1
|
Molnar C, Heinen JP, Reina J, Llamazares S, Palumbo E, Pollarolo G, Gonzalez C. TrxT and dhd are dispensable for Drosophila brain development but essential for l(3)mbt brain tumour growth. EMBO Rep 2024; 25:2842-2860. [PMID: 38750349 PMCID: PMC11239866 DOI: 10.1038/s44319-024-00154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 07/13/2024] Open
Abstract
Expression of the Drosophila cancer-germline (CG), X-linked, head-to-head gene pair TrxT and dhd is normally germline-specific but becomes upregulated in brain tumours caused by mutation in l(3)mbt. Here, we show that TrxT and dhd play a major synergistic role in the emergence of l(3)mbt tumour-linked transcriptomic signatures and tumour development, which is remarkable, taking into account that these two genes are never expressed together under normal conditions. We also show that TrxT, but not dhd, is crucial for the growth of l(3)mbt allografts, hence suggesting that the initial stages of tumour development and long-term tumour growth may depend on different molecular pathways. In humans, head-to-head inverted gene pairs are abundant among CG genes that map to the X chromosome. Our results identify a first example of an X-linked, head-to-head CG gene pair in Drosophila, underpinning the potential of such CG genes, dispensable for normal development and homoeostasis of somatic tissue, as targets to curtail malignant growth with minimal impact on overall health.
Collapse
Affiliation(s)
- Cristina Molnar
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Jan Peter Heinen
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Jose Reina
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Salud Llamazares
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Emilio Palumbo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002, Barcelona, Spain
| | - Giulia Pollarolo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain
- ISGlobal, Carrer del Dr. Aiguader, 88, 08003, Barcelona, Spain
| | - Cayetano Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac, 10, 08028, Barcelona, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Pg Lluis Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
2
|
Oberacker T, Kraft L, Schanz M, Latus J, Schricker S. The Importance of Thioredoxin-1 in Health and Disease. Antioxidants (Basel) 2023; 12:antiox12051078. [PMID: 37237944 DOI: 10.3390/antiox12051078] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Thioredoxin-1 (Trx-1) is a multifunctional protein ubiquitously found in the human body. Trx-1 plays an important role in various cellular functions such as maintenance of redox homeostasis, proliferation, and DNA synthesis, but also modulation of transcription factors and control of cell death. Thus, Trx-1 is one of the most important proteins for proper cell and organ function. Therefore, modulation of Trx gene expression or modulation of Trx activity by various mechanisms, including post-translational modifications or protein-protein interactions, could cause a transition from the physiological state of cells and organs to various pathologies such as cancer, and neurodegenerative and cardiovascular diseases. In this review, we not only discuss the current knowledge of Trx in health and disease, but also highlight its potential function as a biomarker.
Collapse
Affiliation(s)
- Tina Oberacker
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, 70376 Stuttgart, Germany
| | - Leonie Kraft
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| | - Moritz Schanz
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| | - Jörg Latus
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| | - Severin Schricker
- Department of Internal Medicine and Nephrology, Robert-Bosch-Hospital Stuttgart, 70376 Stuttgart, Germany
| |
Collapse
|
3
|
Jia JJ, Geng WS, Wang ZQ, Chen L, Zeng XS. The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol 2019; 84:453-470. [PMID: 31079220 DOI: 10.1007/s00280-019-03869-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/04/2019] [Indexed: 01/16/2023]
|
4
|
Increased Thioredoxin-1 Expression Promotes Cancer Progression and Predicts Poor Prognosis in Patients with Gastric Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9291683. [PMID: 30911354 PMCID: PMC6398115 DOI: 10.1155/2019/9291683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
Abstract
Background Thioredoxin-1 (Trx-1) is a small redox protein, which plays an important role in many biological processes. Although increased expression of Trx-1 in various solid tumors has been reported, the prognostic significance and function of Trx-1 in human gastric cancer (GC) are still unclear. Here, we investigated the clinical and prognostic significance of Trx-1 expression and the function and mechanism of Trx-1 in human GC. Methods We analyzed Trx-1 mRNA expression from the GEO database and Trx-1 protein expression in 144 GC tissues using immunohistochemistry. Effects of Trx-1 on GC cell were assessed in vitro and in vivo through Trx-1 knockdown or overexpression. The antitumor effects of the Trx-1 inhibitor, PX-12, on GC cells were investigated. PTEN and p-AKT expressions were evaluated by Western blotting. Results Increased Trx-1 expression was found in GC tissues and associated with poor prognosis and aggressive clinicopathological characteristics in patients with GC. High Trx-1 expression predicted poor prognosis, and its expression was an independent prognostic factor for overall survival of GC patients. Knockdown of Trx-1 expression inhibited GC cell growth, migration, and invasion in vitro and tumor growth and lung metastasis in vivo. Conversely, overexpression of Trx-1 promoted GC cell growth, migration, and invasion. We also found that PX-12 inhibited GC cell growth, migration, and invasion. Overexpression of Trx-1 caused a decrease in PTEN and increase in p-AKT levels whereas silencing Trx-1 caused an increase in PTEN and decrease in p-AKT levels in GC cells. Inhibition of AKT signaling pathway by MK2206 also inhibited GC cell growth, migration, and invasion. Conclusion Our results indicate that Trx-1 may be a promising prognostic indicator and therapeutic target for GC patients.
