1
|
Takahashi H, Ishiyama K, Takeda N, Shimizu T. Nutrient Rescue of Early Maturing and Deteriorating Satellite Cell-Derived Engineered Muscle Tissue. Tissue Eng Part A 2023; 29:633-644. [PMID: 37694582 DOI: 10.1089/ten.tea.2023.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Engineered human muscle tissue is a promising tool for tissue models to better understand muscle physiology and diseases, since they can replicate many biomimetic structures and functions of skeletal muscle in vitro. We have developed a method to produce contractile muscle sheet tissues from human myoblasts, based on our cell sheet fabrication technique. This study reports that our tissue engineering technique allowed us to discover unique characteristics of human muscle satellite cells as a cell source for our muscle sheet tissue. The tissues engineered from satellite cells functionally matured within several days, which is earlier than those created from myoblasts. On the other hand, satellite cell-derived muscle sheet tissues were unable to maintain the contractile ability, whereas the myoblast-derived tissues showed muscle contractions for several weeks. The sarcomere structures and membrane-like structures of laminin and dystrophin were lost along with early functional deterioration. Based on a hypothesis that an insufficiency of nutrients caused a shortened lifetime, we supplemented the culture medium for the satellite cell-derived muscle sheet tissues with 10% serum, although a lower serum medium is commonly used to produce muscle tissues. Further combined with the transforming growth factor (TGF-β1) receptor inhibitor, SB431542, the contractile ability of the muscle tissues was increased remarkably and the tissue microstructures were maintained for a longer term, while retaining the early functionalization and the enriched culture conditions prevented early deterioration. These results strengthened our understanding of the biology of myoblasts and satellite cells in muscle tissue formation and provided new insights into the applications of muscle tissue engineering.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan
| | - Kaho Ishiyama
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Naoya Takeda
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns), Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo, Japan
| |
Collapse
|
2
|
Elashry MI, Kinde M, Klymiuk MC, Eldaey A, Wenisch S, Arnhold S. The effect of hypoxia on myogenic differentiation and multipotency of the skeletal muscle-derived stem cells in mice. Stem Cell Res Ther 2022; 13:56. [PMID: 35123554 PMCID: PMC8817503 DOI: 10.1186/s13287-022-02730-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/20/2022] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
Skeletal muscle-derived stem cells (SC) have become a promising approach for investigating myogenic differentiation and optimizing tissue regeneration. Muscle regeneration is performed by SC, a self-renewal cell population underlying the basal lamina of muscle fibers. Here, we examined the impact of hypoxia condition on the regenerative capacity of SC either in their native microenvironment or via isolation in a monolayer culture using ectopic differentiation inductions. Furthermore, the effect of low oxygen tension on myogenic differentiation protocols of the myoblasts cell line C2C12 was examined.
Methods
Hind limb muscles of wild type mice were processed for both SC/fiber isolation and myoblast extraction using magnetic beads. SC were induced for myogenic, adipogenic and osteogenic commitments under normoxic (21% O2) and hypoxic (3% O2) conditions. SC proliferation and differentiation were evaluated using histological staining, immunohistochemistry, morphometric analysis and RT-qPCR. The data were statistically analyzed using ANOVA.
Results
The data revealed enhanced SC proliferation and motility following differentiation induction after 48 h under hypoxia. Following myogenic induction, the number of undifferentiated cells positive for Pax7 were increased at 72 h under hypoxia. Hypoxia upregulated MyoD and downregulated Myogenin expression at day-7 post-myogenic induction. Hypoxia promoted both SC adipogenesis and osteogenesis under respective induction as shown by using Oil Red O and Alizarin Red S staining. The expression of adipogenic markers; peroxisome proliferator activated receptor gamma (PPARγ) and fatty acid-binding protein 4 (FABP4) were upregulated under hypoxia up to day 14 compared to normoxic condition. Enhanced osteogenic differentiation was detected under hypoxic condition via upregulation of osteocalcin and osteopontin expression up to day 14 as well as, increased calcium deposition at day 21. Hypoxia exposure increases the number of adipocytes and the size of fat vacuoles per adipocyte compared to normoxic culture. Combining the differentiation medium with dexamethasone under hypoxia improves the efficiency of the myogenic differentiation protocol of C2C12 by increasing the length of the myotubes.
Conclusions
Hypoxia exposure increases cell resources for clinical applications and promotes SC multipotency and thus beneficial for tissue regeneration.
Collapse
|
3
|
Gupta R, Rao R, Johnston TR, Uong J, Yang DS, Lee TQ. Muscle stem cells and rotator cuff injury. JSES REVIEWS, REPORTS, AND TECHNIQUES 2021; 1:186-193. [PMID: 37588948 PMCID: PMC10426486 DOI: 10.1016/j.xrrt.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The incidence of reinjury after treatment of rotator cuff tears (RCTs) remains very high despite the variety of nonoperative treatments and the high volume of surgical interventions performed. Muscle stem cells (MuSCs), also known as satellite cells, have risen to the forefront of rotator cuff tear research as a potential adjuvant therapy to aid unsatisfactory surgical outcomes. MuSCs are adult stem cells exhibiting the capacity to proliferate and self-renew, both symmetrically and asymmetrically. As part of this niche, they have been shown to adopt an activated phenotype in response to musculoskeletal injury and decrease their cellular populations during aging, implicating them as key players in both pathologic and normal physiological processes. While commonly connected to the regenerative phase of muscle healing, MuSCs also have the potential to differentiate into adverse morphologies. For instance, if MuSCs differentiate into adipocytes, the ensuing fatty infiltration serves as an obstacle to proper muscle healing and has been associated with the failure of surgical management of RCTs. With the potential to both harm and heal, we have identified MuSCs as a key player in RCT repair. To better understand this dichotomy, the following review will identify key studies regarding the morphology, function, and behavior of MuSCs with respect to RCTs and healing.
