1
|
Archer D, Perez-Muñoz ME, Tollenaar S, Veniamin S, Cheng CC, Richard C, Barreda DR, Field CJ, Walter J. The importance of the timing of microbial signals for perinatal immune system development. MICROBIOME RESEARCH REPORTS 2023; 2:11. [PMID: 38047281 PMCID: PMC10688825 DOI: 10.20517/mrr.2023.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/10/2023] [Accepted: 03/27/2023] [Indexed: 12/05/2023]
Abstract
Background: Development and maturation of the immune system begin in utero and continue throughout the neonatal period. Both the maternal and neonatal gut microbiome influence immune development, but the relative importance of the prenatal and postnatal periods is unclear. Methods: In the present study, we characterized immune cell populations in mice in which the timing of microbiome colonization was strictly controlled using gnotobiotic methodology. Results: Compared to conventional (CONV) mice, germ-free (GF) mice conventionalized at birth (EC mice) showed few differences in immune cell populations in adulthood, explaining only 2.36% of the variation in immune phenotypes. In contrast, delaying conventionalization to the fourth week of life (DC mice) affected seven splenic immune cell populations in adulthood, including dendritic cells and regulatory T cells (Tregs), explaining 29.01% of the variation in immune phenotypes. Early life treatment of DC mice with Limosilactobacillus reuteri restored splenic dendritic cells and Tregs to levels observed in EC mice, and there were strain-specific effects on splenic CD4+ T cells, CD8+ T cells, and CD11c+ F4/80+ mononuclear phagocytes. Conclusion: This work demonstrates that the early postnatal period, compared to the prenatal period, is relatively more important for microbial signals to influence immune development in mice. Our findings further show that targeted microbial treatments in early life can redress adverse effects on immune development caused by the delayed acquisition of the neonatal gut microbiome.
Collapse
Affiliation(s)
- Dale Archer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Maria Elisa Perez-Muñoz
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Stephanie Tollenaar
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Simona Veniamin
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Christopher C. Cheng
- Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Caroline Richard
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Catherine J. Field
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- APC Microbiome Ireland, School of Microbiology and Department of Medicine, University College Cork, Cork T12 YN60, Ireland
| |
Collapse
|
2
|
Ahlberg E, Al-Kaabawi A, Thune R, Simpson MR, Pedersen SA, Cione E, Jenmalm MC, Tingö L. Breast milk microRNAs: Potential players in oral tolerance development. Front Immunol 2023; 14:1154211. [PMID: 36999032 PMCID: PMC10045994 DOI: 10.3389/fimmu.2023.1154211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Breast milk is an essential source of nutrition and hydration for the infant. In addition, this highly complex biological fluid contains numerous immunologically active factors such as microorganisms, immunoglobulins, cytokines and microRNAs (miRNAs). Here, we set out to predict the function of the top 10 expressed miRNAs in human breast milk, focusing on their relevance in oral tolerance development and allergy prevention in the infant. The top expressed miRNAs in human breast milk were identified on basis of previous peer-reviewed studies gathered from a recent systematic review and an updated literature search. The miRNAs with the highest expression levels in each study were used to identify the 10 most common miRNAs or miRNA families across studies and these were selected for subsequent target prediction. The predictions were performed using TargetScan in combination with the Database for Annotation, Visualization and Integrated Discovery. The ten top expressed miRNAs were: let-7-5p family, miR-148a-3p, miR-30-5p family, miR-200a-3p + miR-141-3p, miR-22-3p, miR-181-5p family, miR-146b-5p, miR-378a-3p, miR-29-3p family, miR-200b/c-3p and miR-429-3p. The target prediction identified 3,588 potential target genes and 127 Kyoto Encyclopedia of Genes and Genomes pathways; several connected to the immune system, including TGF-b and T cell receptor signaling and T-helper cell differentiation. This review highlights the role of breast milk miRNAs and their potential contribution to infant immune maturation. Indeed, breast milk miRNAs seem to be involved in several pathways that influence oral tolerance development.