Collapse
|
5
|
The influence of ageing on the extrapineal melatonin synthetic pathway. Exp Gerontol 2018; 110:151-157. [PMID: 29906492 DOI: 10.1016/j.exger.2018.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 02/05/2023]
Abstract
Ageing affects various physiological and metabolic processes in a body and a progressive accumulation of oxidative damage stands out as often used explanation. One of the most powerful scavenger of reactive oxygen species (ROS) in all organs is melatonin. A majority of melatonin supplied to the body via blood originates from the pineal gland. However, we have been interested in a locally produced melatonin. We have used 2.5- and 36-months-old Wistar rats. Tissues were collected and gene expression of AA-NAT and ASMT, the two key enzymes in a synthesis of melatonin, was determined in brain, liver, kidney, heart, skin, and intestine. Since melatonin can influence antioxidant enzymes, the activity of superoxide dismutase (SOD) and catalase (CAT), and the level of GSH were measured in liver. In addition, Copper (Cu), Zinc (Zn), and Manganese (Mn) were also determined in liver since these microelements might affect the activity of antioxidant enzymes. The expression of AA-NAT and ASMT was increased in liver and skin of old animals. A positive correlation in AA-NAT and ASMT expression was observed in liver, intestine and kidney. Moreover, the activity of CAT enzyme in liver was increased while SOD activity was decreased. SOD and CAT were probably affected by the observed decreased amount of Cu, Zn, and Mn in liver of old animals. In our model, extrapineal melatonin pathway in ageing consisted of complex interplay of locally produced melatonin, activities of SOD and CAT, and adequate presence of Cu, Zn and Mn microelements in order to defend organs against oxidative damage.
Collapse
|
6
|
Sobhani M, Taheri AR, Jafarian AH, Hashemy SI. The activity and tissue distribution of thioredoxin reductase in basal cell carcinoma. J Cancer Res Clin Oncol 2016; 142:2303-7. [PMID: 27601162 DOI: 10.1007/s00432-016-2242-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 01/05/2023]
Abstract
PURPOSE Basal cell carcinoma (BCC) is the most prevalent cancer worldwide. Different mechanisms are proposed to be involved in its pathogenesis such as oxidative stress. Oxidative stress, which is the consequence of the disruption of redox balance in favor of oxidants, is involved in the initiation or progression of many tumors. Thioredoxin reductase (TrxR) is a key enzyme of the thioredoxin (Trx) system, containing Trx and TrxR and NADPH, which is one of the main cellular oxidoreductases with an essential role in cellular health and survival through providing and maintaining redox balance. Therefore, we aimed to study and compare the activity and tissue distribution of TrxR in tumoral tissue and its healthy margin in patients with BCC. METHODS After biopsy and taking samples from 18 patients, TrxR activity was measured using a commercial kit and its tissue distribution was assessed immunohistochemically. RESULTS Both the activity and tissue distribution of TrxR in tumoral tissues were significantly higher compared to their healthy margins. Regarding the tissue distribution, this significant increase in TrxR in tumoral tissues was documented based on both staining intensity and abundance of positive cells in immunohistochemistry. CONCLUSIONS Based on these results, it is concluded that TrxR is involved in the pathogenesis of BCC; however, more investigations are required to clarify whether this increase is a consequence of BCC or it is an initiating mechanism.
