1
|
Giamaki D, Tsiotsiou M, Oglou SC, Touraki M. Interactions of Bisphenol A with Artemia franciscana and the ameliorative effect of probiotics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104064. [PMID: 36640920 DOI: 10.1016/j.etap.2023.104064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
In the present study, the bidirectional interactions of Artemia franciscana with BPA, administered either alone or following treatment with the probiotics Bacillus subtilis, Lactococcus lactis or Lactobacillus plantarum, were evaluated. A 24 h exposure to BPA below LC50 induced oxidative stress to Artemia, indicated by diminished activity of superoxide dismutase, glutathione reductase, glutathione transferase and phenoloxidase, increased lipid peroxidation and decreased survival. Probiotic treatment prior to BPA exposure, led to increased survival, reduced lipid peroxidation and increased enzyme activities. BPA quantification in Artemia and its culture medium, showed a time dependent reduction in its levels, more evident in probiotic series, indicating its biotransformation. ESI-MS analysis confirmed the presence of the tentative BPA metabolites hydroquinone and BPA-sulfate, while BPA-disulfate formation was confirmed in only in the probiotic series. Our results provide evidence that probiotics alleviate the oxidative stress response induced by BPA, by enhancing the BPA biotransformation ability of Artemia.
Collapse
Affiliation(s)
- Despoina Giamaki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece.
| | - Malamati Tsiotsiou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece.
| | - Sevnta Chousein Oglou
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece.
| | - Maria Touraki
- Laboratory of General Biology, Division of Genetics, Development and Molecular Biology, Department of Biology, School of Sciences, Aristotle University of Thessaloniki (A.U.TH.), 54 124 Thessaloniki, Greece.
| |
Collapse
|
2
|
Tsuji A, Takei Y, Nishimura T, Azuma Y. Identification of New Halomonas Strains from Food-related Environments. Microbes Environ 2022; 37. [PMID: 35296582 PMCID: PMC8958296 DOI: 10.1264/jsme2.me21052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Halomonas species, which are aerobic, alkaliphilic, and moderately halophilic bacteria, produce diverse biochemicals. To identify food-related Halomonas strains for bioremediation and the industrial production of biochemicals, 20 strains were isolated from edible seashells, shrimp, and umeboshi (pickled Japanese plum) factory effluents. All isolates were phylogenetically classified into a large clade of Halomonas species. Most isolates, which grew in wide pH (6–13) and salt concentration (0–14%) ranges, exhibited the intracellular accumulation of poly(3-hydroxybutyrate) granules. The characteristics of these isolates varied. A020 isolated from umeboshi factory effluents exhibited enhanced stress tolerance and proliferation and comprised two plasmids. IMZ03 and A020 grew to more than 200 OD600, while IMZ03 produced 3.5% 3-hydroxybutyrate in inorganic medium supplemented with 10% sucrose. The mucus of TK1-1 cultured on agar medium comprised approximately 64 mM of ectoine. Whole-genome sequencing of A020 was performed to elucidate its origin and genomic characteristics. The genome analysis revealed a region exhibiting synteny with a large virus genome isolated from the ocean, but did not identify any predictable pathogenic genes. Therefore, saline foods and related materials may be suitable resources for isolating Halomonas strains exhibiting unique, useful, and innocuous features.
