1
|
Arefin MS, Rahman MM, Hasan MT, Mahmud M. A Topical Review on Enabling Technologies for the Internet of Medical Things: Sensors, Devices, Platforms, and Applications. MICROMACHINES 2024; 15:479. [PMID: 38675290 PMCID: PMC11051832 DOI: 10.3390/mi15040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
The Internet of Things (IoT) is still a relatively new field of research, and its potential to be used in the healthcare and medical sectors is enormous. In the last five years, IoT has been a go-to option for various applications such as using sensors for different features, machine-to-machine communication, etc., but precisely in the medical sector, it is still lagging far behind compared to other sectors. Hence, this study emphasises IoT applications in medical fields, Medical IoT sensors and devices, IoT platforms for data visualisation, and artificial intelligence in medical applications. A systematic review considering PRISMA guidelines on research articles as well as the websites on IoMT sensors and devices has been carried out. After the year 2001, an integrated outcome of 986 articles was initially selected, and by applying the inclusion-exclusion criterion, a total of 597 articles were identified. 23 new studies have been finally found, including records from websites and citations. This review then analyses different sensor monitoring circuits in detail, considering an Intensive Care Unit (ICU) scenario, device applications, and the data management system, including IoT platforms for the patients. Lastly, detailed discussion and challenges have been outlined, and possible prospects have been presented.
Collapse
Affiliation(s)
- Md. Shamsul Arefin
- Department of Electrical and Electronic Engineering (EEE), Bangladesh University of Business & Technology, Dhaka 1216, Bangladesh;
| | | | - Md. Tanvir Hasan
- Department of Electrical and Electronic Engineering (EEE), Jashore University of Science & Technology, Jashore 7408, Bangladesh;
- Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Mufti Mahmud
- Department of Computer Science, Nottingham Trent University, Nottingham NG11 8NS, UK
- Computing and Informatics Research Centre, Nottingham Trent University, Nottingham NG11 8NS, UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
2
|
Nigar N, Jaleel A, Islam S, Shahzad MK, Affum EA. IoMT Meets Machine Learning: From Edge to Cloud Chronic Diseases Diagnosis System. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:9995292. [PMID: 37304462 PMCID: PMC10250092 DOI: 10.1155/2023/9995292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/08/2023] [Accepted: 04/15/2023] [Indexed: 06/13/2023]
Abstract
In conventional healthcare, real-time monitoring of patient records and information mining for timely diagnosis of chronic diseases under certain health conditions is a crucial process. Chronic diseases, if not diagnosed in time, may result in patients' death. In modern medical and healthcare systems, Internet of Things (IoT) driven ecosystems use autonomous sensors to sense and track patients' medical conditions and suggest appropriate actions. In this paper, a novel IoT and machine learning (ML)-based hybrid approach is proposed that considers multiple perspectives for early detection and monitoring of 6 different chronic diseases such as COVID-19, pneumonia, diabetes, heart disease, brain tumor, and Alzheimer's. The results from multiple ML models are compared for accuracy, precision, recall, F1 score, and area under the curve (AUC) as a performance measure. The proposed approach is validated in the cloud-based environment using benchmark and real-world datasets. The statistical analyses on the datasets using ANOVA tests show that the accuracy results of different classifiers are significantly different. This will help the healthcare sector and doctors in the early diagnosis of chronic diseases.