Collapse
Affiliation(s)
- Emelie Ahlberg
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ahmed Al-Kaabawi
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Rebecka Thune
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Melanie Rae Simpson
- Department of Public Health and Nursing, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sindre Andre Pedersen
- Library Section for Research Support, Data and Analysis, NTNU University Library, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Maria Christina Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lina Tingö
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
- Food and Health Programme, Örebro University, Örebro, Sweden
- *Correspondence: Lina Tingö,
| |
Collapse
|
3
|
Francella C, Green M, Caspani G, Lai JKY, Rilett KC, Foster JA. Microbe-Immune-Stress Interactions Impact Behaviour during Postnatal Development. Int J Mol Sci 2022; 23:ijms232315064. [PMID: 36499393 PMCID: PMC9740388 DOI: 10.3390/ijms232315064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Decades of research have established the role of microbiota-brain communication in behaviour and brain function. Studies have shown that microbiota composition and diversity are influenced by a variety of factors including host genetics, diet, and other environmental exposures, with implications for the immunological and neurobiological development of the host organism. To further understand early-life interactions between environment, genetic factors, the microbiome and the central nervous system, we investigated the impact of postnatal stress in C57Bl/6 wild type and T-cell deficient mice on microbe-brain interactions and behaviour. Mice were exposed to immune challenge with lipopolysaccharide (LPS) at postnatal day (P) 3 and maternal separation at P9 (16 h overnight). Behavioural assessment of growth and development as well as behaviour (righting reflex, ultrasonic vocalizations in response to brief maternal separation, open field, sociability, and grooming) was conducted. Microbiota diversity and composition of fecal samples collected at P24 revealed reduced alpha diversity in T-cell-deficient mice as well as genotype- and stress-related taxa. Notably, integrated analyses of microbiota and behaviour in the context of immunocompromise revealed key behavioural related taxa that may be important to brain development. These findings are important to determining the influence of genetic and environmental factors on gut microbiota and advances our understanding microbiome-brain signaling pathways on neurodevelopment and behaviour.
Collapse
Affiliation(s)
- Cassandra Francella
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Miranda Green
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Giorgia Caspani
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2BX, UK
| | - Jonathan K. Y. Lai
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Kelly C. Rilett
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON L8N 4A6, Canada
| | - Jane A. Foster
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Hamilton, ON L8N 4A6, Canada
- The Research Institute at St. Joe’s Hamilton, Hamilton, ON L8N 4A6, Canada
- Center for Depression Research and Clinical Care, Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence:
| |
Collapse
|
4
|
Dias ML, O'Connor KM, Dempsey EM, O'Halloran KD, McDonald FB. Targeting the Toll-like receptor pathway as a therapeutic strategy for neonatal infection. Am J Physiol Regul Integr Comp Physiol 2021; 321:R879-R902. [PMID: 34612068 DOI: 10.1152/ajpregu.00307.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toll-like receptors (TLRs) are crucial transmembrane receptors that form part of the innate immune response. They play a role in the recognition of various microorganisms and their elimination from the host. TLRs have been proposed as vital immunomodulators in the regulation of multiple neonatal stressors that extend beyond infection such as oxidative stress and pain. The immune system is immature at birth and takes some time to become fully established. As such, babies are especially vulnerable to sepsis at this early stage of life. Findings suggest a gestational age-dependent increase in TLR expression. TLRs engage with accessory and adaptor proteins to facilitate recognition of pathogens and their activation of the receptor. TLRs are generally upregulated during infection and promote the transcription and release of proinflammatory cytokines. Several studies report that TLRs are epigenetically modulated by chromatin changes and promoter methylation upon bacterial infection that have long-term influences on immune responses. TLR activation is reported to modulate cardiorespiratory responses during infection and may play a key role in driving homeostatic instability observed during sepsis. Although complex, TLR signaling and downstream pathways are potential therapeutic targets in the treatment of neonatal diseases. By reviewing the expression and function of key Toll-like receptors, we aim to provide an important framework to understand the functional role of these receptors in response to stress and infection in premature infants.
Collapse
Affiliation(s)
- Maria L Dias
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Karen M O'Connor
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland.,Department of Pediatrics and Child Health, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland
| | - Fiona B McDonald
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,Irish Centre for Maternal and Child Health Research, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Xie Y, Song L, Yang J, Tao T, Yu J, Shi J, Jin X. Small intestinal flora graft alters fecal flora, stool, cytokines and mood status in healthy mice. Life Sci Alliance 2021; 4:4/9/e202101039. [PMID: 34301806 PMCID: PMC8321674 DOI: 10.26508/lsa.202101039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022] Open
Abstract
Transplantation of microbiota from small intestine, not large intestine, of healthy mice exerts obvious effects on healthy recipients, bringing a new perspective on gut flora transplantation. Fecal microbiota transplantation is widely used. Large intestinal microbiota (LIM) is more similar to fecal microbiota than small intestinal microbiota (SIM). The SIM communities are very different from those of LIM. Therefore, SIM transplantation (SIMT) and LIM transplantation (LIMT) might exert different influences. Here, healthy adult male C57Bl/6 mice received intragastric SIMT, LIMT, or sterile PBS administration. Microbiota graft samples were collected from small/large intestine of healthy mice of the same age, sex, and strain background. Compared with PBS treatment, SIMT increased pellet number, stool wet weight, and stool water percentage; induced a fecal microbiota profile shift toward the microbial composition of the SIM graft; induced a systemic anti-inflammatory cytokines profile; and ameliorated depressive-like behaviors in recipients. LIMT, however, induced merely a slight alteration in fecal microbial composition and no significant influence on the other aspects. In sum, SIMT, rather than LIMT, affected defecation features, fecal microbial composition, cytokines profile, and depressive-like behaviors in healthy mice. This study reveals the different effects of SIMT and LIMT, providing an interesting clue for further researches involving gut microbial composition change.