Collapse
Affiliation(s)
- Ayaka Tsuji
- Graduate School of Biology-Oriented Science and Technology, Kindai University
| | - Yasuko Takei
- Graduate School of Biology-Oriented Science and Technology, Kindai University
| | | | - Yoshinao Azuma
- Graduate School of Biology-Oriented Science and Technology, Kindai University
| |
Collapse
|
3
|
Assessment of bacteriophage vB_Pd_PDCC-1 on bacterial dynamics during ontogenetic development of the longfin yellowtail (Seriola rivoliana). Appl Microbiol Biotechnol 2021; 105:2877-2887. [PMID: 33710359 DOI: 10.1007/s00253-021-11223-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/01/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022]
Abstract
The Seriola genus includes species of worldwide commercial importance due to its rapid growth and easy adaptability to confinement conditions. However, like other fish species, large mortalities occur during their early life stages, where the main problems are caused by opportunistic bacteria. Disease control strategies are thus urgently needed. The present study aimed to evaluate the efficacy of phage vB_Pd_PDCC-1 during the early development of longfin yellowtail (Seriola rivoliana), as well as its effect on microbial communities. This broad-host-range phage was added to the culture every 3 days starting from the egg-stage until 12 days after hatching (DAH) at a concentration of 1.41×1010 plaque-forming units (PFU) per mL and at a multiplicity of infection (MOI) of 1. The results showed positive effects (p<0.05) on egg hatching, survival, growth, and pigmentation area in treated larvae. Moreover, high-throughput sequencing analysis of 16S rRNA genes showed that phage administration did not produce significant changes (p>0.05) in the composition and structure of the associated microbiota. However, sequences affiliated to the Gammaproteobacteria class were displaced by those belonging to the Alphaproteobacteria class over time regardless of the treatment received. At the family level, there was a decrease in Rhodobacteraceae, Pseudoalteromonadaceae, and Flavobacteriaceae in both groups over time. To our best knowledge, this study represents the first attempt to evaluate the effect of a phage as a biological control agent during ontogenetic development of longfin yellowtail larvae. KEY POINTS: • Phages can be used against proliferation of Vibrio in fish cultures. • Seriola includes several important commercial fish species due to its rapid growth. • Phages do not cause significant changes in the associated microbiota.
Collapse
|
4
|
Morgan MA, Griffith CM, Dinges MM, Lyon YA, Julian RR, Larive CK. Evaluating sub-lethal stress from Roundup ® exposure in Artemia franciscana using 1H NMR and GC-MS. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:77-87. [PMID: 31077969 PMCID: PMC6581565 DOI: 10.1016/j.aquatox.2019.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 05/04/2023]
Abstract
Global salinization trends present an urgent need for methods to monitor aquatic ecosystem health and characterize known and emerging stressors for water bodies that are becoming increasingly saline. Environmental metabolomics methods that combine quantitative measurements of metabolite levels and multivariate statistical analysis are powerful tools for ascertaining biological impacts and identifying potential biomarkers of exposure. We propose the use of the saltwater aquatic crustacean, Artemia franciscana, as a model organism for environmental metabolomics in saltwater ecosystems. Artemia are a good choice for ecotoxicity assays and metabolomics analysis because they have a short life cycle, their hemolymph is rich in metabolites and they tolerate a wide salinity range. In this work we explore the potential of Artemia franciscana for environmental metabolomics through exposure to the broad-spectrum herbicide, glyphosate. The LC50 for a 48 h exposure of Roundup® was determined to be 237 ± 23 ppm glyphosate in the Roundup® formulation. Artemia cysts were hatched and exposed to sub-lethal glyphosate concentrations of 1.00, 10.0, 50.0, or 100 ppm glyphosate in Roundup®. We profiled 48 h old Artemia extracts using 1H NMR and GC-MS. Dose-dependent metabolic perturbation was evident for several metabolites using univariate and multivariate analyses. Metabolites significantly affected by Roundup® exposure included aspartate, formate, betaine, glucose, tyrosine, phenylalanine, gadusol, and isopropylamine. Biochemical pathway analysis with the KEGG database suggests impairment of carbohydrate and energy metabolism, folate-mediated one-carbon metabolism, Artemia molting and development, and microbial metabolism.
Collapse
Affiliation(s)
- Melissa A Morgan
- Department of Chemistry, University of California - Riverside, Riverside, CA, 92521, United States
| | - Corey M Griffith
- Environmental Toxicology Graduate Program, University of California - Riverside, Riverside, CA, 92521, United States
| | - Meredith M Dinges
- Department of Chemistry, University of California - Riverside, Riverside, CA, 92521, United States
| | - Yana A Lyon
- Department of Chemistry, University of California - Riverside, Riverside, CA, 92521, United States
| | - Ryan R Julian
- Department of Chemistry, University of California - Riverside, Riverside, CA, 92521, United States
| | - Cynthia K Larive
- Department of Chemistry, University of California - Riverside, Riverside, CA, 92521, United States.