Collapse
Affiliation(s)
- Ranjan Gupta
- Department of Orthopaedics, University of California, Irvine, CA, USA
| | - Rohan Rao
- Department of Orthopaedics, University of California, Irvine, CA, USA
| | - Tyler R. Johnston
- Department of Orthopaedics, University of California, Irvine, CA, USA
| | - Jennifer Uong
- Department of Orthopaedics, University of California, Irvine, CA, USA
| | - Daniel S. Yang
- Department of Orthopaedics, University of California, Irvine, CA, USA
| | - Thay Q. Lee
- Congress Medical Foundation, Pasadena, CA, USA
| |
Collapse
|
4
|
Shuler KT, Wilson BE, Muñoz ER, Mitchell AD, Selsby JT, Hudson MB. Muscle Stem Cell-Derived Extracellular Vesicles Reverse Hydrogen Peroxide-Induced Mitochondrial Dysfunction in Mouse Myotubes. Cells 2020; 9:E2544. [PMID: 33256005 PMCID: PMC7760380 DOI: 10.3390/cells9122544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
Muscle stem cells (MuSCs) hold great potential as a regenerative therapeutic but have met numerous challenges in treating systemic muscle diseases. Muscle stem cell-derived extracellular vesicles (MuSC-EVs) may overcome these limitations. We assessed the number and size distribution of extracellular vesicles (EVs) released by MuSCs ex vivo, determined the extent to which MuSC-EVs deliver molecular cargo to myotubes in vitro, and quantified MuSC-EV-mediated restoration of mitochondrial function following oxidative injury. MuSCs released an abundance of EVs in culture. MuSC-EVs delivered protein cargo into myotubes within 2 h of incubation. Fluorescent labeling of intracellular mitochondria showed co-localization of delivered protein and mitochondria. Oxidatively injured myotubes demonstrated a significant decline in maximal oxygen consumption rate and spare respiratory capacity relative to untreated myotubes. Remarkably, subsequent treatment with MuSC-EVs significantly improved maximal oxygen consumption rate and spare respiratory capacity relative to the myotubes that were damaged but received no subsequent treatment. Surprisingly, MuSC-EVs did not affect mitochondrial function in undamaged myotubes, suggesting the cargo delivered is able to repair but does not expand the existing mitochondrial network. These data demonstrate that MuSC-EVs rapidly deliver proteins into myotubes, a portion of which co-localizes with mitochondria, and reverses mitochondria dysfunction in oxidatively-damaged myotubes.
Collapse
Affiliation(s)
- Kyle T. Shuler
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Brittany E. Wilson
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Eric R. Muñoz
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Andrew D. Mitchell
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| | - Joshua T. Selsby
- Department of Animal Science, Iowa State University, 2356G Kildee Hall, Ames, IA 50011, USA;
| | - Matthew B. Hudson
- Department of Kinesiology and Applied Physiology, University of Delaware, 540 S College Ave, Newark, DE 19713, USA; (K.T.S.); (B.E.W.); (E.R.M.); (A.D.M.)
| |
Collapse
|
5
|
Dayanidhi S, Kinney MC, Dykstra PB, Lieber RL. Does a Reduced Number of Muscle Stem Cells Impair the Addition of Sarcomeres and Recovery from a Skeletal Muscle Contracture? A Transgenic Mouse Model. Clin Orthop Relat Res 2020; 478:886-899. [PMID: 32011372 PMCID: PMC7282569 DOI: 10.1097/corr.0000000000001134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Children with cerebral palsy have impaired muscle growth and muscular contractures that limit their ROM. Contractures have a decreased number of serial sarcomeres and overstretched lengths, suggesting an association with a reduced ability to add the serial sarcomeres required for normal postnatal growth. Contractures also show a markedly reduced number of satellite cells-the muscle stem cells that are indispensable for postnatal muscle growth, repair, and regeneration. The potential role of the reduced number of muscle stem cells in impaired sarcomere addition leading to contractures must be evaluated. QUESTIONS/PURPOSES (1) Does a reduced satellite cell number impair the addition of serial sarcomeres during recovery from an immobilization-induced contracture? (2) Is the severity of contracture due to the decreased number of serial sarcomeres or increased collagen content? METHODS The hindlimbs of satellite cell-specific Cre-inducible mice (Pax7; Rosa26; n = 10) were maintained in plantarflexion with plaster casts for 2 weeks so that the soleus was chronically shortened and the number of its serial sarcomeres was reduced by approximately 20%. Subsequently, mice were treated with either tamoxifen to reduce the number of satellite cells or a vehicle (an injection and handling control). The transgenic mouse model with satellite cell ablation combined with a casting model to reduce serial sarcomere number recreates two features observed in muscular contractures in children with cerebral palsy. After 30 days, the casts were removed, the mice ankles were in plantarflexion, and the mice's ability to recover its ankle ROM by cage remobilization for 30 days were evaluated. We quantified the number of serial sarcomeres, myofiber area, and collagen content of the soleus muscle as well as maximal ankle dorsiflexion at the end of the recovery period. RESULTS Mice with reduced satellite cell numbers did not regain normal ankle ROM in dorsiflexion; that is, the muscles remained in plantarflexion contracture (-16° ± 13° versus 31° ± 39° for the control group, -47 [95% confidence interval -89 to -5]; p = 0.03). Serial sarcomere number of the soleus was lower on the casted side than the contralateral side of the mice with a reduced number of satellite cells (2214 ± 333 versus 2543 ± 206, -329 [95% CI -650 to -9]; p = 0.04) but not different in the control group (2644 ± 194 versus 2729 ± 249, -85 [95% CI -406 to 236]; p = 0.97). The degree of contracture was strongly associated with the number of sarcomeres and myofiber area (r =0.80; P < 0.01) rather than collagen content. No differences were seen between groups in terms of collagen content and the fraction of muscle area. CONCLUSIONS We found that a reduced number of muscle stem cells in a transgenic mouse model impaired the muscle's ability to add sarcomeres in series and thus to recover from an immobilization-induced contracture. CLINICAL RELEVANCE The results of our study in transgenic mouse muscle suggests there may be a mechanistic relationship between a reduced number of satellite cells and a reduced number of serial sarcomeres. Contracture development, secondary to impaired sarcomere addition in muscles in children with cerebral palsy may be due to a reduced number of muscle stem cells.