Collapse
Affiliation(s)
- Yinyin Xie
- Class 3, Grade 2018, School of Clinical Medicine, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China
| | - Linyang Song
- Department of Anatomy, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China
| | - Junhua Yang
- Department of Anatomy, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China .,Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China
| | - Taoqi Tao
- Class 3, Grade 2018, School of Clinical Medicine, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China
| | - Jing Yu
- Editorial Department of Journal of Sun Yat-sen University, Guangzhou City, People's Republic of China
| | - Jingrong Shi
- Department of Data Mining and Analysis, Guangzhou Tianpeng Technology Co., Ltd, Guangzhou, PR China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Higher Education Mega Center, Guangzhou City, People's Republic of China
| |
Collapse
|
6
|
Forsberg A, Abrahamsson TR, Nilsson L, Ernerudh J, Duchén K, Jenmalm MC. Changes in peripheral immune populations during pregnancy and modulation by probiotics and ω-3 fatty acids. Sci Rep 2020; 10:18723. [PMID: 33127947 PMCID: PMC7599237 DOI: 10.1038/s41598-020-75312-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023] Open
Abstract
Allergic diseases have become a major health problem, partly due to reduced microbial stimulation and a decreased dietary ω-3/ω-6 long-chain polyunsaturated fatty acid ratio. Prenatal exposures have been reported to influence allergy development, possibly induced via changes in maternal immune regulation. In a randomized double-blind placebo-controlled multicenter allergy prevention trial (PROOM-3), pregnant women were recruited at gestational week 20, and randomized to four study groups, one receiving both L. reuteri oil drops and ω-3 PUFA capsules (n = 22), the second receiving ω-3 PUFA supplementation and placebo regarding L. reuteri (n = 21), the third receiving L. reuteri and placebo regarding ω-3 PUFA (n = 22) and the fourth group receiving placebo capsules and placebo oil drops (n = 23). In this substudy, supplemental and pregnancy-related effects on maternal peripheral immune cell populations during pregnancy were assessed by flow cytometry immune phenotyping at gestational week 20, 32 and 4 days after delivery. The numbers of activated and regulatory T (Treg) cells (CD45RA− Foxp3++/CD45RA+Foxp3+) were reduced after delivery, with the lowest count in the L. reuteri supplemented group compared with the placebo group 4 days after delivery, while the ω-3 PUFA group did not differ from the placebo group. Several treatment-independent changes were observed during and after pregnancy in lymphocytes (CD4+/8+/19+/56+/45RA+/−), CD14+16+/− monocytes, and in subpopulations of T helper cells (Th) CD4+CD45RA−Tbet+ (Th1) and CD4+CD45RA−RORC+ (Th17) cells. In conclusion, probiotic supplementation to the mother during the second half of pregnancy resulted in immunomodulatory effects among activated and resting Treg cells. Furthermore, several systemic immune modifying effects of pregnancy were observed.
