1
|
Naffaa MM. Neurogenesis dynamics in the olfactory bulb: deciphering circuitry organization, function, and adaptive plasticity. Neural Regen Res 2025; 20:1565-1581. [PMID: 38934393 DOI: 10.4103/nrr.nrr-d-24-00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover, the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Bao S, Romero JM, Belfort BD, Arenkiel BR. Signaling mechanisms underlying activity-dependent integration of adult-born neurons in the mouse olfactory bulb. Genesis 2024; 62:e23595. [PMID: 38553878 PMCID: PMC10987073 DOI: 10.1002/dvg.23595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Adult neurogenesis has fascinated the field of neuroscience for decades given the prospects of harnessing mechanisms that facilitate the rewiring and/or replacement of adult brain tissue. The subgranular zone of the hippocampus and the subventricular zone of the lateral ventricle are the two main areas in the brain that exhibit ongoing neurogenesis. Of these, adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and continued circuit integration within adult brain tissue. This review focuses on some of the recognized molecular and signaling mechanisms underlying activity-dependent adult-born neuron development. Notably, olfactory activity and behavioral states contribute to adult-born neuron plasticity through sensory and centrifugal inputs, in which calcium-dependent transcriptional programs, local translation, and neuropeptide signaling play important roles. This review also highlights areas of needed continued investigation to better understand the remarkable phenomenon of adult-born neuron integration.
Collapse
Affiliation(s)
- Suyang Bao
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin D.W. Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
3
|
Pekarek BT, Kochukov M, Lozzi B, Wu T, Hunt PJ, Tepe B, Hanson Moss E, Tantry EK, Swanson JL, Dooling SW, Patel M, Belfort BDW, Romero JM, Bao S, Hill MC, Arenkiel BR. Oxytocin signaling is necessary for synaptic maturation of adult-born neurons. Genes Dev 2022; 36:1100-1118. [PMID: 36617877 PMCID: PMC9851403 DOI: 10.1101/gad.349930.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
Neural circuit plasticity and sensory response dynamics depend on forming new synaptic connections. Despite recent advances toward understanding the consequences of circuit plasticity, the mechanisms driving circuit plasticity are unknown. Adult-born neurons within the olfactory bulb have proven to be a powerful model for studying circuit plasticity, providing a broad and accessible avenue into neuron development, migration, and circuit integration. We and others have shown that efficient adult-born neuron circuit integration hinges on presynaptic activity in the form of diverse signaling peptides. Here, we demonstrate a novel oxytocin-dependent mechanism of adult-born neuron synaptic maturation and circuit integration. We reveal spatial and temporal enrichment of oxytocin receptor expression within adult-born neurons in the murine olfactory bulb, with oxytocin receptor expression peaking during activity-dependent integration. Using viral labeling, confocal microscopy, and cell type-specific RNA-seq, we demonstrate that oxytocin receptor signaling promotes synaptic maturation of newly integrating adult-born neurons by regulating their morphological development and expression of mature synaptic AMPARs and other structural proteins.
