1
|
Stein WD. An Orthologics Study of the Notch Signaling Pathway. Genes (Basel) 2024; 15:1452. [PMID: 39596652 PMCID: PMC11594159 DOI: 10.3390/genes15111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
The Notch signaling pathway plays a major role in embryological development and in the ongoing life processes of many animals. Its role is to provide cell-to-cell communication in which a Sender cell, bearing membrane-embedded ligands, instructs a Receiver cell, bearing membrane-embedded receptors, to adopt one of two available fates. Elucidating the evolution of this pathway is the topic of this paper, which uses an orthologs approach, providing a comprehensive basis for the study. Using BLAST searches, orthologs were identified for all the 49 components of the Notch signaling pathway. The historical time course of integration of these proteins, as the animals evolved, was elucidated. Insofar as cell-to-cell communication is of relevance only in multicellular animals, it is not surprising that the Notch system became functional only with the evolutionary appearance of Metazoa, the first multicellular animals. Porifera contributed a quarter of the Notch pathway proteins, the Cnidaria brought the total to one-half, but the system reached completion only when humans appeared. A literature search elucidated the roles of the Notch system's components in modern descendants of the ortholog-contributing ancestors. A single protein, the protein tyrosine kinase (PTK) of the protozoan Ministeria vibrans, was identified as a possible pre-Metazoan ancestor of all three of the Notch pathway proteins, DLL, JAG, and NOTCH. A scenario for the evolution of the Notch signaling pathway is presented and described as the co-option of its components, clade by clade, in a repurposing of genes already present in ancestral unicellular organisms.
Collapse
Affiliation(s)
- Wilfred Donald Stein
- Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
2
|
Lai X, Ji F, Yu F, Chen H, Shen S, Gao H. Delta of Exopalaemon carinicauda: molecular characterization, expression in different tissues and developmental stages, and its SNPs association analysis with development. Mol Biol Rep 2023; 50:10083-10095. [PMID: 37910385 DOI: 10.1007/s11033-023-08840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND The Notch signaling pathway plays a significant role in the gene regulatory network of development of vertebrate and invertebrate. However, as a ligand for the Notch signaling pathway, the mechanism of Delta in the development of Exopalaemon carinicauda is still unclear. METHODS AND RESULTS The Delta's molecular characteristics, tissue distribution and their association with development in E. carinicauda were studied by RACE (rapid amplification of cDNA end), qRT-PCR (quantitative Real-time PCR) and SNP (single nucleotide polymorphism), respectively. The delta in E. carinicauda had a full-length cDNA of 2807 bp and its Delta of 808 amino-acid residue had the highest identity with the Delta of Homarus americanus (identity = 76.63%). Delta had the highest expression in the ovary, and its expression varied with different stages of embryonic, larval, and ovarian development. After delta RNA interference (with a highest interference efficiency of 66% at 24 h), the expression of Notch signaling pathway genes and developmental related genes was significantly reduced, and the ovarian development was significantly delayed. Further study found that there were 4 SNPs (ds1-4) in delta cDNA, of which two (ds2 T1521G caused a mutation Asn422Lys and ds3 G1674A caused a mutation Tyr473Cys in the EGF-like domain) were associated with the development of E. carinicauda. The Gonadosomatic Index (GSI) of the ds2 TT genotypes was 37.28% and 134.60% higher than E. carinicauda of GT and GG genotype respectively (P < 0.05). CONCLUSION Our research indicated that delta was involved in the development of E. carinicauda and provided new insights for molecular breeding with SNP markers in E. carinicauda.
Collapse
Affiliation(s)
- Xiaofang Lai
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, 222005, Jiangsu, China.
- Marine Resource Development institute of Jiangsu (Lianyungang), Lianyungang, 222005, Jiangsu, China.
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, Jiangsu, China.
| | - Fanyue Ji
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Feifan Yu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Hao Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Shanrui Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
| | - Huan Gao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Key Laboratory of Marine Biological Resources and Environment of Jiangsu Province, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, 222005, Jiangsu, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, 222005, Jiangsu, China
- Marine Resource Development institute of Jiangsu (Lianyungang), Lianyungang, 222005, Jiangsu, China
- The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing, 210014, Jiangsu, China
| |
Collapse
|
3
|
Li YD, Huang H, Ren ZJ, Yuan Y, Wu H, Liu C. Pan-cancer analysis identifies SPEN mutation as a predictive biomarker with the efficacy of immunotherapy. BMC Cancer 2023; 23:793. [PMID: 37620924 PMCID: PMC10463702 DOI: 10.1186/s12885-023-11235-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The association between specific genetic mutations and immunotherapy benefits has been widely known, while such studies in pan-cancer are still limited. SPEN, mainly involved in X chromosome inactivation (XCI), plays an essential in tumorigenesis and sex differences in cancer. Thus, we firstly analyzed the potential role of SPEN in the TCGA pan-cancer cohort and clinical samples. Bioinformatics analysis and immunohistochemistry (IHC) staining confirm that the expression of SPEN is significantly different in various cancers and may involve RNA splicing and processing via enrichment analysis. Then, our data further revealed that those patients with SPEN mutation could predict a better prognosis in pan-cancer and had distinct immune signatures, higher tumor mutation burden (TMB), and microsatellite instability (MSI) in common cancer types. Finally, the cancer patients from 9 studies treated with immune checkpoint inhibitors were included to investigate the efficacy of immunotherapy. The results further showed that SPEN mutation was associated with better clinical outcomes (HR, 0.74; 95%CI, 0.59-0.93, P = 0.01), and this association remained existed in female patients (HR, 0.60; 95%CI, 0.38-0.94 P = 0.024), but not in male patients (HR, 0.82; 95%CI, 0.62-1.08 P = 0.150). Our findings demonstrated that SPEN mutation might strongly predict immunotherapy efficacy in pan-cancer.