| |
Collapse
|
5
|
Lopes-dos-Santos RMA, De Troch M, Bossier P, Van Stappen G. Labelling halophilic Archaea using 13C and 15N stable isotopes: a potential tool to investigate haloarchaea consumption by metazoans. Extremophiles 2019; 23:359-365. [DOI: 10.1007/s00792-019-01084-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/15/2019] [Indexed: 11/30/2022]
|
6
|
Lopalco P, Lobasso S, Lopes-Dos-Santos RMA, Van Stappen G, Corcelli A. Lipid Profile Changes During the Development of Artemia franciscana, From Cysts to the First Two Naupliar Stages. Front Physiol 2019; 9:1872. [PMID: 30723418 PMCID: PMC6349733 DOI: 10.3389/fphys.2018.01872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/11/2018] [Indexed: 11/18/2022] Open
Abstract
The brine shrimp Artemia is an interesting experimental system for studies of developmental processes. Hatching of dormant cysts gives rise to shrimp larvae called nauplii, characterized by numerous naupliar stages representing the first forms of brine shrimp life cycle. Here combined Thin Layer Chromatography (TLC) and Matrix-Assisted Laser Desorption Ionization-Time-of-Flight/Mass Spectrometry (MALDI-TOF/MS) analyses have been performed to gain information on the lipid profiles of cysts and two naupliar stages. Lipid bands isolated after preparative TLC of the lipid extracts have been analyzed to detect various species of each lipid class; in addition Post-Source Decay (PSD) analyses allowed the identification of phospholipid chains. We compared the relative abundance of various polar and neutral lipid species in the lipid extracts, proving for the first time that during the development of nauplii there is an increase of cardiolipin (CL) and lysophospholipid levels; in parallel, the amount of phosphatidylcholine (PC) decreases. In addition, as regards neutral lipids, we found an increase of diacylglycerols (DAGs) in correspondence of the decrease of triacylglycerols (TAGs). Data reflect the fact that naupliar stages, being an active form of life, are more metabolically active and offer a platform to develop further studies on the importance of lipid metabolic pathways and bioactive lipids during the development.
Collapse
Affiliation(s)
- Patrizia Lopalco
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Simona Lobasso
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | | | - Gilbert Van Stappen
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Ghent, Belgium
| | - Angela Corcelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Riddle M, Martineau B, Peavey M, Tabin C. Raising the Mexican Tetra Astyanax mexicanus for Analysis of Post-larval Phenotypes and Whole-mount Immunohistochemistry. J Vis Exp 2018. [PMID: 30638199 DOI: 10.3791/58972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
River and cave-adapted populations of Astyanax mexicanus show differences in morphology, physiology, and behavior. Research focused on comparing adult forms has revealed the genetic basis of some of these differences. Less is known about how the populations differ at post-larval stages (at the onset of feeding). Such studies may provide insight into how cavefish survive through adulthood in their natural environment. Methods for comparing post-larval development in the laboratory require standardized aquaculture and feeding regimes. Here we describe how to raise fish on a diet of nutrient-rich rotifers in non-recirculating water for up to two-weeks post fertilization. We demonstrate how to collect post-larval fish from this nursery system and perform whole-mount immunostaining. Immunostaining is an attractive alternative to transgene expression analysis for investigating development and gene function in A. mexicanus. The nursery method can also be used as a standard protocol for establishing density-matched populations for growth into adults.
Collapse
|
8
|
The Biogeography of Great Salt Lake Halophilic Archaea: Testing the Hypothesis of Avian Mechanical Carriers. DIVERSITY 2018. [DOI: 10.3390/d10040124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Halophilic archaea inhabit hypersaline ecosystems globally, and genetically similar strains have been found in locales that are geographically isolated from one another. We sought to test the hypothesis that small salt crystals harboring halophilic archaea could be carried on bird feathers and that bird migration is a driving force of these distributions. In this study, we discovered that the American White Pelicans (AWPE) at Great Salt Lake soak in the hypersaline brine and accumulate salt crystals (halite) on their feathers. We cultured halophilic archaea from AWPE feathers and halite crystals. The microorganisms isolated from the lakeshore crystals were restricted to two genera: Halorubrum and Haloarcula, however, archaea from the feathers were strictly Haloarcula. We compared partial DNA sequence of the 16S rRNA gene from our cultivars with that of similar strains in the GenBank database. To understand the biogeography of genetically similar halophilic archaea, we studied the geographical locations of the sampling sites of the closest-matched species. An analysis of the environmental factors of each site pointed to salinity as the most important factor for selection. The geography of the sites was consistent with the location of the sub-tropical jet stream where birds typically migrate, supporting the avian dispersal hypothesis.