Collapse
Affiliation(s)
- A Forsberg
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - T R Abrahamsson
- Department of Paediatrics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - L Nilsson
- Department of Clinical and Experimental Medicine, Allergy Centre, Linköping University, Linköping, Sweden
| | - J Ernerudh
- Department of Clinical Immunology and Transfusion Medicine, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - K Duchén
- Department of Paediatrics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - M C Jenmalm
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Qazi KR, Bach Jensen G, van der Heiden M, Björkander S, Holmlund U, Haileselassie Y, Kokkinou E, Marchini G, Jenmalm MC, Abrahamsson T, Sverremark-Ekström E. Extremely Preterm Infants Have Significant Alterations in Their Conventional T Cell Compartment during the First Weeks of Life. THE JOURNAL OF IMMUNOLOGY 2019; 204:68-77. [PMID: 31801814 DOI: 10.4049/jimmunol.1900941] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022]
Abstract
Extremely preterm neonates are particularly susceptible to infections, likely because of severely impaired immune function. However, little is known on the composition of the T cell compartment in early life in this vulnerable population. We conducted a comprehensive phenotypic flow cytometry-based longitudinal analysis of the peripheral conventional T cell compartment of human extremely low gestational age neonates (ELGAN) with extremely low birth weight (ELBW; <1000 g) participating in a randomized placebo-controlled study of probiotic supplementation. PBMCs from ELGAN/ELBW neonates were collected at day 14, day 28, and postmenstrual week 36. Comparisons were made with full-term 14-d-old neonates. Total CD4+ and CD8+ T cell frequencies were markedly lower in the preterm neonates. The reduction was more pronounced among the CD8+ population, resulting in an increased CD4/CD8 ratio. The preterm infants were also more Th2 skewed than the full-term infants. Although the frequency of regulatory T cells seemed normal in the ELGAN/ELBW preterm neonates, their expression of the homing receptors α4β7, CCR4, and CCR9 was altered. Notably, ELGAN/ELBW infants developing necrotizing enterocolitis before day 14 had higher expression of CCR9 in CD4+T cells at day 14. Chorioamnionitis clearly associated with reduced T regulatory cell frequencies and functional characteristics within the preterm group. Finally, probiotic supplementation with Lactobacillus reuteri did not impose any phenotypic changes of the conventional T cell compartment. In conclusion, notable immaturities of the T cell compartment in ELGAN/ELBW neonates may at least partially explain their increased susceptibility to severe immune-mediated morbidities.
Collapse
Affiliation(s)
- Khaleda Rahman Qazi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden;
| | - Georg Bach Jensen
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden.,Department of Paediatrics, Linköping University, 581 83 Linköping, Sweden; and
| | - Marieke van der Heiden
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Sophia Björkander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Ulrika Holmlund
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Yeneneh Haileselassie
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Efthymia Kokkinou
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Giovanna Marchini
- Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Maria C Jenmalm
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden
| | - Thomas Abrahamsson
- Department of Clinical and Experimental Medicine, Linköping University, 581 83 Linköping, Sweden.,Department of Paediatrics, Linköping University, 581 83 Linköping, Sweden; and
| | - Eva Sverremark-Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
8
|
Hrdý J, Vlasáková K, Černý V, Súkeníková L, Novotná O, Petrásková P, Boráková K, Lodinová-Žádníková R, Kolářová L, Prokešová L. Decreased allergy incidence in children supplemented with E. coli O83:K24:H31 and its possible modes of action. Eur J Immunol 2018; 48:2015-2030. [PMID: 30306557 DOI: 10.1002/eji.201847636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/31/2018] [Accepted: 10/04/2018] [Indexed: 11/10/2022]
Abstract
The growing knowledge of the key role of microbiota in the maturation of neonatal immune system suggests that manipulation of microbiota could be exploited in hampering allergy development. In this study, Escherichia coli O83:K24:H31 (EcO83) was administered to newborns that were followed prospectively. Several immunological characteristics (cytokines, specific IgE, total T regulatory cells (Treg) and subpopulation of natural Treg (nTreg) and induced Treg (iTreg)) were tested in peripheral blood of 8-year-old children. Incidence of allergic disease was decreased in EcO83 supplemented children and significantly elevated levels of IL-10 and IFN-ɣ were detected in serum of EcO83 supplemented children. Probiotic supplementation did not influence the numbers of the total Treg population but their functional capacity (intracellular expression of IL-10) was significantly increased in children supplemented with EcO83 in comparison to non-supplemented children. Morover, decreased proportion of iTreg was present in peripheral blood of non-supplemented in comparison to EcO83 supplemented children. Finally, stimulation of cord blood cells with EcO83 promoted both gene expression and secretion of IL-10 and IFN-ɣ suggesting that beneficial effect of EcO83 in prevention of allergy development could be mediated by promotion of regulatory responses (by IL-10) and Th1 immune response (by IFN-ɣ).