Collapse
Affiliation(s)
- Ya-Dong Li
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hao Huang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zheng-Ju Ren
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ye Yuan
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hao Wu
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chuan Liu
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Yuan H, Hatleberg WL, Degnan BM, Degnan SM. Gene activation of metazoan Fox transcription factors at the onset of metamorphosis in the marine demosponge Amphimedon queenslandica. Dev Growth Differ 2022; 64:455-468. [PMID: 36155915 PMCID: PMC9828451 DOI: 10.1111/dgd.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
Transcription factors encoded by the Forkhead (Fox) gene family have diverse, sometimes conserved, regulatory roles in eumetazoan development, immunity, and physiology. Although this gene family includes members that predate the origin of the animal kingdom, the majority of metazoan Fox genes evolved after the divergence of animals and choanoflagellates. Here, we characterize the composition, structure, and expression of Fox genes in the marine demosponge Amphimedon queenslandica to better understand the origin and evolution of this family. The Fox gene repertoire in A. queenslandica appears to be similar to the ancestral metazoan Fox gene family. All 17 A. queenslandica Fox genes are differentially expressed during development and in adult cell types. Remarkably, eight of these, all of which appear to be metazoan-specific, are induced within just 1 h of larval settlement and commencement of metamorphosis. Gene co-expression analyses suggest that these eight Fox genes regulate developmental and physiological processes similar to their roles in other animals. These findings are consistent with Fox genes playing deeply ancestral roles in animal development and physiology, including in response to changes in the external environment.
Collapse
Affiliation(s)
- Huifang Yuan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - William L. Hatleberg
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia,Present address:
Department of Biological SciencesCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Bernard M. Degnan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Sandie M. Degnan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
5
|
Gilbert E, Teeling C, Lebedeva T, Pedersen S, Chrismas N, Genikhovich G, Modepalli V. Molecular and cellular architecture of the larval sensory organ in the cnidarian Nematostella vectensis. Development 2022; 149:dev200833. [PMID: 36000354 PMCID: PMC9481973 DOI: 10.1242/dev.200833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Cnidarians are the only non-bilaterian group to evolve ciliated larvae with an apical sensory organ, which is possibly homologous to the apical organs of bilaterian primary larvae. Here, we generated transcriptomes of the apical tissue in the sea anemone Nematostella vectensis and showed that it has a unique neuronal signature. By integrating previously published larval single-cell data with our apical transcriptomes, we discovered that the apical domain comprises a minimum of six distinct cell types. We show that the apical organ is compartmentalised into apical tuft cells (spot) and larval-specific neurons (ring). Finally, we identify ISX-like (NVE14554), a PRD class homeobox gene specifically expressed in apical tuft cells, as an FGF signalling-dependent transcription factor responsible for the formation of the apical tuft domain via repression of the neural ring fate in apical cells. With this study, we contribute a comparison of the molecular anatomy of apical organs, which must be carried out across phyla to determine whether this crucial larval structure evolved once or multiple times.