Collapse
|
6
|
Gheller BJ, Blum J, Soueid-Baumgarten S, Bender E, Cosgrove BD, Thalacker-Mercer A. Isolation, Culture, Characterization, and Differentiation of Human Muscle Progenitor Cells from the Skeletal Muscle Biopsy Procedure. J Vis Exp 2019. [PMID: 31498309 DOI: 10.3791/59580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The use of primary human tissue and cells is ideal for the investigation of biological and physiological processes such as the skeletal muscle regenerative process. There are recognized challenges to working with human primary adult stem cells, particularly human muscle progenitor cells (hMPCs) derived from skeletal muscle biopsies, including low cell yield from collected tissue and a large degree of donor heterogeneity of growth and death parameters among cultures. While incorporating heterogeneity into experimental design requires a larger sample size to detect significant effects, it also allows us to identify mechanisms that underlie variability in hMPC expansion capacity, and thus allows us to better understand heterogeneity in skeletal muscle regeneration. Novel mechanisms that distinguish the expansion capacity of cultures have the potential to lead to the development of therapies to improve skeletal muscle regeneration.
Collapse
Affiliation(s)
| | - Jamie Blum
- Division of Nutritional Sciences, Cornell University
| | | | - Erica Bender
- Division of Nutritional Sciences, Cornell University
| | | | | |
Collapse
|
7
|
Qazi TH, Duda GN, Ort MJ, Perka C, Geissler S, Winkler T. Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopenia Muscle 2019; 10:501-516. [PMID: 30843380 PMCID: PMC6596399 DOI: 10.1002/jcsm.12416] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/27/2019] [Indexed: 12/14/2022] Open
Abstract
Diseases that jeopardize the musculoskeletal system and cause chronic impairment are prevalent throughout the Western world. In Germany alone, ~1.8 million patients suffer from these diseases annually, and medical expenses have been reported to reach 34.2bn Euros. Although musculoskeletal disorders are seldom fatal, they compromise quality of life and diminish functional capacity. For example, musculoskeletal disorders incur an annual loss of over 0.8 million workforce years to the German economy. Among these diseases, traumatic skeletal muscle injuries are especially problematic because they can occur owing to a variety of causes and are very challenging to treat. In contrast to chronic muscle diseases such as dystrophy, sarcopenia, or cachexia, traumatic muscle injuries inflict damage to localized muscle groups. Although minor muscle trauma heals without severe consequences, no reliable clinical strategy exists to prevent excessive fibrosis or fatty degeneration, both of which occur after severe traumatic injury and contribute to muscle degeneration and dysfunction. Of the many proposed strategies, cell-based approaches have shown the most promising results in numerous pre-clinical studies and have demonstrated success in the handful of clinical trials performed so far. A number of myogenic and non-myogenic cell types benefit muscle healing, either by directly participating in new tissue formation or by stimulating the endogenous processes of muscle repair. These cell types operate via distinct modes of action, and they demonstrate varying levels of feasibility for muscle regeneration depending, to an extent, on the muscle injury model used. While in some models the injury naturally resolves over time, other models have been developed to recapitulate the peculiarities of real-life injuries and therefore mimic the structural and functional impairment observed in humans. Existing limitations of cell therapy approaches include issues related to autologous harvesting, expansion and sorting protocols, optimal dosage, and viability after transplantation. Several clinical trials have been performed to treat skeletal muscle injuries using myogenic progenitor cells or multipotent stromal cells, with promising outcomes. Recent improvements in our understanding of cell behaviour and the mechanistic basis for their modes of action have led to a new paradigm in cell therapies where physical, chemical, and signalling cues presented through biomaterials can instruct cells and enhance their regenerative capacity. Altogether, these studies and experiences provide a positive outlook on future opportunities towards innovative cell-based solutions for treating traumatic muscle injuries-a so far unmet clinical need.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melanie J Ort
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tobias Winkler
- Julius Wolff Institute, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Riddle ES, Bender EL, Thalacker-Mercer AE. Transcript profile distinguishes variability in human myogenic progenitor cell expansion capacity. Physiol Genomics 2018; 50:817-827. [PMID: 30004837 DOI: 10.1152/physiolgenomics.00041.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary human muscle progenitor cells (hMPCs) are commonly used to understand skeletal muscle biology, including the regenerative process. Variability from unknown origin in hMPC expansion capacity occurs independently of disease, age, or sex of the donor. We sought to determine the transcript profile that distinguishes hMPC cultures with greater expansion capacity and to identify biological underpinnings of these transcriptome profile differences. Sorted (CD56+/CD29+) hMPC cultures were clustered by unbiased, K-means cluster analysis into FAST and SLOW based on growth parameters (saturation density and population doubling time). FAST had greater expansion capacity indicated by significantly reduced population doubling time (-60%) and greater saturation density (+200%), nuclei area under the curve (AUC, +250%), and confluence AUC (+120%). Additionally, FAST had fewer % dead cells AUC (-44%, P < 0.05). RNA sequencing was conducted on RNA extracted during the expansion phase. Principal component analysis distinguished FAST and SLOW based on the transcript profiles. There were 2,205 differentially expressed genes (DEgenes) between FAST and SLOW (q value ≤ 0.05); 362 DEgenes met a more stringent cut-off (q value ≤ 0.001 and 2.0 fold-change). DEgene enrichment suggested FAST (vs. SLOW) had promotion of the cell cycle, reduced apoptosis and cellular senescence, and enhanced DNA replication. Novel (RABL6, IRGM1, and AREG) and known (FOXM1, CDKN1A, Rb) genes emerged as regulators of identified functional pathways. Collectively the data suggest that variation in hMPC expansion capacity occurs independently of age and sex and is driven, in part, by intrinsic mechanisms that support the cell cycle.
Collapse
Affiliation(s)
- Emily S Riddle
- Division of Nutritional Sciences, Cornell University , Ithaca, New York
| | - Erica L Bender
- Division of Nutritional Sciences, Cornell University , Ithaca, New York
| | | |
Collapse
|
9
|
Shahini A, Vydiam K, Choudhury D, Rajabian N, Nguyen T, Lei P, Andreadis ST. Efficient and high yield isolation of myoblasts from skeletal muscle. Stem Cell Res 2018; 30:122-129. [PMID: 29879622 PMCID: PMC6090567 DOI: 10.1016/j.scr.2018.05.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle (SkM) regeneration relies on the activity of myogenic progenitors that reside beneath the basal lamina of myofibers. Here, we describe a protocol for the isolation of the SkM progenitors from young and old mice by exploiting their outgrowth potential from SkM explants on matrigel coated dishes in the presence of high serum, chicken embryo extract and basic fibroblast growth factor. Compared to other protocols, this method yields a higher number of myoblasts (10-20 million) by enabling the outgrowth of these cells from tissue fragments. The majority of outgrowth cells (~90%) were positive for myogenic markers such as α7-integrin, MyoD, and Desmin. The myogenic cell population could be purified to 98% with one round of pre-plating on collagen coated dishes, where differential attachment of fibroblasts and other non-myogenic progenitors separates them from myoblasts. Moreover, the combination of high serum medium and matrigel coating provided a proliferation advantage to myogenic cells, which expanded rapidly (~24 h population doubling), while non-myogenic cells diminished over time, thereby eliminating the need for further purification steps such as FACS sorting. Finally, myogenic progenitors gave rise to multinucleated myotubes that exhibited sarcomeres and spontaneous beating in the culture dish.
