1
|
Ghunaim L, Ali Agha ASA, Aburjai T. Integrating Artificial Intelligence and Advanced Genomic Technologies in Unraveling Autism Spectrum Disorder and Gastrointestinal Comorbidities: A Multidisciplinary Approach to Precision Medicine. JORDAN JOURNAL OF PHARMACEUTICAL SCIENCES 2024; 17:567-581. [DOI: 10.35516/jjps.v17i3.2410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This article explores the potential impact of Artificial Intelligence (AI), Machine Learning (ML), CRISPR-Cas9 gene editing, and single-cell RNA sequencing on improving our understanding and management of Autism Spectrum Disorder (ASD) and its gastrointestinal (GI) comorbidities. It examines how these technologies illuminate the complex interplay between the gut and the brain, identifying specific enzyme deficiencies and microbial imbalances linked to GI symptoms in ASD. By leveraging AI and ML, personalized intervention strategies are developed through the analysis of genomic, proteomic, and environmental data, enhancing our ability to predict and address GI issues in ASD. Additionally, CRISPR-Cas9 gene editing holds promise for correcting genetic abnormalities related to enzyme production, potentially offering precise treatments. Single-cell RNA sequencing provides critical insights into the cellular diversity of the ASD gut, uncovering new therapeutic targets. The article highlights the transformative potential of these technologies while addressing the associated challenges and ethical considerations. It underscores the necessity of a multidisciplinary approach to fully harness their benefits and discusses the significant progress and emerging trends in the field, emphasizing the role of technological advancements in advancing precision medicine for ASD and its GI comorbidities.
Collapse
|
2
|
Tripathi MK, Kartawy M, Ginzburg S, Amal H. Arsenic alters nitric oxide signaling similar to autism spectrum disorder and Alzheimer's disease-associated mutations. Transl Psychiatry 2022; 12:127. [PMID: 35351881 PMCID: PMC8964747 DOI: 10.1038/s41398-022-01890-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/20/2023] Open
Abstract
Epidemiological studies have proven that exposure to Arsenic (AS) leads to the development of many neurological disorders. However, few studies have investigated its molecular mechanisms in the brain. Our previous work has revealed nitric oxide (NO)-mediated apoptosis and SNO reprogramming in the cortex following arsenic treatment, yet the role of NO and S-nitrosylation (SNO) in AS-mediated neurotoxicity has not been investigated. Therefore, we have conducted a multidisciplinary in-vivo study in mice with two different doses of Sodium Arsenite (SA) (0.1 ppm and 1 ppm) in drinking water. We used the novel SNOTRAP-based mass spectrometry method followed by the bioinformatics analysis, Western blot validation, and five different behavioral tests. Bioinformatics analysis of SA-treated mice showed significant SNO-enrichment of processes involved in mitochondrial respiratory function, endogenous antioxidant systems, transcriptional regulation, cytoskeleton maintenance, and regulation of apoptosis. Western blotting showed increased levels of cleaved PARP-1 and cleaved caspase-3 in SA-treated mice consistent with SA-induced apoptosis. Behavioral studies showed significant cognitive dysfunctions similar to those of Autism spectrum disorder (ASD) and Alzheimer's disease (AD). A comparative analysis of the SNO-proteome of SA-treated mice with two transgenic mouse strains, models of ASD and AD, showed molecular convergence of SA environmental neurotoxicity and the genetic mutations causing ASD and AD. This is the first study to show the effects of AS on SNO-signaling in the striatum and hippocampus and its effects on behavioral characteristics. Finally, further investigation of the NO-dependent mechanisms of AS-mediated neurotoxicity may reveal new drug targets for its prevention.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- grid.9619.70000 0004 1937 0538Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maryam Kartawy
- grid.9619.70000 0004 1937 0538Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shelly Ginzburg
- grid.9619.70000 0004 1937 0538Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Mukhamedshina YO, Fayzullina RA, Nigmatullina IA, Rutland CS, Vasina VV. Health care providers' awareness on medical management of children with autism spectrum disorder: cross-sectional study in Russia. BMC MEDICAL EDUCATION 2022; 22:29. [PMID: 35012536 PMCID: PMC8751116 DOI: 10.1186/s12909-021-03095-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex developmental range of conditions that involves difficulties with social interaction and restricted/repetitive behaviors. Unfortunately, health care providers often experience difficulties in diagnosis and management of individuals with ASD, and may have no knowledge about possible ways to overcome barriers in ASD patient interactions in healthcare settings. At the same time, the provision of appropriate medical services can have positive effects on habilitative progress, functional outcome, life expectancy and quality of life for individuals with ASD. METHODS This online survey research study evaluated the awareness and experience of students/residents (n = 247) and physicians (n = 100) in the medical management of children with ASD. It also gathered the views and experiences of caregivers to children with ASD (n = 158), all based in Russia. RESULTS We have established that the Russian medical community has limited ASD knowledge among providers, and have suggested possible reasons for this. Based on results from online surveys completed by students/residents, non-psychiatric physicians, and caregivers of children diagnosed with ASD, the main problems pertaining to medical management of individuals with ASD were identified. Possible problem solving solutions within medical practice were proposed. CONCLUSIONS The results from this study should be considered when implementing measures to improve healthcare practices, and when developing models for effective medical management, due to start not only in Russia but also in a number of other countries.