Collapse
Affiliation(s)
- Eleanor Gilbert
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Callum Teeling
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Tatiana Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, 1030, Austria
- Doctoral School of Ecology and Evolution, University of Vienna, Vienna, 1030, Austria
| | - Siffreya Pedersen
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Nathan Chrismas
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, 1030, Austria
| | - Vengamanaidu Modepalli
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| |
Collapse
|
6
|
Wong E, Anggono V, Williams SR, Degnan SM, Degnan BM. Phototransduction in a marine sponge provides insights into the origin of animal vision. iScience 2022; 25:104436. [PMID: 35707725 PMCID: PMC9189025 DOI: 10.1016/j.isci.2022.104436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/22/2021] [Accepted: 05/17/2022] [Indexed: 11/24/2022] Open
Abstract
Most organisms respond to light. Here, we investigate the origin of metazoan phototransduction by comparing well-characterized opsin-based photosystems in neural animals with those in the sponge Amphimedon queenslandica. Although sponges lack neurons and opsins, they can respond rapidly to light. In Amphimedon larvae, this is guided by the light-sensing posterior pigment ring. We first use cell-type-specific transcriptomes to reveal that genes that characterize eumetazoan Gt- and Go-mediated photosystems are enriched in the pigment ring. We then apply a suite of signaling pathway agonists and antagonists to swimming larvae exposed to directional light. These experiments implicate metabotropic glutamate receptors, phospholipase-C, protein kinase C, and voltage-gated calcium channels in larval phototaxis; the inhibition of phospholipase-C, a key transducer of the Gq-mediated pathway, completely reverses phototactic behavior. Together, these results are consistent with aneural sponges sharing with neural metazoans an ancestral set of photosignaling pathways. Amphimedon larvae are negatively phototactic but lack neurons and opsins Sponge larval photosensory cells are enriched in conserved phototransduction genes Conserved photosignaling pathways appear to be controlling larval phototaxis Phototactic behavior is reversed by the inhibition of phospholipase-C
Collapse
Affiliation(s)
- Eunice Wong
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Victor Anggono
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.,Clem Jones Centre for Ageing Dementia Research, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen R Williams
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Sandie M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Andrade MP, Santos D, Bueno GM, Santos CMD. What if… Sponges Originated 890 Million Years Ago? On the Emergence of Some Precursors of Animal Sentience. Evol Biol 2021. [DOI: 10.1007/s11692-021-09551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
He X, Wu F, Zhang L, Li L, Zhang G. Comparative and evolutionary analyses reveal conservation and divergence of the notch pathway in lophotrochozoa. Sci Rep 2021; 11:11378. [PMID: 34059772 PMCID: PMC8166818 DOI: 10.1038/s41598-021-90800-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/17/2021] [Indexed: 01/03/2023] Open
Abstract
Lophotrochozoan species exhibit wide morphological diversity; however, the molecular basis underlying this diversity remains unclear. Here, we explored the evolution of Notch pathway genes across 37 metazoan species via phylogenetic and molecular evolutionary studies with emphasis on the lophotrochozoans. We displayed the components of Notch pathway in metazoans and found that Delta and Hes/Hey-related genes, as well as their functional domains, are duplicated in lophotrochozoans. Comparative transcriptomics analyses allow us to pinpoint sequence divergence of multigene families in the Notch signalling pathway. We identified the duplication mechanism of a mollusc-specific gene, Delta2, and found it displayed complementary expression throughout development. Furthermore, we found the functional diversification not only in expanded genes in the Notch pathway (Delta and Hes/Hey-related genes), but also in evolutionary conservative genes (Notch, Presenilin, and Su(H)). Together, this comprehensive study demonstrates conservation and divergence within the Notch pathway, reveals evolutionary relationships among metazoans, and provides evidence for the occurrence of developmental diversity in lophotrochozoans, as well as a basis for future gene function studies.
Collapse
Affiliation(s)
- Xin He
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fucun Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China.
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China.
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, 266071, China
| |
Collapse
|
9
|
Fierro-Constaín L, Rocher C, Marschal F, Schenkelaars Q, Séjourné N, Borchiellini C, Renard E. In Situ Hybridization Techniques in the Homoscleromorph Sponge Oscarella lobularis. Methods Mol Biol 2021; 2219:181-194. [PMID: 33074541 DOI: 10.1007/978-1-0716-0974-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The Porifera are one of the best candidates as the sister group to all other metazoans. Studies on this phylum are therefore expected to shed light on the origin and early evolution of key animal features. Transcriptomic or genomic data acquired during the last 10 years have highlighted the conservation of most of the main genes and pathways involved in the development of the other metazoans. The next step is to determine how similar genetic tool boxes can result in widely dissimilar body plan organization, dynamics, and life histories. To answer these questions, three main axes of research are necessary: (1) conducting more gene expression studies; (2) developing knockdown protocols; and (3) reinterpreting sponge cell biology using modern tools. In this chapter we focus on the in situ hybridization (ISH) technique, needed to establish the spatiotemporal expression of genes, both on whole mount individuals and paraffin sections, and at different stages of development (adults, embryos, larvae, buds) of the homoscleromorph sponge Oscarella lobularis.
Collapse
Affiliation(s)
| | - Caroline Rocher
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Florent Marschal
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Quentin Schenkelaars
- Department of Genetics and Evolution, Faculty of Sciences, Institute of Genetics and Genomics in Geneva (IGe3), University of Geneva, Geneva, Switzerland
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Nina Séjourné
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | | | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France.
| |
Collapse
|
10
|
Wong E, Mölter J, Anggono V, Degnan SM, Degnan BM. Co-expression of synaptic genes in the sponge Amphimedon queenslandica uncovers ancient neural submodules. Sci Rep 2019; 9:15781. [PMID: 31673079 PMCID: PMC6823388 DOI: 10.1038/s41598-019-51282-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022] Open
Abstract
The synapse is a complex cellular module crucial to the functioning of neurons. It evolved largely through the exaptation of pre-existing smaller submodules, each of which are comprised of ancient sets of proteins that are conserved in modern animals and other eukaryotes. Although these ancient submodules themselves have non-neural roles, it has been hypothesized that they may mediate environmental sensing behaviors in aneural animals, such as sponges. Here we identify orthologues in the sponge Amphimedon queenslandica of genes encoding synaptic submodules in neural animals, and analyse their cell-type specific and developmental expression to determine their potential to be co-regulated. We find that genes comprising certain synaptic submodules, including those involved in vesicle trafficking, calcium-regulation and scaffolding of postsynaptic receptor clusters, are co-expressed in adult choanocytes and during metamorphosis. Although these submodules may contribute to sensory roles in this cell type and this life cycle stage, total synaptic gene co-expression profiles do not support the existence of a functional synapse in A. queenslandica. The lack of evidence for the co-regulation of genes necessary for pre- and post-synaptic functioning in A. queenslandica suggests that sponges, and perhaps the last common ancestor of sponges and other extant animals, had the ability to promulgate sensory inputs without complete synapse-like functionalities. The differential co-expression of multiple synaptic submodule genes in sponge choanocytes, which have sensory and feeding roles, however, is consistent with the metazoan ancestor minimally being able to undergo exo- and endocytosis in a controlled and localized manner.