Collapse
Affiliation(s)
- Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kateřina Vlasáková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Viktor Černý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Lenka Súkeníková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Olga Novotná
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Petrásková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | | | | - Libuše Kolářová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ludmila Prokešová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
9
|
Forsberg A, West CE, Prescott SL, Jenmalm MC. Pre- and probiotics for allergy prevention: time to revisit recommendations? Clin Exp Allergy 2017; 46:1506-1521. [PMID: 27770467 DOI: 10.1111/cea.12838] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reduced intensity and diversity of microbial exposure is considered a major factor driving abnormal postnatal immune maturation and increasing allergy prevalence, particularly in more affluent regions. Quantitatively, the largest important source of early immune-microbial interaction, the gut microbiota, is of particular interest in this context, with variations in composition and diversity in the first months of life associated with subsequent allergy development. Attempting to restore the health consequences of the 'dysbiotic drift' in modern society, interventions modulating gut microbiota for allergy prevention have been evaluated in several randomized placebo-controlled trials. In this review, we provide an overview of these trials and discuss recommendations from international expert bodies regarding prebiotic, probiotic and synbiotic interventions. Recent guidelines from the World Allergy Organization recommend the use of probiotics for the primary prevention of eczema in pregnant and breastfeeding mothers of infants at high risk for developing allergy and in high-risk infants. It is however stressed that these recommendations are conditional, based on very low-quality evidence and great heterogeneity between studies, which also impedes specific and practical advice to consumers on the most effective regimens. We discuss how the choice of probiotic strains, timing and duration of administration can critically influence the outcome due to different effects on immune modulation and gut microbiota composition. Furthermore, we propose strategies to potentially improve allergy-preventive effects and enable future evidence-based implementation.
Collapse
Affiliation(s)
- A Forsberg
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - C E West
- International Inflammation (in-FLAME) network of the World Universities Network, Umeå, Sweden.,Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - S L Prescott
- International Inflammation (in-FLAME) network of the World Universities Network, Umeå, Sweden.,School of Paediatrics and Child Health, University of Western Australia and Princess Margaret Hospital for Children, Perth, WA, Australia
| | - M C Jenmalm
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,International Inflammation (in-FLAME) network of the World Universities Network, Umeå, Sweden
| |
Collapse
|
10
|
Matsubara VH, Ishikawa KH, Ando-Suguimoto ES, Bueno-Silva B, Nakamae AEM, Mayer MPA. Probiotic Bacteria Alter Pattern-Recognition Receptor Expression and Cytokine Profile in a Human Macrophage Model Challenged with Candida albicans and Lipopolysaccharide. Front Microbiol 2017; 8:2280. [PMID: 29238325 PMCID: PMC5712552 DOI: 10.3389/fmicb.2017.02280] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023] Open
Abstract
Probiotics are live microorganisms that confer benefits to the host health. The infection rate of potentially pathogenic organisms such as Candida albicans, the most common agent associated with mucosal candidiasis, can be reduced by probiotics. However, the mechanisms by which the probiotics interfere with the immune system are largely unknown. We evaluated the effect of probiotic bacteria on C. albicans challenged human macrophages. Macrophages were pretreated with lactobacilli alone (Lactobacillus rhamnosus LR32, Lactobacillus casei L324m, or Lactobacillus acidophilus NCFM) or associated with Escherichia coli lipopolysaccharide (LPS), followed by the challenge with C. albicans or LPS in a co-culture assay. The expression of pattern-recognition receptors genes (CLE7A, TLR2, and TLR4) was determined by RT-qPCR, and dectin-1 reduced levels were confirmed by flow cytometry. The cytokine profile was determined by ELISA using the macrophage cell supernatant. Overall probiotic lactobacilli down-regulated the transcription of CLEC7A (p < 0.05), resulting in the decreased expression of dectin-1 on probiotic pretreated macrophages. The tested Lactobacillus species down-regulated TLR4, and increased TLR2 mRNA levels in macrophages challenged with C. albicans. The cytokines profile of macrophages challenged with C. albicans or LPS were altered by the probiotics, which generally led to increased levels of IL-10 and IL-1β, and reduction of IL-12 production by macrophages (p < 0.05). Our data suggest that probiotic lactobacilli impair the recognition of PAMPs by macrophages, and alter the production of pro/anti-inflammatory cytokines, thus modulating inflammation.