Collapse
Affiliation(s)
- Y O Mukhamedshina
- Clinical Research Center for Precision and Regenerative Medicine, Kazan Federal University, Kremlevskaya St 18, Kazan, 420008, Tatarstan, Russia.
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia.
| | - R A Fayzullina
- Department of Propaedeutics of Pediatric Diseases and Faculty Pediatrics, Kazan State Medical University, Kazan, Russia
| | - I A Nigmatullina
- Department of Psychology and Pedagogy of Special Education, Kazan (Volga region) Federal University, Kazan, Russia
| | - C S Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - V V Vasina
- Department of Psychology and Pedagogy of Special Education, Kazan (Volga region) Federal University, Kazan, Russia
| |
Collapse
|
4
|
Ferreira ML, Loyacono N. Rationale of an Advanced Integrative Approach Applied to Autism Spectrum Disorder: Review, Discussion and Proposal. J Pers Med 2021; 11:jpm11060514. [PMID: 34199906 PMCID: PMC8230111 DOI: 10.3390/jpm11060514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
The rationale of an Advanced Integrative Model and an Advanced Integrative Approach is presented. In the context of Allopathic Medicine, this model introduces the evaluation, clinical exploration, diagnosis, and treatment of concomitant medical problems to the diagnosis of Autism Spectrum Disorder. These may be outside or inside the brain. The concepts of static or chronic, dynamic encephalopathy and condition for Autism Spectrum Disorder are defined in this model, which looks at the response to the treatments of concomitant medical problemsto the diagnosis of Autism Spectrum Disorder. (1) Background: Antecedents and rationale of an Advanced Integrative Model and of an Advanced Integrative Approach are presented; (2) Methods: Concomitant medical problems to the diagnosis of Autism Spectrum Disorder and a discussion of the known responses of their treatments are presented; (3) Results: Groups in Autism are defined and explained, related to the responses of the treatments of the concomitant medical problems to ASD and (4) Conclusions: The analysis in the framework of an Advanced Integrative Model of three groups including the concepts of static encephalopathy; chronic, dynamic encephalopathy and condition for Autism Spectrum Disorder explains findings in the field, previously not understood.
Collapse
Affiliation(s)
| | - Nicolás Loyacono
- TEA-Enfoque Integrador Group, Bahía Blanca 8000, Argentina;
- SANyTA (Sociedad Argentina de Neurodesarrollo y Trastornos Asociados), Migueletes 681, Piso 2, Departamento 2, BUE-Ciudad Autónoma de Buenos Aires C1426, Argentina
- Correspondence: ; Tel.: +54-911-5825-5209
| |
Collapse
|
5
|
Upadhyay J, Patra J, Tiwari N, Salankar N, Ansari MN, Ahmad W. Dysregulation of Multiple Signaling Neurodevelopmental Pathways during Embryogenesis: A Possible Cause of Autism Spectrum Disorder. Cells 2021; 10:958. [PMID: 33924211 PMCID: PMC8074600 DOI: 10.3390/cells10040958] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Understanding the autistic brain and the involvement of genetic, non-genetic, and numerous signaling pathways in the etiology and pathophysiology of autism spectrum disorder (ASD) is complex, as is evident from various studies. Apart from multiple developmental disorders of the brain, autistic subjects show a few characteristics like impairment in social communications related to repetitive, restricted, or stereotypical behavior, which suggests alterations in neuronal circuits caused by defects in various signaling pathways during embryogenesis. Most of the research studies on ASD subjects and genetic models revealed the involvement of mutated genes with alterations of numerous signaling pathways like Wnt, hedgehog, and Retinoic Acid (RA). Despite significant improvement in understanding the pathogenesis and etiology of ASD, there is an increasing awareness related to it as well as a need for more in-depth research because no effective therapy has been developed to address ASD symptoms. Therefore, identifying better therapeutic interventions like "novel drugs for ASD" and biomarkers for early detection and disease condition determination are required. This review article investigated various etiological factors as well as the signaling mechanisms and their alterations to understand ASD pathophysiology. It summarizes the mechanism of signaling pathways, their significance, and implications for ASD.
