Pediatrics and Department of Statistics, The Ohio State University, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Morgan Parlier
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, School of Medicine, CB# 3367, Chapel Hill, NC 27599, USA
| | - Ann Thompson
- McMaster Department of Psychiatry and Behavioural Neurosciences, 1200 Main Street west, L9H 3Z5, Hamilton, ON, Canada
| | - Irene O'Conner
- McMaster Department of Psychiatry and Behavioural Neurosciences, 1200 Main Street west, L9H 3Z5, Hamilton, ON, Canada
| | - Mark Woodbury-Smith
- McMaster Department of Psychiatry and Behavioural Neurosciences, 1200 Main Street west, L9H 3Z5, Hamilton, ON, Canada
| | - Yungui Huang
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Kimberly A Walters
- Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Bridget Fernandez
- Provincial Medical Genetics Program, Health Sciences Center, 300 Prince Philip Drive, A1B 3V6, St. John's, Newfoundland, Canada
| | - Peter Szatmari
- McMaster Department of Psychiatry and Behavioural Neurosciences, 1200 Main Street west, L9H 3Z5, Hamilton, ON, Canada.,Centre for Addiction and Mental Health, University of Toronto, 80 Workman Way, Toronto, ON, Canada
| |
Collapse
|
23
|
Komeda H, Kosaka H, Saito DN, Inohara K, Munesue T, Ishitobi M, Sato M, Okazawa H. Episodic memory retrieval for story characters in high-functioning autism. Mol Autism 2013; 4:20. [PMID: 23800273 PMCID: PMC3695882 DOI: 10.1186/2040-2392-4-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 06/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this study was to examine differences in episodic memory retrieval between individuals with autism spectrum disorder (ASD) and typically developing (TD) individuals. Previous studies have shown that personality similarities between readers and characters facilitated reading comprehension. Highly extraverted participants read stories featuring extraverted protagonists more easily and judged the outcomes of such stories more rapidly than did less extraverted participants. Similarly, highly neurotic participants judged the outcomes of stories with neurotic protagonists more rapidly than did participants with low levels of neuroticism. However, the impact of the similarity effect on memory retrieval remains unclear. This study tested our ‘similarity hypothesis’, namely that memory retrieval is enhanced when readers with ASD and TD readers read stories featuring protagonists with ASD and with characteristics associated with TD individuals, respectively. Methods Eighteen Japanese individuals (one female) with high-functioning ASD (aged 17 to 40 years) and 17 age- and intelligence quotient (IQ)-matched Japanese (one female) TD participants (aged 22 to 40 years) read 24 stories; 12 stories featured protagonists with ASD characteristics, and the other 12 featured TD protagonists. Participants read a single sentence at a time and pressed a spacebar to advance to the next sentence. After reading all 24 stories, they were asked to complete a recognition task about the target sentence in each story. Results To investigate episodic memory in ASD, we analyzed encoding based on the reading times for and readability of the stories and retrieval processes based on the accuracy of and response times for sentence recognition. Although the results showed no differences between ASD and TD groups in encoding processes, they did reveal inter-group differences in memory retrieval. Although individuals with ASD demonstrated the same level of accuracy as did TD individuals, their patterns of memory retrieval differed with respect to response times. Conclusions Individuals with ASD more effectively retrieved ASD-congruent than ASD-incongruent sentences, and TD individuals retrieved stories with TD more effectively than stories with ASD protagonists. Thus, similarity between reader and story character had different effects on memory retrieval in the ASD and TD groups.
Collapse
Affiliation(s)
- Hidetsugu Komeda
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Menashe I, Larsen EC, Banerjee-Basu S. Prioritization of Copy Number Variation Loci Associated with Autism from AutDB-An Integrative Multi-Study Genetic Database. PLoS One 2013; 8:e66707. [PMID: 23825557 PMCID: PMC3688962 DOI: 10.1371/journal.pone.0066707] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 05/13/2013] [Indexed: 12/20/2022] Open
Abstract
Copy number variants (CNVs) are thought to play an important role in the predisposition to autism spectrum disorder (ASD). However, their relatively low frequency and widespread genomic distribution complicates their accurate characterization and utilization for clinical genetics purposes. Here we present a comprehensive analysis of multi-study, genome-wide CNV data from AutDB (http://mindspec.org/autdb.html), a genetic database that accommodates detailed annotations of published scientific reports of CNVs identified in ASD individuals. Overall, we evaluated 4,926 CNVs in 2,373 ASD subjects from 48 scientific reports, encompassing ∼2.12×109 bp of genomic data. Remarkable variation was seen in CNV size, with duplications being significantly larger than deletions, (P = 3×10−105; Wilcoxon rank sum test). Examination of the CNV burden across the genome revealed 11 loci with a significant excess of CNVs among ASD subjects (P<7×10−7). Altogether, these loci covered 15,610 kb of the genome and contained 166 genes. Remarkable variation was seen both in locus size (20 - 4950 kb), and gene content, with seven multigenic (≥3 genes) and four monogenic loci. CNV data from control populations was used to further refine the boundaries of these ASD susceptibility loci. Interestingly, our analysis indicates that 15q11.2-13.3, a genomic region prone to chromosomal rearrangements of various sizes, contains three distinct ASD susceptibility CNV loci that vary in their genomic boundaries, CNV types, inheritance patterns, and overlap with CNVs from control populations. In summary, our analysis of AutDB CNV data provides valuable insights into the genomic characteristics of ASD susceptibility CNV loci and could therefore be utilized in various clinical settings and facilitate future genetic research of this disorder.