Collapse
Affiliation(s)
- Eunice Wong
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jan Mölter
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Victor Anggono
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
- Clem Jones Centre for Ageing Dementia Research, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Sandie M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
11
|
Abstract
Regeneration of lost body parts is essential to regain the fitness of the organism for successful living. In the animal kingdom, organisms from different clades exhibit varied regeneration abilities. Hydra is one of the few organisms that possess tremendous regeneration potential, capable of regenerating complete organism from small tissue fragments or even from dissociated cells. This peculiar property has made this genus one of the most invaluable model organisms for understanding the process of regeneration. Multiple studies in Hydra led to the current understanding of gross morphological changes, basic cellular dynamics, and the role of molecular signalling such as the Wnt signalling pathway. However, cell-to-cell communication by cell adhesion, role of extracellular components such as extracellular matrix (ECM), and nature of cell types that contribute to the regeneration process need to be explored in depth. Additionally, roles of developmental signalling pathways need to be elucidated to enable more comprehensive understanding of regeneration in Hydra. Further research on cross communication among extracellular, cellular, and molecular signalling in Hydra will advance the field of regeneration biology. Here, we present a review of the existing literature on Hydra regeneration biology and outline the future perspectives.
Collapse
Affiliation(s)
- Puli Chandramouli Reddy
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India.
| | - Akhila Gungi
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Manu Unni
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|
12
|
Borisenko I, Podgornaya OI, Ereskovsky AV. From traveler to homebody: Which signaling mechanisms sponge larvae use to become adult sponges? ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:421-449. [DOI: 10.1016/bs.apcsb.2019.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Gaiti F, Hatleberg WL, Tanurdžić M, Degnan BM. Sponge Long Non-Coding RNAs Are Expressed in Specific Cell Types and Conserved Networks. Noncoding RNA 2018; 4:ncrna4010006. [PMID: 29657303 PMCID: PMC5890393 DOI: 10.3390/ncrna4010006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/05/2018] [Accepted: 02/27/2018] [Indexed: 02/06/2023] Open
Abstract
Although developmental regulation by long non-coding RNAs (lncRNAs) appears to be a widespread feature amongst animals, the origin and level of evolutionary conservation of this mode of regulation remain unclear. We have previously demonstrated that the sponge Amphimedon queenslandica—a morphologically-simple animal—developmentally expresses an array of lncRNAs in manner akin to more complex bilaterians (insects + vertebrates). Here, we first show that Amphimedon lncRNAs are expressed in specific cell types in larvae, juveniles and adults. Thus, as in bilaterians, sponge developmental regulation involves the dynamic, cell type- and context-specific regulation of specific lncRNAs. Second, by comparing gene co-expression networks between Amphimedon queenslandica and Sycon ciliatum—a distantly-related calcisponge—we identify several putative co-expression modules that appear to be shared in sponges; these network-embedded sponge lncRNAs have no discernable sequence similarity. Together, these results suggest sponge lncRNAs are developmentally regulated and operate in conserved gene regulatory networks, as appears to be the case in more complex bilaterians.
Collapse
Affiliation(s)
- Federico Gaiti
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
- Department of Medicine, Weill Cornell Medicine, and New York Genome Center, New York, NY 10021, USA.
| | - William L Hatleberg
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Miloš Tanurdžić
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
14
|
Gazave E, Lemaître QIB, Balavoine G. The Notch pathway in the annelid Platynereis: insights into chaetogenesis and neurogenesis processes. Open Biol 2017; 7:rsob.160242. [PMID: 28148821 PMCID: PMC5356439 DOI: 10.1098/rsob.160242] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 01/03/2017] [Indexed: 01/13/2023] Open
Abstract
Notch is a key signalling pathway playing multiple and varied functions during development. Notch regulates the selection of cells with a neurogenic fate and maintains a pool of yet uncommitted precursors through lateral inhibition, both in insects and in vertebrates. Here, we explore the functions of Notch in the annelid Platynereis dumerilii (Lophotrochozoa). Conserved components of the pathway are identified and a scenario for their evolution in metazoans is proposed. Unexpectedly, neither Notch nor its ligands are expressed in the neurogenic epithelia of the larva at the time when massive neurogenesis begins. Using chemical inhibitors and neural markers, we demonstrate that Notch plays no major role in the general neurogenesis of larvae. Instead, we find Notch components expressed in nascent chaetal sacs, the organs that produce the annelid bristles. Impairing Notch signalling induces defects in chaetal sac formation, abnormalities in chaetae producing cells and a change of identity of chaeta growth accessory cells. This is the first bilaterian species in which the early neurogenesis processes appear to occur without a major involvement of the Notch pathway. Instead, Notch is co-opted to pattern annelid-specific organs, likely through a lateral inhibition process. These features reinforce the view that Notch signalling has been recruited multiple times in evolution due to its remarkable ‘toolkit’ nature.