Collapse
Affiliation(s)
- Brandon T Pekarek
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Mikhail Kochukov
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Anesthesiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Brittney Lozzi
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Timothy Wu
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Patrick J Hunt
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Burak Tepe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Elizabeth Hanson Moss
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Evelyne K Tantry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Jessica L Swanson
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Sean W Dooling
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mayuri Patel
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Benjamin D W Belfort
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Juan M Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Suyang Bao
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Matthew C Hill
- Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
4
|
Benito N, Gaborieau E, Sanz Diez A, Kosar S, Foucault L, Raineteau O, De Saint Jan D. A Pool of Postnatally Generated Interneurons Persists in an Immature Stage in the Olfactory Bulb. J Neurosci 2018; 38:9870-9882. [PMID: 30282727 PMCID: PMC6596244 DOI: 10.1523/jneurosci.1216-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 02/01/2023] Open
Abstract
Calretinin (CR)-expressing periglomerular (PG) cells are the most abundant interneurons in the glomerular layer of the olfactory bulb. They are predominately generated postnatally from the septal and dorsal subventricular zones that continue producing them well into adulthood. Yet, little is known about their properties and functions. Using transgenic approaches and patch-clamp recording in mice of both sexes we show that CR(+) PG cells of both septal and dorsal origin have homogeneous morphological and electrophysiological properties. However, unlike other PG cells, these axonless neurons express a surprisingly small repertoire of voltage-activated channels and do not fire or fire at most a single and often small action potential. Moreover, they are not innervated by olfactory sensory neurons and receive little synaptic inputs from mitral or tufted cells at excitatory synapses where NMDA receptors predominate. These membrane and synaptic properties, that resemble those of newborn immature neurons not yet integrated in the network, persist over time and limit the recruitment of CR(+) PG cells by afferent inputs that strongly drive local network activity. Together, our results show that postnatally generated CR(+) PG cells continuously supply a large pool of neurons with unconventional properties. These data also question the contribution of CR(+) PG cells in olfactory bulb computation.SIGNIFICANCE STATEMENT Calretinin-expressing PG cells are by far the most abundant interneurons in the glomerular layer of the olfactory bulb. They are continuously produced during postnatal life, including adulthood, from neural stem cells located in the subventricular zones. Surprisingly, unlike other postnatally generated newborn neurons that quickly integrate into preexisting olfactory bulb networks, calretinin-expressing PG cells retain immature properties that limit their recruitment in local network activity for weeks, if not months, as if they would never fully mature. The function of this so far unsuspected pool of latent neurons is still unknown.
Collapse
Affiliation(s)
- Nuria Benito
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France, and
| | - Elodie Gaborieau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Alvaro Sanz Diez
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France, and
| | - Seher Kosar
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France, and
| | - Louis Foucault
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Didier De Saint Jan
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg, France, and
| |
Collapse
|
5
|
Direct Recording of Dendrodendritic Excitation in the Olfactory Bulb: Divergent Properties of Local and External Glutamatergic Inputs Govern Synaptic Integration in Granule Cells. J Neurosci 2017; 37:11774-11788. [PMID: 29066560 DOI: 10.1523/jneurosci.2033-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Abstract
The olfactory bulb contains excitatory principal cells (mitral and tufted cells) that project to cortical targets as well as inhibitory interneurons. How the local circuitry in this region facilitates odor-specific output is not known, but previous work suggests that GABAergic granule cells plays an important role, especially during fine odor discrimination. Principal cells interact with granule cells through reciprocal dendrodendritic connections that are poorly understood. While many studies examined the GABAergic output side of these reciprocal connections, little is known about how granule cells are excited. Only two previous studies reported monosynaptically coupled mitral/granule cell connections and neither attempted to determine the fundamental properties of these synapses. Using dual intracellular recordings and a custom-built loose-patch amplifier, we have recorded unitary granule cell EPSPs evoked in response to mitral cell action potentials in rat (both sexes) brain slices. We find that the unitary dendrodendritic input is relatively weak with highly variable release probability and short-term depression. In contrast with the weak dendrodendritic input, the facilitating cortical input to granule cells is more powerful and less variable. Our computational simulations suggest that dendrodendritic synaptic properties prevent individual principal cells from strongly depolarizing granule cells, which likely discharge in response to either concerted activity among a large proportion of inputs or coactivation of a smaller subset of local dendrodendritic inputs with coincidence excitation from olfactory cortex. This dual-pathway requirement likely enables the sparse mitral/granule cell interconnections to develop highly odor-specific responses that facilitate fine olfactory discrimination.SIGNIFICANCE STATEMENT The olfactory bulb plays a central role in converting broad, highly overlapping, sensory input patterns into odor-selective population responses. How this occurs is not known, but experimental and theoretical studies suggest that local inhibition often plays a central role. Very little is known about how the most common local interneuron subtype, the granule cell, is excited during odor processing beyond the unusual anatomical arraignment of the interconnections (reciprocal dendrodendritic synapses). Using paired recordings and two-photon imaging, we determined the properties of the primary input to granule cells for the first time and show that these connections bias interneurons to fire in response to spiking in large populations of principal cells rather than a small group of highly active cells.