Collapse
Affiliation(s)
- Aref Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Kalyan Vydiam
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Debanik Choudhury
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Nika Rajabian
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Thy Nguyen
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14263, USA.
| |
Collapse
|
10
|
Aragón IM, Imbroda BH, Lara MF. Cell Therapy Clinical Trials for Stress Urinary Incontinence: Current Status and Perspectives. Int J Med Sci 2018; 15:195-204. [PMID: 29483809 PMCID: PMC5820847 DOI: 10.7150/ijms.22130] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022] Open
Abstract
Stress urinary incontinence (SUI) affects 200 million people worldwide. Standard therapies often provide symptomatic relief, but without targeting the underlying etiology, and show tremendous patient-to-patient variability, limited success and complications associated with the procedures. We review in this article the latest clinical trials performed to treat SUI using cell-based therapies. These therapies, despite typically including only a small number of patients and short term evaluation of results, have proven to be feasible and safe. However, there is not yet a consensus for the best cell source to be used to treat SUI and not all patients may be suitable for these therapies. Therefore, more clinical trials should be promoted recruiting large number of patients and evaluating long term results.
Collapse
Affiliation(s)
- Isabel María Aragón
- Department of Urology, Virgen de la Victoria University Hospital, Campus Universitario de Teatinos, Málaga, Spain
| | - Bernardo Herrera Imbroda
- Department of Urology, Virgen de la Victoria University Hospital, Campus Universitario de Teatinos, Málaga, Spain
| | - María Fernanda Lara
- Department of Urology, Virgen de la Victoria University Hospital, Campus Universitario de Teatinos, Málaga, Spain
| |
Collapse
|
11
|
Lewis FC, Cottle BJ, Shone V, Marazzi G, Sassoon D, Tseng CCS, Dankers PYW, Chamuleau SAJ, Nadal-Ginard B, Ellison-Hughes GM. Transplantation of Allogeneic PW1 pos/Pax7 neg Interstitial Cells Enhance Endogenous Repair of Injured Porcine Skeletal Muscle. ACTA ACUST UNITED AC 2017; 2:717-736. [PMID: 30062184 PMCID: PMC6059014 DOI: 10.1016/j.jacbts.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023]
Abstract
Allogeneic PICs express and secrete an array of pro-regenerative paracrine factors that stimulate a regenerative response in a preclinical muscle injury model applicable to humans. Paracrine factors secreted by allogeneic PICs stimulate endogenous progenitor cell activation and differentiation, leading to accelerated and improved myofiber regeneration and microvessel formation. Allogeneic PICs survive long enough to exert their action before being cleared by the host immune system. Therefore, the cells transplanted are allogeneic but the regeneration is completely autologous. Administration of HGF and IGF-1 improves skeletal muscle regeneration, but not to the same extent as PIC transplantation.
Skeletal muscle-derived PW1pos/Pax7neg interstitial cells (PICs) express and secrete a multitude of proregenerative growth factors and cytokines. Utilizing a porcine preclinical skeletal muscle injury model, delivery of allogeneic porcine PICs (pPICs) significantly improved and accelerated myofiber regeneration and neocapillarization, compared with saline vehicle control-treated muscles. Allogeneic pPICs did not contribute to new myofibers or capillaries and were eliminated by the host immune system. In conclusion, allogeneic pPIC transplantation stimulated the endogenous stem cell pool to bring about enhanced autologous skeletal muscle repair and regeneration. This allogeneic cell approach is considered a cost-effective, easy to apply, and readily available regenerative therapeutic strategy.
Collapse
Key Words
- BrdU, 5-bromo-2′-deoxyuridine
- CM, pPIC conditioned medium
- CSA, cross sectional area
- CSC, cardiac stem cell
- CTRL, control
- CTX, cardiotoxin
- DAPI, 4′,6-diamidino-2-phenylindole
- DMEM, Dulbecco’s Modified Eagle's medium
- FBS, fetal bovine serum
- GFPpPIC, GFP-positive porcine PW1pos/Pax7neg interstitial cell
- GM, growth medium
- HUVEC, human umbilical vein endothelial cell
- HVG, hematoxylin and van Gieson
- ICM, heat-inactivated conditioned medium
- IV, intravenous
- MHC, myosin heavy chain
- MI, myocardial infarction
- P, passage
- PBMC, peripheral blood mononuclear cell
- PBS, phosphate buffered saline
- PIC, PW1pos/Pax7neg interstitial cell
- PICs
- TA, tibialis anterior
- UM, unconditioned medium
- allogeneic progenitor cells
- growth factors
- nMHC, neonatal myosin heavy chain
- pPIC, porcine PW1pos/Pax7neg interstitial cell
- porcine preclinical model
- qRT-PCR, quantitative reverse transcription polymerase chain reaction
- regeneration
- skeletal muscle
- vWF, Von Willebrand factor
Collapse
Affiliation(s)
- Fiona C Lewis
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Beverley J Cottle
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Victoria Shone
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Giovanna Marazzi
- Stem Cells and Regenerative Medicine UMRS 1166, Institute of Cardiometabolism and Nutrition, Université de Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - David Sassoon
- Stem Cells and Regenerative Medicine UMRS 1166, Institute of Cardiometabolism and Nutrition, Université de Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Cheyenne C S Tseng
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patricia Y W Dankers
- Supramolecular Biomaterials for Translational Biomedical Science, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Steven A J Chamuleau
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bernardo Nadal-Ginard
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| | - Georgina M Ellison-Hughes
- School of Basic & Medical Biosciences, Centre of Human & Aerospace Physiological Sciences & Centre for Stem Cells and Regenerative Medicine, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London, United Kingdom
| |
Collapse
|
12
|
Santos-Zas I, Negroni E, Mamchaoui K, Mosteiro CS, Gallego R, Butler-Browne GS, Pazos Y, Mouly V, Camiña JP. Obestatin Increases the Regenerative Capacity of Human Myoblasts Transplanted Intramuscularly in an Immunodeficient Mouse Model. Mol Ther 2017; 25:2345-2359. [PMID: 28750736 DOI: 10.1016/j.ymthe.2017.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 02/08/2023] Open
Abstract
Although cell-based therapy is considered a promising method aiming at treating different muscular disorders, little clinical benefit has been reported. One of major hurdles limiting the efficiency of myoblast transfer therapy is the poor survival of the transplanted cells. Any intervention upon the donor cells focused on enhancing in vivo survival, proliferation, and expansion is essential to improve the effectiveness of such therapies in regenerative medicine. In the present work, we investigated the potential role of obestatin, an autocrine peptide factor regulating skeletal muscle growth and repair, to improve the outcome of myoblast-based therapy by xenotransplanting primary human myoblasts into immunodeficient mice. The data proved that short in vivo obestatin treatment of primary human myoblasts not only enhances the efficiency of engraftment, but also facilitates an even distribution of myoblasts in the host muscle. Moreover, this treatment leads to a hypertrophic response of the human-derived regenerating myofibers. Taken together, the activation of the obestatin/GPR39 pathway resulted in an overall improvement of the efficacy of cell engraftment within the host's skeletal muscle. These data suggest considerable potential for future therapeutic applications and highlight the importance of combinatorial therapies.