Collapse
Affiliation(s)
- Eve Gazave
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Quentin I B Lemaître
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Guillaume Balavoine
- Institut Jacques Monod, CNRS, UMR 7592, Univ Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| |
Collapse
|
15
|
Abstract
A complex genetic repertoire underlies the apparently simple body plan of sponges. Among the genes present in poriferans are those fundamental to the sensory and nervous systems of other animals. Sponges are dynamic and sensitive animals and it is intuitive to link these genes to behaviour. The proposal that ctenophores are the earliest diverging metazoan has led to the question of whether sponges possess a 'pre-nervous' system or have undergone nervous system loss. Both lines of thought generally assume that the last common ancestor of sponges and eumetazoans possessed the genetic modules that underlie sensory abilities. By corollary extant sponges may possess a sensory cell homologous to one present in the last common ancestor, a hypothesis that has been studied by gene expression. We have performed a meta-analysis of all gene expression studies published to date to explore whether gene expression is indicative of a feature's sensory function. In sponges we find that eumetazoan sensory-neural markers are not particularly expressed in structures with known sensory functions. Instead it is common for these genes to be expressed in cells with no known or uncharacterized sensory function. Indeed, many sensory-neural markers so far studied are expressed during development, perhaps because many are transcription factors. This suggests that the genetic signal of a sponge sensory cell is dissimilar enough to be unrecognizable when compared to a bilaterian sensory or neural cell. It is possible that sensory-neural markers have as yet unknown functions in sponge cells, such as assembling an immunological synapse in the larval globular cell. Furthermore, the expression of sensory-neural markers in non-sensory cells, such as adult and larval epithelial cells, suggest that these cells may have uncharacterized sensory functions. While this does not rule out the co-option of ancestral sensory modules in later evolving groups, a distinct genetic foundation may underlie the sponge sensory system.
Collapse
Affiliation(s)
- Jasmine L Mah
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Babonis LS, Martindale MQ. Phylogenetic evidence for the modular evolution of metazoan signalling pathways. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150477. [PMID: 27994120 PMCID: PMC5182411 DOI: 10.1098/rstb.2015.0477] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
Communication among cells was paramount to the evolutionary increase in cell type diversity and, ultimately, the origin of large body size. Across the diversity of Metazoa, there are only few conserved cell signalling pathways known to orchestrate the complex cell and tissue interactions regulating development; thus, modification to these few pathways has been responsible for generating diversity during the evolution of animals. Here, we summarize evidence for the origin and putative function of the intracellular, membrane-bound and secreted components of seven metazoan cell signalling pathways with a special focus on early branching metazoans (ctenophores, poriferans, placozoans and cnidarians) and basal unikonts (amoebozoans, fungi, filastereans and choanoflagellates). We highlight the modular incorporation of intra- and extracellular components in each signalling pathway and suggest that increases in the complexity of the extracellular matrix may have further promoted the modulation of cell signalling during metazoan evolution. Most importantly, this updated view of metazoan signalling pathways highlights the need for explicit study of canonical signalling pathway components in taxa that do not operate a complete signalling pathway. Studies like these are critical for developing a deeper understanding of the evolution of cell signalling.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| |
Collapse
|
17
|
Ueda N, Richards GS, Degnan BM, Kranz A, Adamska M, Croll RP, Degnan SM. An ancient role for nitric oxide in regulating the animal pelagobenthic life cycle: evidence from a marine sponge. Sci Rep 2016; 6:37546. [PMID: 27874071 PMCID: PMC5118744 DOI: 10.1038/srep37546] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 11/01/2016] [Indexed: 01/08/2023] Open
Abstract
In many marine invertebrates, larval metamorphosis is induced by environmental cues that activate sensory receptors and signalling pathways. Nitric oxide (NO) is a gaseous signalling molecule that regulates metamorphosis in diverse bilaterians. In most cases NO inhibits or represses this process, although it functions as an activator in some species. Here we demonstrate that NO positively regulates metamorphosis in the poriferan Amphimedon queenslandica. High rates of A. queenslandica metamorphosis normally induced by a coralline alga are inhibited by an inhibitor of nitric oxide synthase (NOS) and by a NO scavenger. Consistent with this, an artificial donor of NO induces metamorphosis even in the absence of the alga. Inhibition of the ERK signalling pathway prevents metamorphosis in concert with, or downstream of, NO signalling; a NO donor cannot override the ERK inhibitor. NOS gene expression is activated late in embryogenesis and in larvae, and is enriched in specific epithelial and subepithelial cell types, including a putative sensory cell, the globular cell; DAF-FM staining supports these cells being primary sources of NO. Together, these results are consistent with NO playing an activating role in induction of A. queenslandica metamorphosis, evidence of its highly conserved regulatory role in metamorphosis throughout the Metazoa.