Collapse
|
9
|
Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R, Rojas C, Seeger M. Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation. Front Microbiol 2018; 9:2309. [PMID: 30425685 PMCID: PMC6218600 DOI: 10.3389/fmicb.2018.02309] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
Extremophiles are organisms capable of adjust, survive or thrive in hostile habitats that were previously thought to be adverse or lethal for life. Chile gathers a wide range of extreme environments: salars, geothermal springs, and geysers located at Altiplano and Atacama Desert, salars and cold mountains in Central Chile, and ice fields, cold lakes and fjords, and geothermal sites in Patagonia and Antarctica. The aims of this review are to describe extremophiles that inhabit main extreme biotopes in Chile, and their molecular and physiological capabilities that may be advantageous for bioremediation processes. After briefly describing the main ecological niches of extremophiles along Chilean territory, this review is focused on the microbial diversity and composition of these biotopes microbiomes. Extremophiles have been isolated in diverse zones in Chile that possess extreme conditions such as Altiplano, Atacama Desert, Central Chile, Patagonia, and Antarctica. Interesting extremophiles from Chile with potential biotechnological applications include thermophiles (e.g., Methanofollis tationis from Tatio Geyser), acidophiles (e.g., Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum from Atacama Desert and Central Chile copper ores), halophiles (e.g., Shewanella sp. Asc-3 from Altiplano, Streptomyces sp. HKF-8 from Patagonia), alkaliphiles (Exiguobacterium sp. SH31 from Altiplano), xerotolerant bacteria (S. atacamensis from Atacama Desert), UV- and Gamma-resistant bacteria (Deinococcus peraridilitoris from Atacama Desert) and psychrophiles (e.g., Pseudomonas putida ATH-43 from Antarctica). The molecular and physiological properties of diverse extremophiles from Chile and their application in bioremediation or waste treatments are further discussed. Interestingly, the remarkable adaptative capabilities of extremophiles convert them into an attractive source of catalysts for bioremediation and industrial processes.
Collapse
Affiliation(s)
- Roberto Orellana
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| | - Constanza Macaya
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Guillermo Bravo
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Flavia Dorochesi
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Claudia Rojas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
10
|
Datta MS, Almada AA, Baumgartner MF, Mincer TJ, Tarrant AM, Polz MF. Inter-individual variability in copepod microbiomes reveals bacterial networks linked to host physiology. ISME JOURNAL 2018; 12:2103-2113. [PMID: 29875434 DOI: 10.1038/s41396-018-0182-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/22/2018] [Accepted: 03/28/2018] [Indexed: 11/09/2022]
Abstract
Copepods harbor diverse bacterial communities, which collectively carry out key biogeochemical transformations in the ocean. However, bulk copepod sampling averages over the variability in their associated bacterial communities, thereby limiting our understanding of the nature and specificity of copepod-bacteria associations. Here, we characterize the bacterial communities associated with nearly 200 individual Calanus finmarchicus copepods transitioning from active growth to diapause. We find that all individual copepods sampled share a small set of "core" operational taxonomic units (OTUs), a subset of which have also been found associated with other marine copepod species in different geographic locations. However, most OTUs are patchily distributed across individual copepods, thereby driving community differences across individuals. Among patchily distributed OTUs, we identified groups of OTUs correlated with common ecological drivers. For instance, a group of OTUs positively correlated with recent copepod feeding served to differentiate largely active growing copepods from those entering diapause. Together, our results underscore the power of individual-level sampling for understanding host-microbiome relationships.