Collapse
Affiliation(s)
- Icia Santos-Zas
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain
| | - Elisa Negroni
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Kamel Mamchaoui
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Carlos S Mosteiro
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain
| | - Rosalia Gallego
- Departamento de Ciencias Morfológicas, Universidad de Santiago de Compostela, 15704 Santiago de Compostela, Spain
| | - Gillian S Butler-Browne
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France
| | - Yolanda Pazos
- Laboratorio de Patología Digestiva, IDIS, CHUS, SERGAS, 15706 Santiago de Compostela, Spain
| | - Vincent Mouly
- Sorbonne Universités, Université Pierre et Marie Curie Université Paris 06, INSERM UMRS974, Center for Research in Myology, 47 Boulevard de l'hôpital, 75013 Paris, France.
| | - Jesus P Camiña
- Laboratorio de Endocrinología Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Servicio Gallego de Salud (SERGAS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
13
|
Cirillo F, Resmini G, Ghiroldi A, Piccoli M, Bergante S, Tettamanti G, Anastasia L. Activation of the hypoxia‐inducible factor 1a promotes myogenesis through the noncanonical Wnt pathway, leading to hypertrophic myotubes. FASEB J 2017; 31:2146-2156. [DOI: 10.1096/fj.201600878r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/23/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Federica Cirillo
- Laboratory of Stem Cells for Tissue EngineeringIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San DonatoMilanItaly
| | - Giulia Resmini
- Laboratory of Stem Cells for Tissue EngineeringIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San DonatoMilanItaly
| | - Andrea Ghiroldi
- Laboratory of Stem Cells for Tissue EngineeringIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San DonatoMilanItaly
| | - Marco Piccoli
- Laboratory of Stem Cells for Tissue EngineeringIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San DonatoMilanItaly
| | - Sonia Bergante
- Laboratory of Stem Cells for Tissue EngineeringIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San DonatoMilanItaly
| | - Guido Tettamanti
- Laboratory of Stem Cells for Tissue EngineeringIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San DonatoMilanItaly
| | - Luigi Anastasia
- Laboratory of Stem Cells for Tissue EngineeringIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San DonatoMilanItaly
- Department of Biomedical Sciences for HealthUniversity of MilanMilanItaly
| |
Collapse
|
14
|
Tierney M, Garcia C, Bancone M, Sacco A, Personius KE. Innervation of dystrophic muscle after muscle stem cell therapy. Muscle Nerve 2016; 54:763-8. [PMID: 26998682 DOI: 10.1002/mus.25115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is caused by loss of the structural protein, dystrophin, resulting in muscle fragility. Muscle stem cell (MuSC) transplantation is a potential therapy for DMD. It is unknown whether donor-derived muscle fibers are structurally innervated. METHODS Green fluorescent protein (GFP)-expressing MuSCs were transplanted into the tibials anterior of adult dystrophic mdx/mTR mice. Three weeks later the neuromuscular junction was labeled by immunohistochemistry. RESULTS The percent overlap between pre- and postsynaptic immunolabeling was greater in donor-derived GFP(+) myofibers, and fewer GFP(+) myofibers were identified as denervated compared with control GFP(-) fibers (P = 0.001 and 0.03). GFP(+) fibers also demonstrated acetylcholine receptor fragmentation and expanded endplate area, indicators of muscle reinnervation (P = 0.008 and 0.033). CONCLUSION It is unclear whether GFP(+) fibers are a result of de novo synthesis or fusion with damaged endogenous fibers. Either way, donor-derived fibers demonstrate clear histological innervation. Muscle Nerve 54: 763-768, 2016.
Collapse
Affiliation(s)
- Matthew Tierney
- Development, Aging and Regeneration Program, Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Christina Garcia
- Department of Rehabilitation Science, School of Public Health and Health Professions, Kimball Tower, 3435 Main Street, Buffalo, New York, 14214-3079, USA
| | - Matthew Bancone
- Department of Rehabilitation Science, School of Public Health and Health Professions, Kimball Tower, 3435 Main Street, Buffalo, New York, 14214-3079, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kirkwood E Personius
- Department of Rehabilitation Science, School of Public Health and Health Professions, Kimball Tower, 3435 Main Street, Buffalo, New York, 14214-3079, USA. .,Program in Neuroscience, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
15
|
High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9047821. [PMID: 27579157 PMCID: PMC4992759 DOI: 10.1155/2016/9047821] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/14/2016] [Indexed: 12/20/2022]
Abstract
Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes.