Collapse
Affiliation(s)
- Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India; (J.U.); (J.P.)
| | - Jeevan Patra
- Department of Pharmaceutical Sciences, School of Health Sciences, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India; (J.U.); (J.P.)
| | - Nidhi Tiwari
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India;
| | - Nilima Salankar
- School of Computer Sciences, University of Petroleum and Energy Studies, Energy Acre Campus Bidholi, Dehradun 248007, Uttarakhand, India;
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia;
| |
Collapse
|
6
|
Moradi K, Ashraf-Ganjouei A, Tavolinejad H, Bagheri S, Akhondzadeh S. The interplay between gut microbiota and autism spectrum disorders: A focus on immunological pathways. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110091. [PMID: 32891667 DOI: 10.1016/j.pnpbp.2020.110091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 12/23/2022]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by impairments in social and cognitive activities, stereotypical and repetitive behaviors and restricted areas of interest. A remarkable proportion of ASD patients represent immune dysregulation as well as gastrointestinal complications. Hence, a novel concept has recently emerged, addressing the possible intercommunication between the brain, the immune system, the gut and its commensals. Here, we provide an overview of how gut microbes and their metabolites are associated with neurobehavioral features of ASD through various immunologic mechanisms. Moreover, we discuss the potential therapeutic options that could modify these features.
Collapse
Affiliation(s)
- Kamyar Moradi
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Tavolinejad
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayna Bagheri
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Application of Varma Kalai (art of vital points) in autism spectrum disorder. Eur J Integr Med 2021. [DOI: 10.1016/j.eujim.2020.101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Vargason T, Grivas G, Hollowood-Jones KL, Hahn J. Towards a Multivariate Biomarker-Based Diagnosis of Autism Spectrum Disorder: Review and Discussion of Recent Advancements. Semin Pediatr Neurol 2020; 34:100803. [PMID: 32446437 PMCID: PMC7248126 DOI: 10.1016/j.spen.2020.100803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An ever-evolving understanding of autism spectrum disorder (ASD) pathophysiology necessitates that diagnostic standards also evolve from being observation-based to include quantifiable clinical measurements. The multisystem nature of ASD motivates the use of multivariate methods of statistical analysis over common univariate approaches for discovering clinical biomarkers relevant to this goal. In addition to characterization of important behavioral patterns for improving current diagnostic instruments, multivariate analyses to date have allowed for thorough investigation of neuroimaging-based, genetic, and metabolic abnormalities in individuals with ASD. This review highlights current research using multivariate statistical analyses to quantify the value of these behavioral and physiological markers for ASD diagnosis. A detailed discussion of a blood-based diagnostic test for ASD using specific metabolite concentrations is also provided. The advancement of ASD biomarker research promises to provide earlier and more accurate diagnoses of the disorder.
Collapse
Affiliation(s)
- Troy Vargason
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Genevieve Grivas
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Kathryn L Hollowood-Jones
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY.