Collapse
Affiliation(s)
- Manoshi S Datta
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Amalia A Almada
- Biology Department, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA, 02543, USA
| | - Mark F Baumgartner
- Biology Department, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA, 02543, USA
| | - Tracy J Mincer
- Biology Department, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA, 02543, USA
| | - Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, 45 Water Street, Woods Hole, MA, 02543, USA
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
11
|
Marino M, Innocente N, Maifreni M, Mounier J, Cobo-Díaz JF, Coton E, Carraro L, Cardazzo B. Diversity within Italian Cheesemaking Brine-Associated Bacterial Communities Evidenced by Massive Parallel 16S rRNA Gene Tag Sequencing. Front Microbiol 2017; 8:2119. [PMID: 29163411 PMCID: PMC5675859 DOI: 10.3389/fmicb.2017.02119] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/18/2017] [Indexed: 11/13/2022] Open
Abstract
This study explored the bacterial diversity of brines used for cheesemaking in Italy, as well as their physicochemical characteristics. In this context, 19 brines used to salt soft, semi-hard, and hard Italian cheeses were collected in 14 commercial cheese plants and analyzed using a culture-independent amplicon sequencing approach in order to describe their bacterial microbiota. Large NaCl concentration variations were observed among the selected brines, with hard cheese brines exhibiting the highest values. Acidity values showed a great variability too, probably in relation to the brine use prior to sampling. Despite their high salt content, brine microbial loads ranged from 2.11 to 6.51 log CFU/mL for the total mesophilic count. Microbial community profiling assessed by 16S rRNA gene sequencing showed that these ecosystems were dominated by Firmicutes and Proteobacteria, followed by Actinobacteria and Bacteroidetes. Cheese type and brine salinity seem to be the main parameters accountable for brine microbial diversity. On the contrary, brine pH, acidity and protein concentration, correlated to cheese brine age, did not have any selective effect on the microbiota composition. Nine major genera were present in all analyzed brines, indicating that they might compose the core microbiome of cheese brines. Staphylococcus aureus was occasionally detected in brines using selective culture media. Interestingly, bacterial genera associated with a functional and technological use were frequently detected. Indeed Bifidobacteriaceae, which might be valuable probiotic candidates, and specific microbial genera such as Tetragenococcus, Corynebacterium and non-pathogenic Staphylococcus, which can contribute to sensorial properties of ripened cheeses, were widespread within brines.
Collapse
Affiliation(s)
- Marilena Marino
- Dipartimento di Scienze Agroalimentari Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Nadia Innocente
- Dipartimento di Scienze Agroalimentari Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Michela Maifreni
- Dipartimento di Scienze Agroalimentari Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Jérôme Mounier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Institut Brestois Santé Agro Matière (IBSAM), École Supérieure d’Ingénieurs en Agroalimentaire de Bretagne Atlantique (ESIAB), Université de Brest, Plouzané, France
| | - José F. Cobo-Díaz
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Institut Brestois Santé Agro Matière (IBSAM), École Supérieure d’Ingénieurs en Agroalimentaire de Bretagne Atlantique (ESIAB), Université de Brest, Plouzané, France
| | - Emmanuel Coton
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Institut Brestois Santé Agro Matière (IBSAM), École Supérieure d’Ingénieurs en Agroalimentaire de Bretagne Atlantique (ESIAB), Université de Brest, Plouzané, France
| | - Lisa Carraro
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Padova, Italy
| | - Barbara Cardazzo
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Padova, Italy
| |
Collapse
|
12
|
Giatsis C, Sipkema D, Ramiro-Garcia J, Bacanu GM, Abernathy J, Verreth J, Smidt H, Verdegem M. Probiotic legacy effects on gut microbial assembly in tilapia larvae. Sci Rep 2016; 6:33965. [PMID: 27670882 PMCID: PMC5037425 DOI: 10.1038/srep33965] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/30/2016] [Indexed: 02/08/2023] Open
Abstract
The exposure of fish to environmental free-living microbes and its effect on early colonization in the gut have been studied in recent years. However, little is known regarding how the host and environment interact to shape gut communities during early life. Here, we tested whether the early microbial exposure of tilapia larvae affects the gut microbiota at later life stages. The experimental period was divided into three stages: axenic, probiotic and active suspension. Axenic tilapia larvae were reared either under conventional conditions (active suspension systems) or exposed to a single strain probiotic (Bacillus subtilis) added to the water. Microbial characterization by Illumina HiSeq sequencing of 16S rRNA gene amplicons showed the presence of B. subtilis in the gut during the seven days of probiotic application. Although B. subtilis was no longer detected in the guts of fish exposed to the probiotic after day 7, gut microbiota of the exposed tilapia larvae remained significantly different from that of the control treatment. Compared with the control, fish gut microbiota under probiotic treatment was less affected by spatial differences resulting from tank replication, suggesting that the early probiotic contact contributed to the subsequent observation of low inter-individual variation.