Collapse
Affiliation(s)
- Nobuo Ueda
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Gemma S. Richards
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Bernard M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Alexandrea Kranz
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Maja Adamska
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| | - Roger P. Croll
- Department of Physiology & Biophysics, Dalhousie University, Halifax NS B3H 4R2, Canada
| | - Sandie M. Degnan
- School of Biological Sciences, University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
18
|
LaFoya B, Munroe JA, Mia MM, Detweiler MA, Crow JJ, Wood T, Roth S, Sharma B, Albig AR. Notch: A multi-functional integrating system of microenvironmental signals. Dev Biol 2016; 418:227-41. [PMID: 27565024 PMCID: PMC5144577 DOI: 10.1016/j.ydbio.2016.08.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/15/2016] [Accepted: 08/19/2016] [Indexed: 12/20/2022]
Abstract
The Notch signaling cascade is an evolutionarily ancient system that allows cells to interact with their microenvironmental neighbors through direct cell-cell interactions, thereby directing a variety of developmental processes. Recent research is discovering that Notch signaling is also responsive to a broad variety of stimuli beyond cell-cell interactions, including: ECM composition, crosstalk with other signaling systems, shear stress, hypoxia, and hyperglycemia. Given this emerging understanding of Notch responsiveness to microenvironmental conditions, it appears that the classical view of Notch as a mechanism enabling cell-cell interactions, is only a part of a broader function to integrate microenvironmental cues. In this review, we summarize and discuss published data supporting the idea that the full function of Notch signaling is to serve as an integrator of microenvironmental signals thus allowing cells to sense and respond to a multitude of conditions around them.
Collapse
Affiliation(s)
- Bryce LaFoya
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA
| | - Jordan A Munroe
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Masum M Mia
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Michael A Detweiler
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Jacob J Crow
- Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA
| | - Travis Wood
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Steven Roth
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Bikram Sharma
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Allan R Albig
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; Biomolecular Sciences PhD Program, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
19
|
Kelava I, Rentzsch F, Technau U. Evolution of eumetazoan nervous systems: insights from cnidarians. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0065. [PMID: 26554048 PMCID: PMC4650132 DOI: 10.1098/rstb.2015.0065] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system—in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution.
Collapse
Affiliation(s)
- Iva Kelava
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Fabian Rentzsch
- Sars Centre, Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5008 Bergen, Norway
| | - Ulrich Technau
- Department of Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
20
|
Adamska M. Sponges as models to study emergence of complex animals. Curr Opin Genet Dev 2016; 39:21-28. [PMID: 27318691 DOI: 10.1016/j.gde.2016.05.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/20/2016] [Accepted: 05/30/2016] [Indexed: 02/05/2023]
Abstract
The emergence of complex animal life forms remains poorly understood despite substantial interest and research in this area. To be informative, the ideal models to study transitions from single-cell organisms to the first animals and then to mammalian-level complexity should be phylogenetically strategically placed and retain ancestral characters. Sponges (Porifera) are likely to be the earliest branching animal phylum. When analysed from morphological, genomic and developmental perspectives, sponges appear to combine features of single-cell eukaryotic organisms and the complex multicellular animals (Eumetazoa). Intriguingly, homologues of components of the eumetazoan regulatory networks specifying the endoderm, the germ-cells and stem cells and (neuro) sensory cells are expressed in sponge choanocytes, archaeocytes and larval sensory cells. Studies using sponges as model systems are already bringing insights into animal evolution, and have opened avenues to further research benefitting from the recent spectacular expansion of genomic technologies.
Collapse
Affiliation(s)
- Maja Adamska
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
21
|
Murata A, Hayashi SI. Notch-Mediated Cell Adhesion. BIOLOGY 2016; 5:biology5010005. [PMID: 26784245 PMCID: PMC4810162 DOI: 10.3390/biology5010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 02/06/2023]
Abstract
Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms.
Collapse
Affiliation(s)
- Akihiko Murata
- Department of Molecular and Cellular Biology, Division of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| | - Shin-Ichi Hayashi
- Department of Molecular and Cellular Biology, Division of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
22
|
Liebeskind BJ, Hillis DM, Zakon HH, Hofmann HA. Complex Homology and the Evolution of Nervous Systems. Trends Ecol Evol 2015; 31:127-135. [PMID: 26746806 DOI: 10.1016/j.tree.2015.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 02/07/2023]
Abstract
We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states.