| |
Collapse
|
9
|
Ahmad SF, Ansari MA, Nadeem A, Bakheet SA, Alanazi AZ, Alsanea S, As Sobeai HM, Almutairi MM, Mahmood HM, Attia SM. The Stat3 inhibitor, S3I-201, downregulates lymphocyte activation markers, chemokine receptors, and inflammatory cytokines in the BTBR T+ Itpr3tf/J mouse model of autism. Brain Res Bull 2019; 152:27-34. [DOI: 10.1016/j.brainresbull.2019.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 06/28/2019] [Accepted: 07/05/2019] [Indexed: 11/15/2022]
|
10
|
Fagan K, Crider A, Ahmed AO, Pillai A. Complement C3 Expression Is Decreased in Autism Spectrum Disorder Subjects and Contributes to Behavioral Deficits in Rodents. MOLECULAR NEUROPSYCHIATRY 2017; 3:19-27. [PMID: 28879198 DOI: 10.1159/000465523] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/24/2017] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with hallmark symptoms including social deficits, communication deficits and repetitive behaviors. Accumulating evidence suggests a potential role of the immune system in the pathophysiology of ASD. The complement system represents one of the major effector mechanisms of the innate immune system, and regulates inflammation, and orchestrates defense against pathogens. However, the role of CNS complement system in ASD is not well understood. In the present study, we found a significant increase in C2, C5, and MASP1, but a decrease in C1q, C3, and C4 mRNA levels in the middle frontal gyrus of ASD subjects compared to controls. Significant decreases in the mRNA levels of 2 key proinflammatory cytokines, IL-17 and IL-23 were observed in ASD subjects. Our study further demonstrated a strong association of complement genes with IL-17 and IL-23, suggesting a possible role of the complement system in immune dysregulation in ASD. We observed significant associations between complement components and abnormality of development scores in subjects with ASD. In rodents, C3 knockdown in the prefrontal cortex induced social interaction deficits and repetitive behavior in mice. Together, these studies suggest a potential role of C3 in the pathophysiology of ASD.
Collapse
Affiliation(s)
- Kiley Fagan
- Medical College of Georgia, Augusta University, Augusta, GA
| | - Amanda Crider
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, GA
| | - Anthony O Ahmed
- Department of Psychiatry, Weill Cornell Medical College, White Plains, New York, USA
| | - Anilkumar Pillai
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, GA
| |
Collapse
|
11
|
Kałużna-Czaplińska J, Jóźwik-Pruska J, Axt A. Chromatographic determination of harmalans in the urine of autistic children. Biomed Chromatogr 2017; 31. [PMID: 28182283 DOI: 10.1002/bmc.3951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 11/09/2022]
Abstract
This paper presents a new approach to autism - a complex and still enigmatic condition. We present the results of our preliminary research which was based on the detection of the hallucinogenic substance 6- (or 10-)methoxyharmalan in the urine samples of autistic children with the use of chromatographic methods. Additionally, we aim to describe the relationship between the level of tryptophan and harmalan, and the influence of supplementation on the level of this compound. We applied HPLC-UV/vis, HPLC-DAD and LC-MS in order to determine McIsaac's compound in the urine samples obtained from autistic children (n = 132) and healthy individuals (n = 10). The level of tryptophan was quantified with the use of GC-MS. Our research shows the presence of the McIsaac's compound in 110 samples of ASD children contrary to healthy children, where it was not found. No relationship between the level of tryptophan and 6-methoxyharmalan was noticed. The study shows a strong influence of melatonin supplementation on the presence of the McIsaac's compound. We believe that the results of our research can contribute to a better understanding of autism spectrum disorders. Moreover, our findings can form the basis for other studies focused on autism, eventually making it possible to understand its etiology.
Collapse
Affiliation(s)
- Joanna Kałużna-Czaplińska
- Department of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Poland
| | - Jagoda Jóźwik-Pruska
- Department of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Poland
| | - Andrea Axt
- The Child Development Center, Montreal, QC, Canada
| |
Collapse
|
12
|
Effect of gluten free diet on gastrointestinal and behavioral indices for children with autism spectrum disorders: a randomized clinical trial. World J Pediatr 2016; 12:436-442. [PMID: 27286693 DOI: 10.1007/s12519-016-0040-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/22/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Genetic and environmental factors are both responsible for the etiology of autism spectrum disorders (ASD). Although epidemiological studies have been conducted to clarify the association between restriction diets and ASD, the conclusion remains unclear. This study was undertaken to investigate the effect of gluten free diet (GFD) on gastrointestinal symptoms and behavioral indices in children with ASD. METHODS In this randomized clinical trial, 80 children diagnosed with ASD by the Autism Diagnostic Interview-Revised (ADI-R) were assigned into GFD (n=40) and regular diet (RD) (n=40) groups for 6 weeks. At the beginning and end of the intervention, the ROME Ш questionnaire for evaluating gastrointestinal symptoms and Gilliam Autism Rating Scale 2 questionnaire (GARS-2) for assessing psychometric properties were completed. RESULTS Of the 80 children, 53.9% had gastrointestinal abnormalities. In the GFD group, the prevalence of gastrointestinal symptoms decreased significantly (P<0.05) after intake of GFD (40.57% vs. 17.10%) but increased insignificantly in the RD group (42.45% vs. 44.05%). GFD intervention resulted in a significant decrease in behavioral disorders (80.03±14.07 vs. 75.82±15.37, P<0.05) but an insignificant increase in the RD group (79.92±15.49 vs. 80.92±16.24). CONCLUSION This study suggested that GFD may be effective in controlling gastrointestinal symptoms and ASD behaviors.