Collapse
Affiliation(s)
- Victor H Matsubara
- Dental School, Oral Health Centre of Western Australia, The University of Western Australia, Perth, WA, Australia.,Laboratory of Oral Microbiology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Prosthodontics, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Karin H Ishikawa
- Laboratory of Oral Microbiology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ellen S Ando-Suguimoto
- Laboratory of Oral Microbiology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruno Bueno-Silva
- Laboratory of Oral Microbiology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Dental Division Research, Guarulhos University, Guarulhos, Brazil
| | - Atlas E M Nakamae
- Department of Prosthodontics, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Marcia P A Mayer
- Laboratory of Oral Microbiology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
West CE, Dzidic M, Prescott SL, Jenmalm MC. Bugging allergy; role of pre-, pro- and synbiotics in allergy prevention. Allergol Int 2017; 66:529-538. [PMID: 28865967 DOI: 10.1016/j.alit.2017.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023] Open
Abstract
Large-scale biodiversity loss and complex changes in social behaviors are altering human microbial ecology. This is increasingly implicated in the global rise in inflammatory diseases, most notably the "allergy epidemic" in very early life. Colonization of human ecological niches, particularly the gastrointestinal tract, is critical for normal local and systemic immune development and regulation. Disturbances in composition, diversity and timing of microbial colonization have been associated with increased allergy risk, indicating the importance of strategies to restore a dysbiotic gut microbiota in the primary prevention of allergic diseases, including the administration of probiotics, prebiotics and synbiotics. Here, we summarize and discuss findings of randomized clinical trials that have examined the effects of these microbiome-related strategies on short and long-term allergy preventative effects - including new guidelines from the World Allergy Organization which now recommend probiotics and prebiotics for allergy prevention under certain conditions. The relatively low quality evidence, limited comparative studies and large heterogeneity between studies, have collectively hampered recommendations on specific probiotic strains, specific timing and specific conditions for the most effective preventive management. At the same time the risk of using available products is low. While further research is needed before specific practice guidelines on supplement probiotics and prebiotics, it is equally important that the underlying dietary and lifestyle factors of dysbiosis are addressed at both the individual and societal levels.
Collapse
Affiliation(s)
- Christina E West
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden; inFLAME Global Network (Worldwide Universities Network), West New York, NJ, USA.
| | - Majda Dzidic
- inFLAME Global Network (Worldwide Universities Network), West New York, NJ, USA; Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Unit of Lactic Acid Bacteria and Probiotics, Valencia, Spain
| | - Susan L Prescott
- inFLAME Global Network (Worldwide Universities Network), West New York, NJ, USA; School of Paediatrics and Child Health, University of Western Australia and Princess Margaret Hospital for Children, Perth, Australia
| | - Maria C Jenmalm
- inFLAME Global Network (Worldwide Universities Network), West New York, NJ, USA; Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Súkeníková L, Černý V, Novotná O, Petrásková P, Boráková K, Kolářová L, Prokešová L, Hrdý J. Different capacity of in vitro generated myeloid dendritic cells of newborns of healthy and allergic mothers to respond to probiotic strain E. coli O83:K24:H31. Immunol Lett 2017; 189:82-89. [PMID: 28554713 DOI: 10.1016/j.imlet.2017.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
Abstract
Allergic diseases belong to one of the most common diseases with steadily increasing incidence even among young children. There is an urgent need to identify a prognostic marker pointing to increased risk of allergy development enabling early preventive measures introduction. It has been shown that administration of selected probiotic strains or mixtures could prevent allergy development. In our study, we have tested the capacity of probiotic strain Escherichia coli O83:K24:H31 (E. coli O83) to promote dendritic cell (DC) maturation and polarisation of immune responses. Increased presence of activation marker CD83 was observed on DC stimulated by E. coli O83 and DC of newborns of allergic mothers have significantly more increased cell surface presence of CD83 in comparison to children of healthy mothers. Increased gene expression and secretion of IL-10 was detected in DC stimulated with E. coli O83 being higher in DC of newborns of healthy mothers in comparison to allergic ones. Generally, increased presence of intracellular cytokines (IL-4, IL-13, IFN-gamma, IL-17A, IL-22, IL-10) was detected in CD4+ T cells cocultured with DC of children of allergic mothers in comparison to healthy ones. E. coli O83 primed DC significantly increased IL-10 and IL-17A in CD4 T cells of newborns of healthy mothers in comparison to the levels detected in CD4 T cells cocultured with control non-stimulated DC. We can conclude E. coli O83 induces dendritic cell maturation and IL-10 production in DC. Newborns of allergic mothers have generally increased reactivity of both DC and CD4 T cells which together with decreased capacity of DC of newborns of allergic mothers to produce IL-10 could support inappropriate immune responses development after allergen encounter.