Collapse
Affiliation(s)
- Idan Menashe
- MindSpec, McLean, Virginia, United States of America
- Department of Public Health, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (IM); (SB)
| | | | | |
Collapse
|
25
|
Hu VW. The expanding genomic landscape of autism: discovering the 'forest' beyond the 'trees'. FUTURE NEUROLOGY 2013; 8:29-42. [PMID: 23637569 DOI: 10.2217/fnl.12.83] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders are neurodevelopmental disorders characterized by significant deficits in reciprocal social interactions, impaired communication and restricted, repetitive behaviors. As autism spectrum disorders are among the most heritable of neuropsychiatric disorders, much of autism research has focused on the search for genetic variants in protein-coding genes (i.e., the 'trees'). However, no single gene can account for more than 1% of the cases of autism spectrum disorders. Yet, genome-wide association studies have often identified statistically significant associations of genetic variations in regions of DNA that do not code for proteins (i.e., intergenic regions). There is increasing evidence that such noncoding regions are actively transcribed and may participate in the regulation of genes, including genes on different chromosomes. This article summarizes evidence that suggests that the research spotlight needs to be expanded to encompass far-reaching gene-regulatory mechanisms that include a variety of epigenetic modifications, as well as noncoding RNA (i.e., the 'forest'). Given that noncoding RNA represents over 90% of the transcripts in most cells, we may be observing just the 'tip of the iceberg' or the 'edge of the forest' in the genomic landscape of autism.
Collapse
Affiliation(s)
- Valerie W Hu
- Department of Biochemistry & Molecular Medicine, The George Washington University, School of Medicine & Health Sciences, 2300 Eye St., N.W., Washington, DC 20037, USA Tel.: +1 202 994 8431
| |
Collapse
|
26
|
Delmonte S, Balsters JH, McGrath J, Fitzgerald J, Brennan S, Fagan AJ, Gallagher L. Social and monetary reward processing in autism spectrum disorders. Mol Autism 2012; 3:7. [PMID: 23014171 PMCID: PMC3499449 DOI: 10.1186/2040-2392-3-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/21/2012] [Indexed: 01/29/2023] Open
Abstract
Background Social motivation theory suggests that deficits in social reward processing underlie social impairments in autism spectrum disorders (ASD). However, the extent to which abnormalities in reward processing generalize to other classes of stimuli remains unresolved. The aim of the current study was to examine if reward processing abnormalities in ASD are specific to social stimuli or can be generalized to other classes of reward. Additionally, we sought to examine the results in the light of behavioral impairments in ASD. Methods Participants performed adapted versions of the social and monetary incentive delay tasks. Data from 21 unmedicated right-handed male participants with ASD and 21 age- and IQ-matched controls were analyzed using a factorial design to examine the blood-oxygen-level-dependent (BOLD) response during the anticipation and receipt of both reward types. Results Behaviorally, the ASD group showed less of a reduction in reaction time (RT) for rewarded compared to unrewarded trials than the control group. In terms of the fMRI results, there were no significant group differences in reward circuitry during reward anticipation. During the receipt of rewards, there was a significant interaction between group and reward type in the left dorsal striatum (DS). The ASD group showed reduced activity in the DS compared to controls for social rewards but not monetary rewards and decreased activation for social rewards compared to monetary rewards. Controls showed no significant difference between the two reward types. Increased activation in the DS during social reward processing was associated with faster response times for rewarded trials, compared to unrewarded trials, in both groups. This is in line with behavioral results indicating that the ASD group showed less of a reduction in RT for rewarded compared to unrewarded trials. Additionally, de-activation to social rewards was associated with increased repetitive behavior in ASD. Conclusions In line with social motivation theory, the ASD group showed reduced activation, compared to controls, during the receipt of social rewards in the DS. Groups did not differ significantly during the processing of monetary rewards. BOLD activation in the DS, during social reward processing, was associated with behavioral impairments in ASD.