Collapse
Affiliation(s)
- Maryam Sobhani
- Department of Emergency Medicine, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad-Reza Taheri
- Department of Dermatology, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir-Hossein Jafarian
- Department of Pathology, Qaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Tian B, Maidana DE, Dib B, Miller JB, Bouzika P, Miller JW, Vavvas DG, Lin H. miR-17-3p Exacerbates Oxidative Damage in Human Retinal Pigment Epithelial Cells. PLoS One 2016; 11:e0160887. [PMID: 27505139 PMCID: PMC4978424 DOI: 10.1371/journal.pone.0160887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/26/2016] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress has been shown to contribute to the development of age-related macular degeneration (AMD). MicroRNAs (miRNA) are small non-coding RNA molecules that function in RNA silencing and post-transcriptional regulation of gene expression. We showed miR-17-3p to be elevated in macular RPE cells from AMD patients and in ARPE-19 cells under oxidative stress. Transfection of miR-17-3p mimic in ARPE-19 induced cell death and exacerbated oxidative lethality that was alleviated by miR-17-3p inhibitor. The expression of antioxidant enzymes manganese superoxide dismutase (MnSOD) and thioredoxin reductase-2 (TrxR2) were suppressed by miR-17-3p mimic and reversed by miR-17-3p inhibitor. These results suggest miR-17-3p aggravates oxidative damage-induced cell death in human RPE cells, while miR-17-3p inhibitor acts as a potential protector against oxidative stress by regulating the expression of antioxidant enzymes.
Collapse
Affiliation(s)
- Bo Tian
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Daniel E. Maidana
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Bernard Dib
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - John B. Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Peggy Bouzika
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Joan W. Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (HL); (DGV)
| | - Haijiang Lin
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States of America
- * E-mail: (HL); (DGV)
| |
Collapse
|
8
|
Quantitative analysis of the erythrocyte membrane proteins in polycythemia vera patients treated with hydroxycarbamide. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Nagano S, Takahashi Y, Yamamoto K, Masutani H, Fujiwara N, Urushitani M, Araki T. A cysteine residue affects the conformational state and neuronal toxicity of mutant SOD1 in mice: relevance to the pathogenesis of ALS. Hum Mol Genet 2015; 24:3427-39. [DOI: 10.1093/hmg/ddv093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/09/2015] [Indexed: 12/11/2022] Open
|
10
|
The paradoxical role of thioredoxin on oxidative stress and aging. Arch Biochem Biophys 2015; 576:32-8. [PMID: 25726727 DOI: 10.1016/j.abb.2015.02.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 11/22/2022]
Abstract
In spite of intensive study, there is still controversy about the free radical or oxidative stress theory of aging, particularly in mammals. Our laboratory has conducted the first detailed studies on the role of thioredoxin (Trx) in the cytosol (Trx1) and in mitochondria (Trx2) on oxidative stress and aging using unique mouse models either overexpressing or down-regulating Trx1 or Trx2. The results generated from our lab and others indicate that: (1) oxidative stress and subsequent changes in signaling pathways could have different pathophysiological impacts at different stages of life; (2) changes in redox-sensitive signaling controlled by levels of oxidative stress and redox state could play more important roles in pathophysiology than accumulation of oxidative damage; (3) changes in oxidative stress and redox state in different cellular compartments (cytosol, mitochondria, or nucleus) could play different roles in pathophysiology during aging, and their combined effects show more impact on aging than changes in either oxidative stress or redox state alone; and (4) the roles of oxidative stress and redox state could have different pathophysiological consequences in different organs/tissues/cells or pathophysiological conditions. To critically test the role of oxidative stress on aging and investigate changes in redox-sensitive signaling pathways, further study is required.