Collapse
|
16
|
Patel HP, White MC, Westbury L, Syddall HE, Stephens PJ, Clough GF, Cooper C, Sayer AA. Skeletal muscle morphology in sarcopenia defined using the EWGSOP criteria: findings from the Hertfordshire Sarcopenia Study (HSS). BMC Geriatr 2015; 15:171. [PMID: 26678672 PMCID: PMC4683975 DOI: 10.1186/s12877-015-0171-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/10/2015] [Indexed: 01/06/2023] Open
Abstract
Background Sarcopenia is defined as the loss of muscle mass and function with age and is associated with decline in mobility, frailty, falls and mortality. There is considerable interest in understanding the underlying mechanisms. Our aim was to characterise muscle morphology changes associated with sarcopenia among community dwelling older men. Methods One hundred and five men aged 68–76 years were recruited to the Hertfordshire Sarcopenia Study (HSS) for detailed characterisation of muscle including measures of muscle mass, strength and function. Muscle tissue was obtained from a biopsy of the vastus lateralis for 99 men and was processed for immunohistochemical studies to determine myofibre distribution and area, capillarisation and satellite cell (SC) density. Results Six (6 %) men had sarcopenia as defined by the European Working Group on Sarcopenia in Older People (EWGSOP) criteria. These men had lower SC density (1.7 cells/mm2 vs 3.8 cells/mm2, p = 0.06) and lower SC/fibre ratio (0.02 vs 0.06, p = 0.06) than men without sarcopenia. Although men with sarcopenia tended to have smaller myofibres and lower capillary to fibre ratio, these relationships were not statistically significant. Conclusion We have shown that there may be altered muscle morphology parameters in older men with sarcopenia. These results have the potential to help identify cell and molecular targets for therapeutic intervention. This work now requires extension to larger studies which also include women.
Collapse
Affiliation(s)
- H P Patel
- Academic Geriatric Medicine, University of Southampton, University Hospital Southampton FoundationTrust (UHSFT), Tremona Road, Southampton, SO16 6YD, UK. .,Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, UHSFT, Tremona Road, Southampton, SO16 6YD, UK. .,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and UHSFT, Tremona Road, Southampton, SO16 6YD, UK.
| | - M C White
- Academic Geriatric Medicine, University of Southampton, University Hospital Southampton FoundationTrust (UHSFT), Tremona Road, Southampton, SO16 6YD, UK
| | - L Westbury
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, UHSFT, Tremona Road, Southampton, SO16 6YD, UK
| | - H E Syddall
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, UHSFT, Tremona Road, Southampton, SO16 6YD, UK
| | - P J Stephens
- Academic Geriatric Medicine, University of Southampton, University Hospital Southampton FoundationTrust (UHSFT), Tremona Road, Southampton, SO16 6YD, UK
| | - G F Clough
- Institute for Developmental Sciences, University of Southampton, UHSFT, Tremona Road, Southampton, SO16 6YD, UK
| | - C Cooper
- Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, UHSFT, Tremona Road, Southampton, SO16 6YD, UK.,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and UHSFT, Tremona Road, Southampton, SO16 6YD, UK.,National Institute for Health Research Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK
| | - A A Sayer
- Academic Geriatric Medicine, University of Southampton, University Hospital Southampton FoundationTrust (UHSFT), Tremona Road, Southampton, SO16 6YD, UK.,Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, UHSFT, Tremona Road, Southampton, SO16 6YD, UK.,National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and UHSFT, Tremona Road, Southampton, SO16 6YD, UK.,National Institute for Health Research Collaboration for Leadership in Applied Health Research and Care: Wessex, Academic Geriatric Medicine, University of Southampton, UHSFT, Tremona Road, Southampton, SO16 6YD, UK.,Newcastle University Institute for Ageing and Institute of Health & Society, Newcastle University, Newcastle, UK
| |
Collapse
|
17
|
Dib C, Saada YB, Dmitriev P, Richon C, Dessen P, Laoudj-Chenivesse D, Carnac G, Lipinski M, Vassetzky YS. Correction of the FSHD myoblast differentiation defect by fusion with healthy myoblasts. J Cell Physiol 2015. [DOI: 10.1002/jcp.25110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carla Dib
- UMR 8126, University of Paris-Sud, CNRS; Institut de Cancérologie Gustave-Roussy; F-94805 Villejuif France
| | - Yara Bou Saada
- UMR 8126, University of Paris-Sud, CNRS; Institut de Cancérologie Gustave-Roussy; F-94805 Villejuif France
| | - Petr Dmitriev
- UMR 8126, University of Paris-Sud, CNRS; Institut de Cancérologie Gustave-Roussy; F-94805 Villejuif France
| | - Catherine Richon
- Functional Genomics Unit; Institut de Cancérologie Gustave-Roussy; F-94805 Villejuif France
| | - Philippe Dessen
- Functional Genomics Unit; Institut de Cancérologie Gustave-Roussy; F-94805 Villejuif France
| | | | - Gilles Carnac
- INSERM U-1046; 371 Avenue du Doyen Gaston Giraud; F-34295 Montpellier France
| | - Marc Lipinski
- UMR 8126, University of Paris-Sud, CNRS; Institut de Cancérologie Gustave-Roussy; F-94805 Villejuif France
| | - Yegor S. Vassetzky
- UMR 8126, University of Paris-Sud, CNRS; Institut de Cancérologie Gustave-Roussy; F-94805 Villejuif France
| |
Collapse
|
18
|
Stilhano RS, Martins L, Ingham SJM, Pesquero JB, Huard J. Gene and cell therapy for muscle regeneration. Curr Rev Musculoskelet Med 2015; 8:182-187. [PMID: 25899573 DOI: 10.1007/s12178-015-9268-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle injury and healing are multifactorial processes, involving three steps of healing: (1) degeneration and inflammation, (2) regeneration, and (3) fibrosis. Fibrous tissue hinders the muscle's complete recovery and current therapies fail in achieving total muscle recovery. Gene and cell therapy (or both) are potential future treatments for severe muscular injuries. Stem cells' properties associated with growth factors or/and cytokines can improve muscle healing and permit long-term recovery.