Collapse
Affiliation(s)
- Benjamin J Liebeskind
- Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA; Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712.
| | - David M Hillis
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA; Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712; Department of Integrative Biology, University of Texas, Austin, TX 78712, USA
| | - Harold H Zakon
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA; Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712; Department of Integrative Biology, University of Texas, Austin, TX 78712, USA; Department of Neuroscience, University of Texas, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas, Austin, TX 78712, USA; Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Hans A Hofmann
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA; Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712; Department of Integrative Biology, University of Texas, Austin, TX 78712, USA; Department of Neuroscience, University of Texas, Austin, TX 78712, USA; Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
23
|
Transcriptome Changes during the Life Cycle of the Red Sponge, Mycale phyllophila (Porifera, Demospongiae, Poecilosclerida). Genes (Basel) 2015; 6:1023-52. [PMID: 26492274 PMCID: PMC4690027 DOI: 10.3390/genes6041023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 09/14/2015] [Accepted: 09/29/2015] [Indexed: 01/10/2023] Open
Abstract
Sponges are an ancient metazoan group with broad ecological, evolutionary, and biotechnological importance. As in other marine invertebrates with a biphasic life cycle, the developing sponge undergoes a significant morphological, physiological, and ecological transformation during settlement and metamorphosis. In this study, we compare new transcriptome datasets for three life cycle stages of the red sponge (Mycale phyllophila) to test whether gene expression (as in the model poriferan, Amphimedon queenslandica) also varies more after settlement and metamorphosis. In contrast to A. queenslandica, we find that the transcriptome of M. phyllophila changes more during the earlier pre-competent larva/post-larva transition that spans these defining events. We also find that this transition is marked by a greater frequency of significantly up-regulated Gene Ontology terms including those for morphogenesis, differentiation, and development and that the transcriptomes of its pre-competent larvae and adult are distinct. The life cycle transcriptome variation between M. phyllophila and A. queenslandica may be due to their long separate evolutionary histories and corresponding differences in developmental rates and timing. This study now calls for new transcriptome datasets of M. phyllophila and other sponges, which will allow for tests of the generality of our life cycle expression differences and for the greater exploitation of poriferans in both basic and applied research.
Collapse
|
24
|
Fortunato SAV, Adamski M, Adamska M. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals. Mar Genomics 2015; 24 Pt 2:121-9. [PMID: 26253310 DOI: 10.1016/j.margen.2015.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 12/18/2022]
Abstract
Developmental transcription factors (DTFs) control development of animals by affecting expression of target genes, some of which are transcription factors themselves. In bilaterians and cnidarians, conserved DTFs are involved in homologous processes such as gastrulation or specification of neurons. The genome of Amphimedon queenslandica, the first sponge to be sequenced, revealed that only a fraction of these conserved DTF families are present in demosponges. This finding was in line with the view that morphological complexity in the animal lineage correlates with developmental toolkit complexity. However, as the phylum Porifera is very diverse, Amphimedon's genome may not be representative of all sponges. The recently sequenced genomes of calcareous sponges Sycon ciliatum and Leucosolenia complicata allowed investigations of DTFs in a sponge lineage evolutionarily distant from demosponges. Surprisingly, the phylogenetic analyses of identified DTFs revealed striking differences between the calcareous sponges and Amphimedon. As these differences appear to be a result of independent gene loss events in the two sponge lineages, the last common ancestor of sponges had to possess a much more diverse repertoire of DTFs than extant sponges. Developmental expression of sponge homologs of genes involved in specification of the Bilaterian endomesoderm and the neurosensory cells suggests that roles of many DTFs date back to the last common ancestor of all animals. Strikingly, even DTFs displaying apparent pan-metazoan conservation of sequence and function are not immune to being lost from individual species genomes. The quest for a comprehensive picture of the developmental toolkit in the last common metazoan ancestor is thus greatly benefitting from the increasing accessibility of sequencing, allowing comparisons of multiple genomes within each phylum.
Collapse
Affiliation(s)
- Sofia A V Fortunato
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway; Department of Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Marcin Adamski
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Maja Adamska
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway.
| |
Collapse
|
25
|
Abstract
The foundation of the diverse metazoan nervous systems is laid by embryonic patterning mechanisms, involving the generation and movement of neural progenitors and their progeny. Here we divide early neurogenesis into discrete elements, including origin, pattern, proliferation, and movement of neuronal progenitors, which are controlled by conserved gene cassettes. We review these neurogenetic mechanisms in representatives of the different metazoan clades, with the goal to build a conceptual framework in which one can ask specific questions, such as which of these mechanisms potentially formed part of the developmental "toolkit" of the bilaterian ancestor and which evolved later.