Collapse
Affiliation(s)
- Lenka Súkeníková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Viktor Černý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Olga Novotná
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Petrásková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | | | - Libuše Kolářová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Ludmila Prokešová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| |
Collapse
|
13
|
Awasthi S, Wilken R, Patel F, German JB, Mills DA, Lebrilla CB, Kim K, Freeman SL, Smilowitz JT, Armstrong AW, Maverakis E. Dietary supplementation with Bifidobacterium longum subsp. infantis (B. infantis) in healthy breastfed infants: study protocol for a randomised controlled trial. Trials 2016; 17:340. [PMID: 27449926 PMCID: PMC4957407 DOI: 10.1186/s13063-016-1467-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 07/02/2016] [Indexed: 12/16/2022] Open
Abstract
Background The development of probiotics as therapies to cure or prevent disease lags far behind that of other investigational medications. Rigorously designed phase I clinical trials are nearly non-existent in the field of probiotic research, which is a contributing factor to this disparity. As a consequence, how to appropriately dose probiotics to study their efficacy is unknown. Herein we propose a novel phase I ascending dose trial of Bifidobacterium longum subsp. infantis (B. infantis) to identify the dose required to produce predominant gut colonisation in healthy breastfed infants at 6 weeks of age. Methods/design This is a parallel-group, placebo-controlled, randomised, double-blind ascending dose phase I clinical trial of dietary supplementation with B. infantis in healthy breastfed infants. The objective is to determine the pharmacologically effective dose (ED) of B. infantis required to produce predominant (>50 %) gut colonisation in breastfed infants at 6 weeks of age. Successively enrolled infant groups will be randomised to receive two doses of either B. infantis or placebo on days 7 and 14 of life. Stool samples will be used to characterise the gut microbiota at increasing doses of B. infantis. Discussion Probiotic supplementation has shown promising results for the treatment of a variety of ailments, but evidence-based dosing regimes are currently lacking. The ultimate goal of this trial is to establish a recommended starting dose of B. infantis for further efficacy-testing phase II trials designed to evaluate B. infantis for the prevention of atopic dermatitis and food allergies in at-risk children. Trial registration Clinicaltrials.gov #NCT02286999, date of trial registration 23 October 2014.
Collapse
Affiliation(s)
- Smita Awasthi
- Department of Dermatology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Reason Wilken
- Department of Dermatology, University of California Davis Medical Center, Sacramento, CA, USA
| | - Forum Patel
- Department of Dermatology, University of California Davis Medical Center, Sacramento, CA, USA
| | - J Bruce German
- Department of Food Science & Technology, University of California Davis , Davis, CA, USA
| | - David A Mills
- Department of Food Science & Technology, University of California Davis , Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis , Davis, CA, USA
| | - Kyoungmi Kim
- Division of Biostatistics, Department of Public Health Sciences, University of California Davis , Davis, CA, USA
| | - Samara L Freeman
- Foods for Health Institute, University of California Davis , Davis, CA, USA
| | | | - April W Armstrong
- Department of Dermatology, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California Davis Medical Center, Sacramento, CA, USA.
| |
Collapse
|
14
|
Johansson MA, Björkander S, Mata Forsberg M, Qazi KR, Salvany Celades M, Bittmann J, Eberl M, Sverremark-Ekström E. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK Cells. Front Immunol 2016; 7:273. [PMID: 27462316 PMCID: PMC4939411 DOI: 10.3389/fimmu.2016.00273] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022] Open
Abstract
Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulatory in vitro. In contrast, Staphylococcus aureus (S. aureus) is known to induce excessive T cell activation. In this study, we aimed to investigate S. aureus-induced activation of human mucosal-associated invariant T cells (MAIT cells), γδ T cells, NK cells, as well as of conventional CD4+ and CD8+ T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation. PBMC were cultured with S. aureus 161:2 cell-free supernatants (CFS), staphylococcal enterotoxin A or CD3/CD28-beads alone, or in combination with Lactobacillus rhamnosus GG-CFS or Lactobacillus reuteri DSM 17938-CFS and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Costimulation with lactobacilli-CFS dampened lymphocyte-activation in all cell types analyzed. Preincubation with lactobacilli-CFS was enough to reduce subsequent activation, and the absence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Finally, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune-modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in the modulation of induced T and NK cell activation.