Collapse
Affiliation(s)
- Christos Giatsis
- Aquaculture and Fisheries Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Javier Ramiro-Garcia
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Laboratory of System and Synthetic Biology, Stippeneng 4, Wageningen 6708 WE, The Netherlands
- TI Food and Nutrition (TIFN) P.O. Box 557, 6700 AN, Wageningen 6703 HB, The Netherlands
| | - Gianina M. Bacanu
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jason Abernathy
- USDA-ARS, Hagerman Fish Culture Experiment Station, 3059F National Fish Hatchery Road, Hagerman, Idaho 83332, USA
| | - Johan Verreth
- Aquaculture and Fisheries Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Marc Verdegem
- Aquaculture and Fisheries Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
13
|
Di Meglio L, Santos F, Gomariz M, Almansa C, López C, Antón J, Nercessian D. Seasonal dynamics of extremely halophilic microbial communities in three Argentinian salterns. FEMS Microbiol Ecol 2016; 92:fiw184. [PMID: 27604253 DOI: 10.1093/femsec/fiw184] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 11/13/2022] Open
Abstract
Seasonal sampling was carried out at three Argentinian salterns, Salitral Negro (SN), Colorada Grande (CG) and Guatraché (G), to analyze abiotic parameters and microbial diversity and dynamics. Microbial assemblages were correlated to environmental factors by statistical analyses. Principal component analysis of the environmental data grouped SN and CG samples separately from G samples owing to G's higher pH values and sulfate concentration. Differences in microbial assemblages were also found. Many archaeal sequences belonged to uncultured members of Haloquadratum and Haloquadratum-related genera, with different environmental optima. Notably, nearly half of the archaeal sequences were affiliated to the recently described 'Candidatus Haloredividus' (phylum Nanohaloarchaeota), not previously detected in salt-saturated environments. Most bacterial sequences belonged to Salinibacter representatives, while sequences affiliated to the recently described genus Spiribacter were also found. Seasonal analysis showed at least 40% of the microbiota from the three salterns was prevalent through the year, indicating they are well adapted to environmental fluctuations. On the other hand, a minority of archaeal and bacterial sequences were found to be seasonally distributed. Five viral morphotypes and also eukaryal predators were detected, suggesting different mechanisms for controlling prokaryotic numbers. Notably, Guatraché was the saltern that harbored the highest virus-to-cell ratios reported to date for hypersaline environments.