Collapse
Affiliation(s)
- Sonja Delmonte
- Department of Psychiatry, Trinity College Dublin, Dublin, 2, Ireland.
| | | | | | | | | | | | | |
Collapse
|
27
|
Curran S, Bolton P, Rozsnyai K, Chiocchetti A, Klauck SM, Duketis E, Poustka F, Schlitt S, Freitag CM, Lee I, Muglia P, Poot M, Staal W, de Jonge MV, Ophoff RA, Lewis C, Skuse D, Mandy W, Vassos E, Fossdal R, Magnusson P, Hreidarsson S, Saemundsen E, Stefansson H, Stefansson K, Collier D. No association between a common single nucleotide polymorphism, rs4141463, in the MACROD2 gene and autism spectrum disorder. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:633-9. [PMID: 21656903 DOI: 10.1002/ajmg.b.31201] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/25/2011] [Indexed: 01/23/2023]
Abstract
The Autism Genome Project (AGP) Consortium recently reported genome-wide significant association between autism and an intronic single nucleotide polymorphism marker, rs4141463, within the MACROD2 gene. In the present study we attempted to replicate this finding using an independent case-control design of 1,170 cases with autism spectrum disorder (ASD) (874 of which fulfilled narrow criteria for Autism (A)) from five centers within Europe (UK, Germany, the Netherlands, Italy, and Iceland), and 35,307 controls. The combined sample size gave us a non-centrality parameter (NCP) of 11.9, with 93% power to detect allelic association of rs4141463 at an alpha of 0.05 with odds ratio of 0.84 (the best odds ratio estimate of the AGP Consortium data), and for the narrow diagnosis of autism, an NCP of 8.9 and power of 85%. Our case-control data were analyzed for association, stratified by each center, and the summary statistics were combined using the meta-analysis program, GWAMA. This resulted in an odds ratio (OR) of 1.03 (95% CI 0.944-1.133), with a P-value of 0.5 for ASD and OR of 0.99 (95% CI 0.88-1.11) with P-value = 0.85 for the Autism (A) sub-group. Therefore, this study does not provide support for the reported association between rs4141463 and autism.
Collapse
Affiliation(s)
- Sarah Curran
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Kings College London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Joober R. The 1000 Genomes Project: deep genomic sequencing waiting for deep psychiatric phenotyping. J Psychiatry Neurosci 2011; 36:147-9. [PMID: 21496442 PMCID: PMC3080510 DOI: 10.1503/jpn.110026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Ridha Joober
- Correspondence to: Dr. R. Joober, Douglas Hospital Research Centre, Frank B. Common Pavilion, 6875 blvd. LaSalle, Verdun QC H4H 1R3;
| |
Collapse
|
29
|
Abstract
Autism, like intellectual disability, represents the severe end of a continuous distribution of developmental impairments that occur in nature, that are highly inherited, and that are orthogonally related to other parameters of development. A paradigm shift in understanding the core social abnormality of autism as a quantitative trait rather than as a categorically defined condition has key implications for diagnostic classification, the measurement of change over time, the search for underlying genetic and neurobiologic mechanisms, and public health efforts to identify and support affected children. Here, a recent body of research in genetics and epidemiology is presented to examine a dimensional reconceptualization of autistic social impairment-as manifested in clinical autistic syndromes, the broader autism phenotype, and normal variation in the general population. It illustrates how traditional categorical approaches to diagnosis may lead to misclassification of subjects (especially girls and mildly affected boys in multiple-incidence autism families), which can be particularly damaging to biological studies and proposes continued efforts to derive a standardized quantitative system by which to characterize this family of conditions.
Collapse
Affiliation(s)
- John N Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
30
|
Hu VW, Addington A, Hyman A. Novel autism subtype-dependent genetic variants are revealed by quantitative trait and subphenotype association analyses of published GWAS data. PLoS One 2011; 6:e19067. [PMID: 21556359 PMCID: PMC3083416 DOI: 10.1371/journal.pone.0019067] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/18/2011] [Indexed: 01/26/2023] Open
Abstract
The heterogeneity of symptoms associated with autism spectrum disorders (ASDs) has presented a significant challenge to genetic analyses. Even when associations with genetic variants have been identified, it has been difficult to associate them with a specific trait or characteristic of autism. Here, we report that quantitative trait analyses of ASD symptoms combined with case-control association analyses using distinct ASD subphenotypes identified on the basis of symptomatic profiles result in the identification of highly significant associations with 18 novel single nucleotide polymorphisms (SNPs). The symptom categories included deficits in language usage, non-verbal communication, social development, and play skills, as well as insistence on sameness or ritualistic behaviors. Ten of the trait-associated SNPs, or quantitative trait loci (QTL), were associated with more than one subtype, providing partial replication of the identified QTL. Notably, none of the novel SNPs is located within an exonic region, suggesting that these hereditary components of ASDs are more likely related to gene regulatory processes (or gene expression) than to structural or functional changes in gene products. Seven of the QTL reside within intergenic chromosomal regions associated with rare copy number variants that have been previously reported in autistic samples. Pathway analyses of the genes associated with the QTL identified in this study implicate neurological functions and disorders associated with autism pathophysiology. This study underscores the advantage of incorporating both quantitative traits as well as subphenotypes into large-scale genome-wide analyses of complex disorders.
Collapse
Affiliation(s)
- Valerie W Hu
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC, United States of America.
| | | | | |
Collapse
|