Collapse
Affiliation(s)
- Maria A Johansson
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Sophia Björkander
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Manuel Mata Forsberg
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Khaleda Rahman Qazi
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Maria Salvany Celades
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Julia Bittmann
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| | - Matthias Eberl
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Eva Sverremark-Ekström
- Arrhenius Laboratories for Natural Sciences, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University , Stockholm , Sweden
| |
Collapse
|
15
|
West CE, Jenmalm MC, Kozyrskyj AL, Prescott SL. Probiotics for treatment and primary prevention of allergic diseases and asthma: looking back and moving forward. Expert Rev Clin Immunol 2016; 12:625-39. [PMID: 26821735 DOI: 10.1586/1744666x.2016.1147955] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microbial ecosystems cover the surface of the human body and it is becoming increasingly clear that our modern environment has profound effects on microbial composition and diversity. A dysbiotic gut microbiota has been associated with allergic diseases and asthma in cross-sectional and observational studies. In an attempt to restore this dysbiosis, probiotics have been evaluated in randomized controlled trials. Here, we review treatment and primary prevention studies, recent meta-analyses, and discuss the current understanding of the role of probiotics in this context. Many meta-analyses have shown a moderate benefit of probiotics for eczema prevention, whereas there is less evidence of a benefit for other allergic manifestations. Because of very low quality evidence and heterogeneity between studies, specific advice on the most effective regimens cannot yet be given - not even for eczema prevention. To be able to adopt results into specific recommendations, international expert organizations stress the need for well-designed studies.
Collapse
Affiliation(s)
- Christina E West
- a International Inflammation (in-FLAME) network of the World Universities Network.,b Department of Clinical Sciences, Pediatrics , Umeå University , Umeå , Sweden
| | - Maria C Jenmalm
- a International Inflammation (in-FLAME) network of the World Universities Network.,c Department of Clinical and Experimental Medicine , Linköping University , Linköping , Sweden
| | - Anita L Kozyrskyj
- a International Inflammation (in-FLAME) network of the World Universities Network.,d Department of Pediatrics, Faculty of Medicine & Dentistry , University of Alberta , Edmonton , Canada
| | - Susan L Prescott
- a International Inflammation (in-FLAME) network of the World Universities Network.,e School of Paediatrics and Child Health , University of Western Australia, Princess Margaret Hospital , Perth , WA , Australia
| |
Collapse
|
16
|
Marlow G, Han DY, Wickens K, Stanley T, Crane J, Mitchell EA, Dekker J, Barthow C, Fitzharris P, Ferguson LR, Morgan AR. Differential effects of two probiotics on the risks of eczema and atopy associated with single nucleotide polymorphisms to Toll-like receptors. Pediatr Allergy Immunol 2015; 26:262-271. [PMID: 25779902 DOI: 10.1111/pai.12371] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND There is strong evidence to support a genetic predisposition to eczema and more recently studies have suggested that probiotics might be used to prevent eczema by modifying the expression of putative allergy-associated genes. The aim of this present study was to investigate whether two probiotics, Lactobacillus rhamnosus HN001 (HN001) and Bifidobacterium animalis subsp. lactis HN019 (HN019), can modify the known genetic predisposition to eczema conferred by genetic variation in the Toll-like receptor (TLR) genes in a high-risk infant population. METHODS We selected 54 SNPs in the Toll-like receptor genes. These SNPs were analysed in 331 children of sole European ancestry as part of a double-blind, randomized, placebo-controlled trial examining the effects of HN001 and HN019 supplementation on eczema development and atopic sensitization. RESULTS The data showed that 26 TLR SNPs interacted with HN001 resulting in a significantly reduced risk of eczema, 18 for eczema severity as defined by SCORAD ≥ 10 and 20 for atopic sensitization compared to placebo. There were only two SNPs that interacted with HN019 resulting in a reduced risk of eczema, eczema severity or atopy. CONCLUSIONS This is the first study to show that the negative impact of specific TLR genotypes may be positively affected by probiotic supplementation. HN001 exhibits a much stronger effect than HN019 in this respect.
Collapse
Affiliation(s)
- Gareth Marlow
- Discipline of Nutrition, FM&HS, The University of Auckland, Auckland, New Zealand
| | - Dug Yeo Han
- Discipline of Nutrition, FM&HS, The University of Auckland, Auckland, New Zealand
| | - Kristin Wickens
- The Wellington Asthma Research Group, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Thorsten Stanley
- Department of Paediatrics, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Julian Crane
- The Wellington Asthma Research Group, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Edwin A Mitchell
- Department of Paediatrics, FM&HS, The University of Auckland, Auckland, New Zealand
| | - James Dekker
- Nutrition and Health Team, Fonterra Research and Development Centre, Palmerston North, New Zealand
| | - Christine Barthow
- The Wellington Asthma Research Group, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | | | - Lynnette R Ferguson
- Discipline of Nutrition, FM&HS, The University of Auckland, Auckland, New Zealand
| | - Angharad R Morgan
- Discipline of Nutrition, FM&HS, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Patel S, Shukla R, Goyal A. Probiotics in valorization of innate immunity across various animal models. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|