Collapse
|
6
|
Song J, Olsen RHJ, Sun J, Ming GL, Song H. Neuronal Circuitry Mechanisms Regulating Adult Mammalian Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018937. [PMID: 27143698 DOI: 10.1101/cshperspect.a018937] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The adult mammalian brain is a dynamic structure, capable of remodeling in response to various physiological and pathological stimuli. One dramatic example of brain plasticity is the birth and subsequent integration of newborn neurons into the existing circuitry. This process, termed adult neurogenesis, recapitulates neural developmental events in two specialized adult brain regions: the lateral ventricles of the forebrain. Recent studies have begun to delineate how the existing neuronal circuits influence the dynamic process of adult neurogenesis, from activation of quiescent neural stem cells (NSCs) to the integration and survival of newborn neurons. Here, we review recent progress toward understanding the circuit-based regulation of adult neurogenesis in the hippocampus and olfactory bulb.
Collapse
Affiliation(s)
- Juan Song
- Department of Pharmacology and Pharmacology Training Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599 Neuroscience Center and Neurobiology Curriculum, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Reid H J Olsen
- Department of Pharmacology and Pharmacology Training Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jiaqi Sun
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130-2685
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana 70130-2685
| |
Collapse
|
7
|
Abstract
The circuitry of the olfactory bulb contains a precise anatomical map that links isofunctional regions within each olfactory bulb. This intrabulbar map forms perinatally and undergoes activity-dependent refinement during the first postnatal weeks. Although this map retains its plasticity throughout adulthood, its organization is remarkably stable despite the addition of millions of new neurons to this circuit. Here we show that the continuous supply of new neuroblasts from the subventricular zone is necessary for both the restoration and maintenance of this precise central circuit. Using pharmacogenetic methods to conditionally ablate adult neurogenesis in transgenic mice, we find that the influx of neuroblasts is required for recovery of intrabulbar map precision after disruption due to sensory block. We further demonstrate that eliminating adult-born interneurons in naive animals leads to an expansion of tufted cell axons that is identical to the changes caused by sensory block, thus revealing an essential role for new neurons in circuit maintenance under baseline conditions. These findings show, for the first time, that inhibiting adult neurogenesis alters the circuitry of projection neurons in brain regions that receive new interneurons and points to a critical role for adult-born neurons in stabilizing a brain circuit that exhibits high levels of plasticity.
Collapse
|
8
|
Lepousez G, Nissant A, Lledo PM. Adult Neurogenesis and the Future of the Rejuvenating Brain Circuits. Neuron 2015; 86:387-401. [DOI: 10.1016/j.neuron.2015.01.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Olfactory learning promotes input-specific synaptic plasticity in adult-born neurons. Proc Natl Acad Sci U S A 2014; 111:13984-9. [PMID: 25189772 DOI: 10.1073/pnas.1404991111] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The production of new neurons in the olfactory bulb (OB) through adulthood is a major mechanism of structural and functional plasticity underlying learning-induced circuit remodeling. The recruitment of adult-born OB neurons depends not only on sensory input but also on the context in which the olfactory stimulus is received. Among the multiple steps of adult neurogenesis, the integration and survival of adult-born neurons are both strongly influenced by olfactory learning. Conversely, optogenetic stimulation of adult-born neurons has been shown to specifically improve olfactory learning and long-term memory. However, the nature of the circuit and the synaptic mechanisms underlying this reciprocal influence are not yet known. Here, we showed that olfactory learning increases the spine density in a region-restricted manner along the dendritic tree of adult-born granule cells (GCs). Anatomical and electrophysiological analysis of adult-born GCs showed that olfactory learning promotes a remodeling of both excitatory and inhibitory inputs selectively in the deep dendritic domain. Circuit mapping revealed that the malleable dendritic portion of adult-born neurons receives excitatory inputs mostly from the regions of the olfactory cortex that project back to the OB. Finally, selective optogenetic stimulation of olfactory cortical projections to the OB showed that learning strengthens these inputs onto adult-born GCs. We conclude that learning promotes input-specific synaptic plasticity in adult-born neurons, which reinforces the top-down influence from the olfactory cortex to early stages of olfactory information processing.