Collapse
Affiliation(s)
- Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Angelika Stollewerk
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
26
|
Adamska M. Developmental Signalling and Emergence of Animal Multicellularity. EVOLUTIONARY TRANSITIONS TO MULTICELLULAR LIFE 2015. [DOI: 10.1007/978-94-017-9642-2_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Layden MJ, Martindale MQ. Non-canonical Notch signaling represents an ancestral mechanism to regulate neural differentiation. EvoDevo 2014; 5:30. [PMID: 25705370 PMCID: PMC4335385 DOI: 10.1186/2041-9139-5-30] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/12/2014] [Indexed: 01/22/2023] Open
Abstract
Background Cellular differentiation is a critical process during development of multicellular animals that must be tightly controlled in order to avoid precocious differentiation or failed generation of differentiated cell types. Research in flies, vertebrates, and nematodes has led to the identification of a conserved role for Notch signaling as a mechanism to regulate cellular differentiation regardless of tissue/cell type. Notch signaling can occur through a canonical pathway that results in the activation of hes gene expression by a complex consisting of the Notch intracellular domain, SuH, and the Mastermind co-activator. Alternatively, Notch signaling can occur via a non-canonical mechanism that does not require SuH or activation of hes gene expression. Regardless of which mechanism is being used, high Notch activity generally inhibits further differentiation, while low Notch activity promotes differentiation. Flies, vertebrates, and nematodes are all bilaterians, and it is therefore unclear if Notch regulation of differentiation is a bilaterian innovation, or if it represents a more ancient mechanism in animals. Results To reconstruct the ancestral function of Notch signaling we investigate Notch function in a non-bilaterian animal, the sea anemone Nematostella vectensis (Cnidaria). Morpholino or pharmacological knockdown of Nvnotch causes increased expression of the neural differentiation gene NvashA. Conversely, overactivation of Notch activity resulting from overexpression of the Nvnotch intracellular domain or by overexpression of the Notch ligand Nvdelta suppresses NvashA. We also knocked down or overactivated components of the canonical Notch signaling pathway. We disrupted NvsuH with morpholino or by overexpressing a dominant negative NvsuH construct. We saw no change in expression levels for Nvhes genes or NvashA. Overexpression of Nvhes genes did not alter NvashA expression levels. Lastly, we tested additional markers associated with neuronal differentiation and observed that non-canonical Notch signaling broadly suppresses neural differentiation in Nematostella. Conclusions We conclude that one ancestral role for Notch in metazoans was to regulate neural differentiation. Remarkably, we found no evidence for a functional canonical Notch pathway during Nematostella embryogenesis, suggesting that the non-canonical hes-independent Notch signaling mechanism may represent an ancestral Notch signaling pathway.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| |
Collapse
|
28
|
Liu F, Posakony JW. An enhancer composed of interlocking submodules controls transcriptional autoregulation of suppressor of hairless. Dev Cell 2014; 29:88-101. [PMID: 24735880 DOI: 10.1016/j.devcel.2014.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/14/2014] [Accepted: 02/10/2014] [Indexed: 11/29/2022]
Abstract
Positive autoregulation is an effective mechanism for the long-term maintenance of a transcription factor's expression. This strategy is widely deployed in cell lineages, where the autoregulatory factor controls the activity of a battery of genes that constitute the differentiation program of a postmitotic cell type. In Drosophila, the Notch pathway transcription factor Suppressor of Hairless activates its own expression, specifically in the socket cell of external sensory organs, via an autoregulatory enhancer called the ASE. Here, we show that the ASE is composed of several enhancer submodules, each of which can independently initiate weak Su(H) autoregulation. Cross-activation by these submodules is critical to ensure that Su(H) rises above a threshold level necessary to activate a maintenance submodule, which then sustains long-term Su(H) autoregulation. Our study reveals the use of interlinked positive-feedback loops to control autoregulation dynamically and provides mechanistic insight into initiation, establishment, and maintenance of the autoregulatory state.
Collapse
Affiliation(s)
- Feng Liu
- Division of Biological Sciences/CDB, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - James W Posakony
- Division of Biological Sciences/CDB, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
29
|
Robinson JM, Sperling EA, Bergum B, Adamski M, Nichols SA, Adamska M, Peterson KJ. The identification of microRNAs in calcisponges: independent evolution of microRNAs in basal metazoans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:84-93. [PMID: 23349041 DOI: 10.1002/jez.b.22485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/29/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Abstract
We present the discovery of microRNAs (miRNAs) in the calcisponges Sycon and Leucosolenia (phylum Calcarea), and potential miRNAs in the homoscleromorph Oscarella carmela (Phylum Homoscleromorpha), expanding the complement of poriferan miRNAs previously known only from the siliceous sponges (demosponges and hexactinellids). Comparison of these miRNAs with those previously described from silicisponges and eumetazoans reveals that these newly described miRNAs are novel, with each metazoan lineage (Silicea, Calcarea, Homoscleromorpha, and Eumetazoa) characterized by a unique and non-overlapping repertoire of miRNAs (or potential miRNAs as in the case of the homoscleromorphs). Because each group is characterized by a unique repertoire of miRNAs, miRNAs cannot be used to help resolve the contentious issue of sponge mono- versus paraphyly. Further, because all sponges are characterized by a similar repertoire of tissue types and body plan organisation, we hypothesize that the lack of conserved miRNAs amongst the three primary sponge lineages is evidence that cellular differentiation and cell type specificity in sponges are not dependent upon conserved miRNAs, contrary to many known cases in eumetazoans. Finally, we suggest that miRNAs evolved multiple times independently not only among eukaryotes, but even within animals, independently evolved miRNAs representing molecular exaptations of RNAi machinery into pre-existing gene regulatory networks. The role(s) miRNAs play though in sponge biology and evolution remains an open question.
Collapse
Affiliation(s)
- Jeffrey M Robinson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | |
Collapse
|