Collapse
|
11
|
Abstract
Thioredoxin (Trx) is an inflammation-inducible small oxidoreductase protein ubiquitously expressed in all organisms. Trx acts both intracellularly and extracellularly and is involved in a wide range of physiological cellular responses. Inside the cell, Trx alleviates oxidative stress by scavenging reactive oxygen species (ROS), regulates a variety of redox-sensitive signaling pathways as well as ROS-independent genes, and exerts cytoprotective effects. Outside the cell, Trx acts as growth factors or cytokines and promotes cell growth and many other cellular responses. Trx is also implicated in tumorigenesis. Trx is a proto-oncogene and is overexpressed in many cancers and correlates with poor prognosis. Trx stimulates cancer cell survival, promotes tumor angiogenesis, and inhibits both spontaneous apoptosis and drug-induced apoptosis. Inhibitors targeting Trx pathway provide a promising therapeutic strategy for cancer prevention and intervention. More recently, data from our laboratory demonstrate an important role of Trx in expanding long-term repopulating hematopoietic stem cells. In this chapter, we first provide an overview of Trx including its isoforms, compartmentation, and functions. We then discuss the roles of Trx in hematologic malignancies. Finally, we summarize the most recent findings from our lab on the use of Trx to enhance hematopoietic reconstitution following hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Ningfei An
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yubin Kang
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA; Current address: Division of Hematologic Malignancy and Cellular Therapy/Adult BMT, Department of Medicine, Duke University Medical Center, North Carolina, USA.
| |
Collapse
|
12
|
Edrey YH, Salmon AB. Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med 2014; 71:368-378. [PMID: 24704971 PMCID: PMC4049226 DOI: 10.1016/j.freeradbiomed.2014.03.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 02/06/2023]
Abstract
Significant advances in maintaining health throughout life can be made through a clear understanding of the fundamental mechanisms that regulate aging. The Oxidative Stress Theory of Aging (OSTA) is probably the most well studied mechanistic theory of aging and suggests that the rate of aging is controlled by accumulation of oxidative damage. To directly test the OSTA, aging has been measured in several lines of mice with genetic alterations in the expression of enzymatic antioxidants. Under its strictest interpretation, these studies do not support the OSTA, as modulation of antioxidant expression does not generally affect mouse life span. However, the incidence of many age-related diseases and pathologies is altered in these models, suggesting that oxidative stress does significantly influence some aspects of the aging process. Further, oxidative stress may affect aging in disparate patterns among tissues or under various environmental conditions. In this review, we summarize the current literature regarding aging in antioxidant mutant mice and offer several interpretations of their support of the OSTA.
Collapse
Affiliation(s)
- Yael H Edrey
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and San Antonio, TX 78229, USA
| | - Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and San Antonio, TX 78229, USA; The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA; Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
13
|
Chaudhari HN, Kim SW, Yun JW. Gender-dimorphic regulation of antioxidant proteins in response to high-fat diet and sex steroid hormones in rats. Free Radic Res 2014; 48:587-98. [DOI: 10.3109/10715762.2014.896003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Gerlei KZ, Jákli I, Szőri M, Jensen SJK, Viskolcz B, Csizmadia IG, Perczel A. Atropisomerism of the Asn α radicals revealed by Ramachandran surface topology. J Phys Chem B 2013; 117:12402-9. [PMID: 24015919 DOI: 10.1021/jp4070906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
C radicals are typically trigonal planar and thus achiral, regardless of whether they originate from a chiral or an achiral C-atom (e.g., C-H + (•)OH → C• + H2O). Oxidative stress could initiate radical formation in proteins when, for example, the H-atom is abstracted from the Cα-carbon of an amino acid residue. Electronic structure calculations show that such a radical remains achiral when formed from the achiral Gly, or the chiral but small Ala residues. However, when longer side-chain containing proteogenic amino acid residues are studied (e.g., Asn), they provide radicals of axis chirality, which in turn leads to atropisomerism observed for the first time for peptides. The two enantiomeric extended backbone structures, •βL and •βD, interconvert via a pair of enantiotopic reaction paths, monitored on a 4D Ramachandran surface, with two distinct transition states of very different Gibbs-free energies: 37.4 and 67.7 kJ/mol, respectively. This discovery requires the reassessment of our understanding on radical formation and their conformational and stereochemical behavior. Furthermore, the atropisomerism of proteogenic amino acid residues should affect our understanding on radicals in biological systems and, thus, reframes the role of the D-residues as markers of molecular aging.
Collapse
Affiliation(s)
- Klára Z Gerlei
- Department of Chemical Informatics, Faculty of Education, University of Szeged , 6726 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|