Collapse
|
10
|
Neuner J, Ovsepian SV, Dorostkar M, Filser S, Gupta A, Michalakis S, Biel M, Herms J. Pathological α-synuclein impairs adult-born granule cell development and functional integration in the olfactory bulb. Nat Commun 2014; 5:3915. [PMID: 24867427 PMCID: PMC4050256 DOI: 10.1038/ncomms4915] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/18/2014] [Indexed: 12/21/2022] Open
Abstract
Although the role of noxious α-synuclein (α-SYN) in the degeneration of midbrain dopaminergic
neurons and associated motor deficits of Parkinson’s disease is
recognized, its impact on non-motor brain circuits and related symptoms remains
elusive. Through combining in vivo two-photon imaging with time-coded
labelling of neurons in the olfactory bulb of A30P α-SYN transgenic mice, we show impaired growth and
branching of dendrites of adult-born granule cells (GCs), with reduced gain and
plasticity of dendritic spines. The spine impairments are especially pronounced
during the critical phase of integration of new neurons into existing circuits.
Functionally, retarded dendritic expansion translates into reduced electrical
capacitance with enhanced intrinsic excitability and responsiveness of GCs to
depolarizing inputs, while the spine loss correlates with decreased frequency of
AMPA-mediated miniature EPSCs.
Changes described here are expected to interfere with the functional integration and
survival of new GCs into bulbar networks, contributing towards olfactory deficits
and related behavioural impairments. Aggregation-prone forms of α-synuclein lead to
degeneration of midbrain dopaminergic neurons, as seen in Parkinson’s
disease, but less is known about the effects that the noxious protein has in other brain
regions. Here, the authors investigate the effect of a pathological form of
α-synuclein on the functional integration of new neurons into the olfactory
bulb of adult mice.
Collapse
Affiliation(s)
- Johanna Neuner
- Center for Neuropathology and Prion Research, Department for Translationsal Brain Research, Ludwig Maximilian University, Feodor-Lynen-Strassee 23, Munich 81377, Germany
| | - Saak V Ovsepian
- German Center for Neurodegeneratione Diseases (DZNE), Department for Translational Brain Research, Feodor-Lynen-Strasse 23, Munich 81377, Germany
| | - Mario Dorostkar
- Center for Neuropathology and Prion Research, Department for Translationsal Brain Research, Ludwig Maximilian University, Feodor-Lynen-Strassee 23, Munich 81377, Germany
| | - Severin Filser
- German Center for Neurodegeneratione Diseases (DZNE), Department for Translational Brain Research, Feodor-Lynen-Strasse 23, Munich 81377, Germany
| | - Aayush Gupta
- Center for Neuropathology and Prion Research, Department for Translationsal Brain Research, Ludwig Maximilian University, Feodor-Lynen-Strassee 23, Munich 81377, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich, (CiPSM) and Department of Pharmacy-Center for Drug Research, Ludwig Maximilian University, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich, (CiPSM) and Department of Pharmacy-Center for Drug Research, Ludwig Maximilian University, Butenandtstrasse 5-13, Munich 81377, Germany
| | - Jochen Herms
- 1] German Center for Neurodegeneratione Diseases (DZNE), Department for Translational Brain Research, Feodor-Lynen-Strasse 23, Munich 81377, Germany [2] Munich Cluster of Systems Neurology (SyNergy), Ludwig Maximilian University, Feodor-Lynen-Strasse 23, Munich 81377, Germany
| |
Collapse
|
11
|
Adult neurogenesis in the olfactory system shapes odor memory and perception. PROGRESS IN BRAIN RESEARCH 2014; 208:157-75. [PMID: 24767482 DOI: 10.1016/b978-0-444-63350-7.00006-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The olfactory system is a dynamic place. In mammals, not only are sensory neurons located in the sensory organ renewed through adult life, but also its first central relay is reconstructed by continuous neuronal recruitment. Despite these numerous morphological and physiological changes, olfaction is a unique sensory modality endowed with a privileged link to memory. This raises a clear conundrum; how does the olfactory system balance its neuronal turnover with its participation in long-term memory? This review concentrates on the functional aspects of adult neurogenesis, addressing how the integration of late-born neurons participates in olfactory perception and memory. After outlining the properties of adult neurogenesis in the olfactory system, and after describing their regulation by internal and environmental factors, we ask how the process of odorant perception can be influenced by constant neuronal turnover. We then explore the possible functional roles that newborn neurons might have for olfactory memory. Throughout this review, and as we concentrate almost exclusively on mammalian models, we stress the idea that adult neurogenesis is yet another form of plasticity used by the brain to copes with a constantly changing olfactory world.