Collapse
Affiliation(s)
- Roberta Sessa Stilhano
- Biophysics Department, Federal University of São Paulo - UNIFESP, Rua Mirassol, 207 - Vila Clementino, 04044-010 São Paulo, Brazil
| | - Leonardo Martins
- Biophysics Department, Federal University of São Paulo - UNIFESP, Rua Mirassol, 207 - Vila Clementino, 04044-010 São Paulo, Brazil
| | | | - João Bosco Pesquero
- Biophysics Department, Federal University of São Paulo - UNIFESP, Rua Mirassol, 207 - Vila Clementino, 04044-010 São Paulo, Brazil
| | - Johnny Huard
- Stem Cell Research Center, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
19
|
Hart ML, Izeta A, Herrera-Imbroda B, Amend B, Brinchmann JE. Cell Therapy for Stress Urinary Incontinence. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:365-76. [PMID: 25789845 DOI: 10.1089/ten.teb.2014.0627] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Urinary incontinence (UI) is the involuntary loss of urine and is a common condition in middle-aged and elderly women and men. Stress urinary incontinence (SUI) is caused by leakage of urine when coughing, sneezing, laughing, lifting, and exercise, even standing leads to increased intra-abdominal pressure. Other types of UI also exist such as urge incontinence (also called overactive bladder), which is a strong and unexpected sudden urge to urinate, mixed forms of UI that result in symptoms of both urge and stress incontinence, and functional incontinence caused by reduced mobility, cognitive impairment, or neuromuscular limitations that impair mobility or dexterity. However, for many SUI patients, there is significant loss of urethral sphincter muscle due to degeneration of tissue, the strain and trauma of pregnancy and childbirth, or injury acquired during surgery. Hence, for individuals with SUI, a cell-based therapeutic approach to regenerate the sphincter muscle offers the advantage of treating the cause rather than the symptoms. We discuss current clinically relevant cell therapy approaches for regeneration of the external urethral sphincter (striated muscle), internal urethral sphincter (smooth muscle), the neuromuscular synapse, and blood supply. The use of mesenchymal stromal/stem cells is a major step in the right direction, but they may not be enough for regeneration of all components of the urethral sphincter. Inclusion of other cell types or biomaterials may also be necessary to enhance integration and survival of the transplanted cells.
Collapse
Affiliation(s)
- Melanie L Hart
- 1 Clinical Research Group KFO 273, Department of Urology, University of Tübingen , Tübingen, Germany
| | - Ander Izeta
- 2 Tissue Engineering Laboratory, Instituto Biodonostia, Hospital Universitario Donostia , San Sebastian, Spain
| | | | - Bastian Amend
- 4 Department of Urology, University of Tübingen , Tuebingen, Germany
| | - Jan E Brinchmann
- 5 Department of Immunology, Oslo University Hospital, Oslo, Norway
- 6 Norwegian Center for Stem Cell Research, Institute of Basic Medical Sciences, University of Oslo , Oslo, Norway
| |
Collapse
|
20
|
Fu X, Wang H, Hu P. Stem cell activation in skeletal muscle regeneration. Cell Mol Life Sci 2015; 72:1663-77. [PMID: 25572293 PMCID: PMC4412728 DOI: 10.1007/s00018-014-1819-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/21/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022]
Abstract
Muscle stem cell (satellite cell) activation post muscle injury is a transient and critical step in muscle regeneration. It is regulated by physiological cues, signaling molecules, and epigenetic regulatory factors. The mechanisms that coherently turn on the complex activation process shortly after trauma are just beginning to be illuminated. In this review, we will discuss the current knowledge of satellite cell activation regulation.
Collapse
Affiliation(s)
- Xin Fu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | | | | |
Collapse
|
21
|
Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F, Yang L, Mendias CL, Dupont-Versteegden EE, McCarthy JJ, Peterson CA. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 2015; 21:76-80. [PMID: 25501907 PMCID: PMC4289085 DOI: 10.1038/nm.3710] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 09/04/2014] [Indexed: 12/15/2022]
Abstract
A key determinant of geriatric frailty is sarcopenia, the age-associated loss of skeletal muscle mass and strength. Although the etiology of sarcopenia is unknown, the correlation during aging between the loss of activity of satellite cells, which are endogenous muscle stem cells, and impaired muscle regenerative capacity has led to the hypothesis that the loss of satellite cell activity is also a cause of sarcopenia. We tested this hypothesis in male sedentary mice by experimentally depleting satellite cells in young adult animals to a degree sufficient to impair regeneration throughout the rest of their lives. A detailed analysis of multiple muscles harvested at various time points during aging in different cohorts of these mice showed that the muscles were of normal size, despite low regenerative capacity, but did have increased fibrosis. These results suggest that lifelong reduction of satellite cells neither accelerated nor exacerbated sarcopenia and that satellite cells did not contribute to the maintenance of muscle size or fiber type composition during aging, but that their loss may contribute to age-related muscle fibrosis.
Collapse
Affiliation(s)
- Christopher S. Fry
- Department of Rehabilitation Sciences, College of Health Sciences University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
| | - Jonah D. Lee
- Department of Rehabilitation Sciences, College of Health Sciences University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
| | - Jyothi Mula
- Department of Rehabilitation Sciences, College of Health Sciences University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
| | - Tyler J. Kirby
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Physiology, College of Medicine University of Kentucky, Lexington, Kentucky 40536, USA
| | - Janna R. Jackson
- Department of Rehabilitation Sciences, College of Health Sciences University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
| | - Fujun Liu
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Biostatistics, College of Public Health University of Kentucky, Lexington, Kentucky 40536, USA
| | - Lin Yang
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Biostatistics, College of Public Health University of Kentucky, Lexington, Kentucky 40536, USA
| | | | - Esther E. Dupont-Versteegden
- Department of Rehabilitation Sciences, College of Health Sciences University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
| | - John J. McCarthy
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Physiology, College of Medicine University of Kentucky, Lexington, Kentucky 40536, USA
| | - Charlotte A. Peterson
- Department of Rehabilitation Sciences, College of Health Sciences University of Kentucky, Lexington, Kentucky 40536, USA
- Center for Muscle Biology University of Kentucky, Lexington, Kentucky 40536, USA
- Department of Physiology, College of Medicine University of Kentucky, Lexington, Kentucky 40536, USA
| |
Collapse
|
22
|
Mechanisms of skeletal muscle ageing; avenues for therapeutic intervention. Curr Opin Pharmacol 2014; 16:116-21. [PMID: 24880707 DOI: 10.1016/j.coph.2014.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/04/2014] [Accepted: 05/05/2014] [Indexed: 12/12/2022]
Abstract
Age-related loss of muscle mass and function, termed sarcopenia, is a catastrophic process, which impacts severely on quality of life of older people. The mechanisms underlying sarcopenia are unclear and the development of optimal therapeutic interventions remains elusive. Impaired regenerative capacity, attenuated ability to respond to stress, elevated reactive oxygen species production and low-grade systemic inflammation are all key contributors to sarcopenia. Pharmacological intervention using compounds such as 17AAG, SS-31 and Bimagrumab or naturally occurring polyphenols to target specific pathways show potential benefit to combat sarcopenia although further research is required, particularly to identify the mechanisms by which muscle fibres are completely lost with increasing age.