Collapse
|
13
|
López-Cacho JM, Gallardo S, Posada M, Aguerri M, Calzada D, Mayayo T, Lahoz C, Cárdaba B. Characterization of immune cell phenotypes in adults with autism spectrum disorders. J Investig Med 2016; 64:1179-85. [PMID: 27296457 DOI: 10.1136/jim-2016-000070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2016] [Indexed: 11/03/2022]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impairments in verbal and non-verbal communication, impaired social interactions and repetitive behaviors. There is evidence of a link between ASD symptoms and immune dysfunction, but few studies have been performed in adult patients to confirm this. In this work, we used flow cytometry to study immunological differences in peripheral blood mononuclear cells from 59 adult patients and 26 healthy control subjects to identify possible immune cell profiles related with this group of disorders. We analyzed six immune cell subpopulations (ie, B-cells, CD4(+) and CD8(+) T-cells, NK, NKT cells, and monocytes) and their corresponding stages of apoptosis and activation. The most noteworthy results showed that, compared to healthy controls, patients had increased percentages of CD8(+) T-cells and B-cells, and a decrease in the percentage of NKT cells. Regarding CD25 expression, we found overall CD25(+) overexpression, primarily in NK and NKT cells. Apoptosis percentage showed an increasing trend only in monocytes of patients. These data support a link between ASD and immune dysfunction, suggesting that specific cellular phenotypes and/or activation status of immune cells may be relevant in adult ASD.
Collapse
Affiliation(s)
| | - Soledad Gallardo
- Department of Immunology, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Manuel Posada
- Institute for Rare Disease Research, Instituto de Salud Carlos III, Biomedical Research Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Miriam Aguerri
- Department of Immunology, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - David Calzada
- Department of Immunology, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Teodoro Mayayo
- Department of Sani-Red SL, Parque Científico de Barcelona, Barcelona, Spain
| | - Carlos Lahoz
- Department of Immunology, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain Biomedical Research Network on Respiratory Diseases, (CIBERES), Madrid, Spain
| | - Blanca Cárdaba
- Department of Immunology, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain Biomedical Research Network on Respiratory Diseases, (CIBERES), Madrid, Spain
| |
Collapse
|
14
|
Network Approach to Autistic Traits: Group and Subgroup Analyses of ADOS Item Scores. J Autism Dev Disord 2015. [DOI: 10.1007/s10803-015-2537-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Autistic spectrum disorders: A review of clinical features, theories and diagnosis. Int J Dev Neurosci 2015; 43:70-7. [PMID: 25862937 DOI: 10.1016/j.ijdevneu.2015.04.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/03/2015] [Accepted: 04/06/2015] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders that is among the most severe in terms of prevalence, morbidity and impact to the society. It is characterized by complex behavioral phenotype and deficits in both social and cognitive functions. Although the exact cause of ASD is still not known, the main findings emphasize the role of genetic and environmental factors in the development of autistic behavior. Environmental factors are also likely to interact with the genetic profile and cause aberrant changes in brain growth, neuronal development, and functional connectivity. The past few years have seen an increase in the prevalence of ASD, as a result of enhanced clinical tests and diagnostic tools. Despite growing evidence for the involvement of endogenous biomarkers in the pathophysiology of ASD, early detection of this disorder remains a big challenge. This paper describes the main behavioral and cognitive features of ASD, as well as the symptoms that differentiate autism from other developmental disorders. An attempt will be made to integrate all the available evidence which point to reduced brain connectivity, mirror neurons deficits, and inhibition-excitation imbalance in individuals with ASD. Finally, this review discusses the main factors involved in the pathophysiology of ASD, and illustrates some of the most important markers used for the diagnosis of this debilitating disorder.