Collapse
|
12
|
Bartolini G, Ciceri G, Marín O. Integration of GABAergic Interneurons into Cortical Cell Assemblies: Lessons from Embryos and Adults. Neuron 2013; 79:849-64. [DOI: 10.1016/j.neuron.2013.08.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2013] [Indexed: 01/31/2023]
|
13
|
Yamaguchi M, Manabe H, Murata K, Mori K. Reorganization of neuronal circuits of the central olfactory system during postprandial sleep. Front Neural Circuits 2013; 7:132. [PMID: 23966911 PMCID: PMC3743305 DOI: 10.3389/fncir.2013.00132] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022] Open
Abstract
Plastic changes in neuronal circuits often occur in association with specific behavioral states. In this review, we focus on an emerging view that neuronal circuits in the olfactory system are reorganized along the wake-sleep cycle. Olfaction is crucial to sustaining the animals' life, and odor-guided behaviors have to be newly acquired or updated to successfully cope with a changing odor world. It is therefore likely that neuronal circuits in the olfactory system are highly plastic and undergo repeated reorganization in daily life. A remarkably plastic feature of the olfactory system is that newly generated neurons are continually integrated into neuronal circuits of the olfactory bulb (OB) throughout life. New neurons in the OB undergo an extensive selection process, during which many are eliminated by apoptosis for the fine tuning of neuronal circuits. The life and death decision of new neurons occurs extensively during a short time window of sleep after food consumption (postprandial sleep), a typical daily olfactory behavior. We review recent studies that explain how olfactory information is transferred between the OB and the olfactory cortex (OC) along the course of the wake-sleep cycle. Olfactory sensory input is effectively transferred from the OB to the OC during waking, while synchronized top-down inputs from the OC to the OB are promoted during the slow-wave sleep. We discuss possible neuronal circuit mechanisms for the selection of new neurons in the OB, which involves the encoding of olfactory sensory inputs and memory trace formation during waking and internally generated activities in the OC and OB during subsequent sleep. The plastic changes in the OB and OC are well coordinated along the course of olfactory behavior during wakefulness and postbehavioral rest and sleep. We therefore propose that the olfactory system provides an excellent model in which to understand behavioral state-dependent plastic mechanisms of the neuronal circuits in the brain.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Physiology, Graduate School of Medicine, The University of Tokyo Tokyo, Japan ; Japan Science and Technology Agency, CREST Tokyo, Japan
| | | | | | | |
Collapse
|
14
|
Lepousez G, Valley MT, Lledo PM. The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu Rev Physiol 2012. [PMID: 23190074 DOI: 10.1146/annurev-physiol-030212-183731] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Modern neuroscience has demonstrated how the adult brain has the ability to profoundly remodel its neurons in response to changes in external stimuli or internal states. However, adult brain plasticity, although possible throughout life, remains restricted mostly to subcellular levels rather than affecting the entire cell. New neurons are continuously generated in only a few areas of the adult brain-the olfactory bulb and the dentate gyrus-where they integrate into already functioning circuitry. In these regions, adult neurogenesis adds another dimension of plasticity that either complements or is redundant to the classical molecular and cellular mechanisms of plasticity. This review extracts clues regarding the contribution of adult-born neurons to the different circuits of the olfactory bulb and specifically how new neurons participate in existing computations and enable new computational functions.