Collapse
|
23
|
Bentzinger CF, von Maltzahn J, Dumont NA, Stark DA, Wang YX, Nhan K, Frenette J, Cornelison DDW, Rudnicki MA. Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength. J Cell Biol 2014; 205:97-111. [PMID: 24711502 PMCID: PMC3987134 DOI: 10.1083/jcb.201310035] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/05/2014] [Indexed: 12/19/2022] Open
Abstract
Wnt7a/Fzd7 signaling stimulates skeletal muscle growth and repair by inducing the symmetric expansion of satellite stem cells through the planar cell polarity pathway and by activating the Akt/mTOR growth pathway in muscle fibers. Here we describe a third level of activity where Wnt7a/Fzd7 increases the polarity and directional migration of mouse satellite cells and human myogenic progenitors through activation of Dvl2 and the small GTPase Rac1. Importantly, these effects can be exploited to potentiate the outcome of myogenic cell transplantation into dystrophic muscles. We observed that a short Wnt7a treatment markedly stimulated tissue dispersal and engraftment, leading to significantly improved muscle function. Moreover, myofibers at distal sites that fused with Wnt7a-treated cells were hypertrophic, suggesting that the transplanted cells deliver activated Wnt7a/Fzd7 signaling complexes to recipient myofibers. Taken together, we describe a viable and effective ex vivo cell modulation process that profoundly enhances the efficacy of stem cell therapy for skeletal muscle.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Fusion
- Cell Line
- Cell Movement
- Cell Polarity
- Disease Models, Animal
- Dishevelled Proteins
- Endocytosis
- Frizzled Receptors/metabolism
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Hypertrophy
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Mice
- Mice, Inbred mdx
- Mice, Knockout
- Mice, Transgenic
- Muscle Strength
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscle, Skeletal/surgery
- Muscular Dystrophies/genetics
- Muscular Dystrophies/metabolism
- Muscular Dystrophies/pathology
- Muscular Dystrophies/physiopathology
- Muscular Dystrophies/surgery
- Myoblasts, Skeletal/metabolism
- Myoblasts, Skeletal/pathology
- Myoblasts, Skeletal/transplantation
- Neuropeptides/metabolism
- PAX7 Transcription Factor/genetics
- Phosphoproteins/metabolism
- Promoter Regions, Genetic
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- rac1 GTP-Binding Protein/metabolism
- Red Fluorescent Protein
Collapse
Affiliation(s)
- C. Florian Bentzinger
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julia von Maltzahn
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nicolas A. Dumont
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Danny A. Stark
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Yu Xin Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kevin Nhan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jérôme Frenette
- Faculty of Medicine, Department of Rehabilitation, Laval University, Quebec City, QC G1V 4G2, Canada
| | - DDW Cornelison
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - Michael A. Rudnicki
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
24
|
Bareja A, Holt JA, Luo G, Chang C, Lin J, Hinken AC, Freudenberg JM, Kraus WE, Evans WJ, Billin AN. Human and mouse skeletal muscle stem cells: convergent and divergent mechanisms of myogenesis. PLoS One 2014; 9:e90398. [PMID: 24587351 PMCID: PMC3938718 DOI: 10.1371/journal.pone.0090398] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/29/2014] [Indexed: 12/22/2022] Open
Abstract
Satellite cells are the chief contributor to skeletal muscle growth and regeneration. The study of mouse satellite cells has accelerated in recent years due to technical advancements in the isolation of these cells. The study of human satellite cells has lagged and thus little is known about how the biology of mouse and human satellite cells compare. We developed a flow cytometry-based method to prospectively isolate human skeletal muscle progenitors from the satellite cell pool using positive and negative selection markers. Results show that this pool is enriched in PAX7 expressing cells that possess robust myogenic potential including the ability to give rise to de novo muscle in vivo. We compared mouse and human satellite cells in culture and identify differences in the elaboration of the myogenic genetic program and in the sensitivity of the cells to cytokine stimulation. These results indicate that not all mechanisms regulating mouse satellite cell activation are conserved in human satellite cells and that such differences may impact the clinical translation of therapeutics validated in mouse models. Thus, the findings of this study are relevant to developing therapies to combat muscle disease.
Collapse
Affiliation(s)
- Akshay Bareja
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Jason A. Holt
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Guizhen Luo
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Calvin Chang
- Five Prime Therapeutics, Inc., South San Francisco, California, United States of America
| | - Junyu Lin
- Five Prime Therapeutics, Inc., South San Francisco, California, United States of America
| | - Aaron C. Hinken
- Five Prime Therapeutics, Inc., South San Francisco, California, United States of America
| | - Johannes M. Freudenberg
- Quantitative Sciences, Computational Biology, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - William E. Kraus
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - William J. Evans
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Andrew N. Billin
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
25
|
Volloch V, Olsen BR. Why cellular stress suppresses adipogenesis in skeletal tissue, but is ineffective in adipose tissue: control of mesenchymal cell differentiation via integrin binding sites in extracellular matrices. Matrix Biol 2013; 32:365-71. [PMID: 23792045 DOI: 10.1016/j.matbio.2013.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 01/16/2023]
Abstract
This Perspective addresses one of the major puzzles of adipogenesis in adipose tissue, namely its resistance to cellular stress. It introduces a concept of "density" of integrin binding sites in extracellular matrix, proposes a cellular signaling explanation for the observed effects of matrix elasticity and of cell shape on mesenchymal stem cell differentiation, and discusses how specialized integrin binding sites in collagen IV-containing matrices guard two pivotal physiological and evolutionary processes: stress-resistant adipogenesis in adipose tissues and preservation of pluripotency of mesenchymal stem-like cells in their storage niches. Finally, it proposes strategies to suppress adipogenesis in adipose tissues.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.
| | | |
Collapse
|