Collapse
|
16
|
|
17
|
Meguid NA, Kandeel WA, Wakeel KE, El-Nofely AA. Anthropometric assessment of a Middle Eastern group of autistic children. World J Pediatr 2014; 10:318-23. [PMID: 25515805 DOI: 10.1007/s12519-014-0510-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/06/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Growth abnormalities are uniquely associated with autism spectrum disorders (ASD); however, the extent to which growth abnormalities are present has hardly been investigated. The current study aims to compare the differences in anthropometric parameters in a group of autistic Egyptian children and the healthy normal population. METHODS We recruited 100 children with ASD from the Outpatient Clinic for "Autistic Children" at the Medical Research Hospital of Excellence, National Research Centre in Cairo, Egypt. They were diagnosed by DSM-IV criteria of the American Psychiatric Association, Autism Diagnostic Interview-Revised, and Childhood Autism Rating Scale. Of these children at age of 3-10 years, 71 were males and 29 females. Eight anthropometric parameters were assessed in view of data of the healthy Egyptians of pertinent sex and age. RESULTS Weight and body mass index increased because of a significant increase in subcutaneous fat thickness. This tendency with a probable decrease in muscle mass was more evident in male or in older children, likely resulting from sedentary life style and food selectivity. CONCLUSIONS The Z head circumference score and its variance significantly increased especially in males or older children, suggesting the relative overgrowth of the brain in a substantial percentage of Egyptian children with autism. We concluded that increased fat composition in Egyptian autistic children with decreased muscle mass necessitates tailoring a specially designed food supplementation program to ameliorate the severity of autism symptoms.
Collapse
Affiliation(s)
- Nagwa A Meguid
- Department of Research on Children with Special Needs, National Research Centre (NRC), Cairo, Egypt,
| | | | | | | |
Collapse
|
18
|
Samsam M, Ahangari R, Naser SA. Pathophysiology of autism spectrum disorders: Revisiting gastrointestinal involvement and immune imbalance. World J Gastroenterol 2014; 20:9942-9951. [PMID: 25110424 PMCID: PMC4123375 DOI: 10.3748/wjg.v20.i29.9942] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 05/22/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) comprise a group of neurodevelopmental abnormalities that begin in early childhood and are characterized by impairment of social communication and behavioral problems including restricted interests and repetitive behaviors. Several genes have been implicated in the pathogenesis of ASD, most of them are involved in neuronal synaptogenesis. A number of environmental factors and associated conditions such as gastrointestinal (GI) abnormalities and immune imbalance have been linked to the pathophysiology of ASD. According to the March 2012 report released by United States Centers for Disease Control and Prevention, the prevalence of ASD has sharply increased during the recent years and one out of 88 children suffers now from ASD symptoms. Although there is a strong genetic base for the disease, several associated factors could have a direct link to the pathogenesis of ASD or act as modifiers of the genes thus aggravating the initial problem. Many children suffering from ASD have GI problems such as abdominal pain, chronic diarrhea, constipation, vomiting, gastroesophageal reflux, and intestinal infections. A number of studies focusing on the intestinal mucosa, its permeability, abnormal gut development, leaky gut, and other GI problem raised many questions but studies were somehow inconclusive and an expert panel of American Academy of Pediatrics has strongly recommended further investigation in these areas. GI tract has a direct connection with the immune system and an imbalanced immune response is usually seen in ASD children. Maternal infection or autoimmune diseases have been suspected. Activation of the immune system during early development may have deleterious effect on various organs including the nervous system. In this review we revisited briefly the GI and immune system abnormalities and neuropeptide imbalance and their role in the pathophysiology of ASD and discussed some future research directions.
Collapse
|
19
|
Siniscalco D, Bradstreet JJ, Sych N, Antonucci N. Mesenchymal stem cells in treating autism: Novel insights. World J Stem Cells 2014; 6:173-178. [PMID: 24772244 PMCID: PMC3999775 DOI: 10.4252/wjsc.v6.i2.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 12/19/2013] [Accepted: 03/18/2014] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASDs) are complex neurodevelopmental disorders characterized by dysfunctions in social interactions, abnormal to absent verbal communication, restricted interests, and repetitive stereotypic verbal and non-verbal behaviors, influencing the ability to relate to and communicate. The core symptoms of ASDs concern the cognitive, emotional, and neurobehavioural domains. The prevalence of autism appears to be increasing at an alarming rate, yet there is a lack of effective and definitive pharmacological options. This has created an increased sense of urgency, and the need to identify novel therapies. Given the growing awareness of immune dysregulation in a significant portion of the autistic population, cell therapies have been proposed and applied to ASDs. In particular, mesenchymal stem cells (MSCs) possess the immunological properties which make them promising candidates in regenerative medicine. MSC therapy may be applicable to several diseases associated with inflammation and tissue damage, where subsequent regeneration and repair is necessary. MSCs could exert a positive effect in ASDs through the following mechanisms: stimulation of repair in the damaged tissue, e.g., inflammatory bowel disease; synthesizing and releasing anti-inflammatory cytokines and survival-promoting growth factors; integrating into existing neural and synaptic network, and restoring plasticity. The paracrine mechanisms of MSCs show interesting potential in ASD treatment. Promising and impressive results have been reported from the few clinical studies published to date, although the exact mechanisms of action of MSCs in ASDs to restore functions are still largely unknown. The potential role of MSCs in mediating ASD recovery is discussed in light of the newest findings from recent clinical studies.