Collapse
Affiliation(s)
- Gabriel Lepousez
- Laboratory of Perception and Memory, Institut Pasteur, F-75015 Paris, France.
| | | | | |
Collapse
|
15
|
Early formation of GABAergic synapses governs the development of adult-born neurons in the olfactory bulb. J Neurosci 2012; 32:9103-15. [PMID: 22745509 DOI: 10.1523/jneurosci.0214-12.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In mammals, olfactory bulb granule cells (GCs) are generated throughout life in the subventricular zone. GABAergic inputs onto newborn neurons likely regulate their maturation, but the details of this process remain still elusive. Here, we investigated the differentiation, synaptic integration, and survival of adult-born GCs when their afferent GABAergic inputs are challenged by conditional gene targeting. Migrating GC precursors were targeted with Cre-eGFP-expressing lentiviral vectors in mice with a floxed gene encoding the GABA(A) receptor α2-subunit (i.e., Gabra2). Ablation of the α2-subunit did not affect GC survival but dramatically delayed their maturation. We found a reduction in postsynaptic α2-subunit and gephyrin clusters accompanied by a decrease in the frequency and amplitude of GABAergic postsynaptic currents beginning ∼14 d post-injection (dpi). In addition, mutant cells exhibited altered dendritic branching and spine density. Spine loss appeared with mislocation of glutamatergic synapses on dendritic shafts and a reduction of spontaneous glutamatergic postsynaptic currents, underscoring the relevance of afferent GABAergic transmission for a proper synaptic integration of newborn GCs. To test the role of GABAergic signaling during much early stages of GC maturation, we used a genetic strategy to selectively inactivate Gabra2 in precursor cells of the subventricular zone. In these mice, labeling of newborn GCs with eGFP lentiviruses revealed similar morphological alterations as seen on delayed Gabra2 inactivation in migrating neuroblasts, with reduced dendritic branching and spine density at 7 dpi. Collectively, these results emphasize the critical role of GABAergic synaptic signaling for structural maturation of adult-born GCs and formation of glutamatergic synapses.
Collapse
|
16
|
Gheusi G, Lepousez G, Lledo PM. Adult-born neurons in the olfactory bulb: integration and functional consequences. Curr Top Behav Neurosci 2012; 15:49-72. [PMID: 22976274 DOI: 10.1007/7854_2012_228] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The generation of new neurons is sustained throughout life in the olfactory system. In recent years, tremendous progress has been made toward understanding the proliferation, differentiation, migration, and integration of newborn neurons in the olfactory bulb. Here, we discuss recent findings that shed light on different aspects of the integration of adult-born neurons into olfactory circuitry and its significance for behavior.
Collapse
Affiliation(s)
- Gilles Gheusi
- Laboratoire Perception et Mémoire, Institut Pasteur, CNRS URA 2182, 25 rue du Dr Roux, 75724, Paris Cedex 15, France,
| | | | | |
Collapse
|
17
|
Nissant A, Pallotto M. Integration and maturation of newborn neurons in the adult olfactory bulb - from synapses to function. Eur J Neurosci 2011; 33:1069-77. [DOI: 10.1111/j.1460-9568.2011.07605.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|