Collapse
Affiliation(s)
- Leonardo Di Meglio
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, UNMDP - CONICET, Funes 3250 4° nivel, 7600 Mar del Plata, Argentina
| | - Fernando Santos
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03690 San Vicente del Raspeig, España
| | - María Gomariz
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03690 San Vicente del Raspeig, España
| | - Cristina Almansa
- Servicios Técnicos de Investigación (SSTTI), Unidad de Microscopía, Universidad de Alicante, Alicante, 03690 San Vicente del Raspeig, España
| | - Cristina López
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03690 San Vicente del Raspeig, España
| | - Josefa Antón
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, 03690 San Vicente del Raspeig, España
| | - Débora Nercessian
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, UNMDP - CONICET, Funes 3250 4° nivel, 7600 Mar del Plata, Argentina
| |
Collapse
|
14
|
Rahmani R, Zarrini G, Aein F, Hosseingholi EZ. Identification of extremely halophilic archaea associated with adult Artemia urmiana. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716030127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Maes S, Props R, Fitts JP, Smet RD, Vilchez-Vargas R, Vital M, Pieper DH, Vanhaecke F, Boon N, Hennebel T. Platinum Recovery from Synthetic Extreme Environments by Halophilic Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2619-2626. [PMID: 26854514 DOI: 10.1021/acs.est.5b05355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Metal recycling based on urban mining needs to be established to tackle the increasing supply risk of critical metals such as platinum. Presently, efficient strategies are missing for the recovery of platinum from diluted industrial process streams, often characterized by extremely low pHs and high salt concentrations. In this research, halophilic mixed cultures were employed for the biological recovery of platinum (Pt). Halophilic bacteria were enriched from Artemia cysts, living in salt lakes, in different salt matrices (sea salt mixture and NH4Cl; 20-210 g L(-1) salts) and at low to neutral pH (pH 3-7). The main taxonomic families present in the halophilic cultures were Halomonadaceae, Bacillaceae, and Idiomarinaceae. The halophilic cultures were able to recover >98% Pt(II) and >97% Pt(IV) at pH 2 within 3-21 h (4-453 mg Ptrecovered h(-1) g(-1) biomass). X-ray absorption spectroscopy confirmed the reduction to Pt(0) and transmission electron microscopy revealed both intra- and extracellular Pt precipitates, with median diameters of 9-30 nm and 11-13 nm, for Pt(II) and Pt(IV), respectively. Flow cytometric membrane integrity staining demonstrated the preservation of cell viability during platinum recovery. This study demonstrates the Pt recovery potential of halophilic mixed cultures in acidic saline conditions.
Collapse
Affiliation(s)
- Synthia Maes
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| | - Ruben Props
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| | - Jeffrey P Fitts
- Department of Civil and Environmental Engineering, Princeton University , Princeton, New York 08544, United States
| | - Rebecca De Smet
- Department of Medical and Forensic Pathology, Ghent University , De Pintelaan 185, B-9000 Gent, Belgium
| | - Ramiro Vilchez-Vargas
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| | - Marius Vital
- Microbial Interactions and Processes Research Group, Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Department of Medical Microbiology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Frank Vanhaecke
- Department of Analytical Chemistry, Ghent University , Krijgslaan 281 (S12), B-9000 Gent, Belgium
| | - Nico Boon
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| | - Tom Hennebel
- Laboratory of Microbial Ecology and Technology (LabMET), Ghent University , Coupure Links 653, B-9000 Gent, Belgium
| |
Collapse
|
16
|
Pohlschroder M, Esquivel RN. Archaeal type IV pili and their involvement in biofilm formation. Front Microbiol 2015; 6:190. [PMID: 25852657 PMCID: PMC4371748 DOI: 10.3389/fmicb.2015.00190] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022] Open
Abstract
Type IV pili are ancient proteinaceous structures present on the cell surface of species in nearly all bacterial and archaeal phyla. These filaments, which are required for a diverse array of important cellular processes, are assembled employing a conserved set of core components. While type IV pilins, the structural subunits of pili, share little sequence homology, their signal peptides are structurally conserved allowing for in silico prediction. Recently, in vivo studies in model archaea representing the euryarchaeal and crenarchaeal kingdoms confirmed that several of these pilins are incorporated into type IV adhesion pili. In addition to facilitating surface adhesion, these in vivo studies also showed that several predicted pilins are required for additional functions that are critical to biofilm formation. Examples include the subunits of Sulfolobus acidocaldarius Ups pili, which are induced by exposure to UV light and promote cell aggregation and conjugation, and a subset of the Haloferax volcanii adhesion pilins, which play a critical role in microcolony formation while other pilins inhibit this process. The recent discovery of novel pilin functions such as the ability of haloarchaeal adhesion pilins to regulate swimming motility may point to novel regulatory pathways conserved across prokaryotic domains. In this review, we will discuss recent advances in our understanding of the functional roles played by archaeal type IV adhesion pili and their subunits, with particular emphasis on their involvement in biofilm formation.
Collapse
Affiliation(s)
| | - Rianne N Esquivel
- Department of Biology, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|