Collapse
|
20
|
Paemka L, Mahajan VB, Skeie JM, Sowers LP, Ehaideb SN, Gonzalez-Alegre P, Sasaoka T, Tao H, Miyagi A, Ueno N, Takao K, Miyakawa T, Wu S, Darbro BW, Ferguson PJ, Pieper AA, Britt JK, Wemmie JA, Rudd DS, Wassink T, El-Shanti H, Mefford HC, Carvill GL, Manak JR, Bassuk AG. PRICKLE1 interaction with SYNAPSIN I reveals a role in autism spectrum disorders. PLoS One 2013; 8:e80737. [PMID: 24312498 PMCID: PMC3849077 DOI: 10.1371/journal.pone.0080737] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
The frequent comorbidity of Autism Spectrum Disorders (ASDs) with epilepsy suggests a shared underlying genetic susceptibility; several genes, when mutated, can contribute to both disorders. Recently, PRICKLE1 missense mutations were found to segregate with ASD. However, the mechanism by which mutations in this gene might contribute to ASD is unknown. To elucidate the role of PRICKLE1 in ASDs, we carried out studies in Prickle1(+/-) mice and Drosophila, yeast, and neuronal cell lines. We show that mice with Prickle1 mutations exhibit ASD-like behaviors. To find proteins that interact with PRICKLE1 in the central nervous system, we performed a yeast two-hybrid screen with a human brain cDNA library and isolated a peptide with homology to SYNAPSIN I (SYN1), a protein involved in synaptogenesis, synaptic vesicle formation, and regulation of neurotransmitter release. Endogenous Prickle1 and Syn1 co-localize in neurons and physically interact via the SYN1 region mutated in ASD and epilepsy. Finally, a mutation in PRICKLE1 disrupts its ability to increase the size of dense-core vesicles in PC12 cells. Taken together, these findings suggest PRICKLE1 mutations contribute to ASD by disrupting the interaction with SYN1 and regulation of synaptic vesicles.
Collapse
Affiliation(s)
- Lily Paemka
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Vinit B. Mahajan
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Jessica M. Skeie
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Ophthalmology and Visual Sciences, The University of Iowa, Iowa City, Iowa, United States of America
| | - Levi P. Sowers
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Salleh N. Ehaideb
- The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Pedro Gonzalez-Alegre
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program of Neuroscience, The University of Iowa, Iowa City, Iowa, United States of America
| | - Toshikuni Sasaoka
- Center for Bioresources, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hirotaka Tao
- Hospital for Sick Kids, University of Toronto, Toronto, Canada
| | - Asuka Miyagi
- Developmental Biology Department, National Institute for Basic Biology, Okazaki City, Japan
| | - Naoto Ueno
- Developmental Biology Department, National Institute for Basic Biology, Okazaki City, Japan
| | - Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior National Institute for Physiological Sciences, Okazaki, Japan
- Japan Science and Technology Agency, Kawaguchi-shi, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior National Institute for Physiological Sciences, Okazaki, Japan
- Japan Science and Technology Agency, Kawaguchi-shi, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Shu Wu
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin W. Darbro
- The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Polly J. Ferguson
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew A. Pieper
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
| | - Jeremiah K. Britt
- The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
| | - John A. Wemmie
- The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program of Neuroscience, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
| | - Danielle S. Rudd
- The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
| | - Thomas Wassink
- The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Psychiatry, The University of Iowa, Iowa City, Iowa, United States of America
| | - Hatem El-Shanti
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Shafallah Medical Genetics Center, Doha, Qatar
| | - Heather C. Mefford
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Gemma L. Carvill
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - J. Robert Manak
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Alexander G. Bassuk
- The University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Program in Genetics, The University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
- Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|