Collapse
Affiliation(s)
- Natasha Nigar
- Department of Computer Science (RCET), University of Engineering and Technology, Lahore, Pakistan
| | - Abdul Jaleel
- Department of Computer Science (RCET), University of Engineering and Technology, Lahore, Pakistan
| | - Shahid Islam
- Department of Computer Science (RCET), University of Engineering and Technology, Lahore, Pakistan
| | - Muhammad Kashif Shahzad
- Power Information Technology Company (PITC), Ministry of Energy,Power Division, Government of Pakistan, Lahore, Pakistan
| | - Emmanuel Ampoma Affum
- Department of Telecommunication Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
3
|
Shakeel T, Habib S, Boulila W, Koubaa A, Javed AR, Rizwan M, Gadekallu TR, Sufiyan M. A survey on COVID-19 impact in the healthcare domain: worldwide market implementation, applications, security and privacy issues, challenges and future prospects. COMPLEX INTELL SYST 2022; 9:1027-1058. [PMID: 35668731 PMCID: PMC9151356 DOI: 10.1007/s40747-022-00767-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/15/2022] [Indexed: 12/23/2022]
Abstract
Extensive research has been conducted on healthcare technology and service advancements during the last decade. The Internet of Medical Things (IoMT) has demonstrated the ability to connect various medical apparatus, sensors, and healthcare specialists to ensure the best medical treatment in a distant location. Patient safety has improved, healthcare prices have decreased dramatically, healthcare services have become more approachable, and the operational efficiency of the healthcare industry has increased. This research paper offers a recent review of current and future healthcare applications, security, market trends, and IoMT-based technology implementation. This research paper analyses the advancement of IoMT implementation in addressing various healthcare concerns from the perspectives of enabling technologies, healthcare applications, and services. The potential obstacles and issues of the IoMT system are also discussed. Finally, the survey includes a comprehensive overview of different disciplines of IoMT to empower future researchers who are eager to work on and make advances in the field to obtain a better understanding of the domain.
Collapse
Affiliation(s)
- Tanzeela Shakeel
- School of System and Technology, University of Management and Technology, Lahore, Pakistan
| | - Shaista Habib
- School of System and Technology, University of Management and Technology, Lahore, Pakistan
| | - Wadii Boulila
- Robotics and Internet of Things Lab, Prince Sultan University, Riyadh, 12435 Saudi Arabia
| | - Anis Koubaa
- Robotics and Internet of Things Lab, Prince Sultan University, Riyadh, 12435 Saudi Arabia
| | - Abdul Rehman Javed
- Department of Cyber Security, PAF Complex, E-9, Air University, Islamabad, Pakistan
| | - Muhammad Rizwan
- Department of Computer Science, Kinnaird College for Women, Lahore, Pakistan
| | - Thippa Reddy Gadekallu
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India
| | - Mahmood Sufiyan
- School of System and Technology, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
4
|
IoT-Based Applications in Healthcare Devices. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6632599. [PMID: 33791084 PMCID: PMC7997744 DOI: 10.1155/2021/6632599] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/13/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022]
Abstract
The last decade has witnessed extensive research in the field of healthcare services and their technological upgradation. To be more specific, the Internet of Things (IoT) has shown potential application in connecting various medical devices, sensors, and healthcare professionals to provide quality medical services in a remote location. This has improved patient safety, reduced healthcare costs, enhanced the accessibility of healthcare services, and increased operational efficiency in the healthcare industry. The current study gives an up-to-date summary of the potential healthcare applications of IoT- (HIoT-) based technologies. Herein, the advancement of the application of the HIoT has been reported from the perspective of enabling technologies, healthcare services, and applications in solving various healthcare issues. Moreover, potential challenges and issues in the HIoT system are also discussed. In sum, the current study provides a comprehensive source of information regarding the different fields of application of HIoT intending to help future researchers, who have the interest to work and make advancements in the field to gain insight into the topic.
Collapse
|
5
|
Jagadeeswari V, Subramaniyaswamy V, Logesh R, Vijayakumar V. A study on medical Internet of Things and Big Data in personalized healthcare system. Health Inf Sci Syst 2018; 6:14. [PMID: 30279984 PMCID: PMC6146872 DOI: 10.1007/s13755-018-0049-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/12/2018] [Indexed: 12/26/2022] Open
Abstract
Personalized healthcare systems deliver e-health services to fulfill the medical and assistive needs of the aging population. Internet of Things (IoT) is a significant advancement in the Big Data era, which supports many real-time engineering applications through enhanced services. Analytics over data streams from IoT has become a source of user data for the healthcare systems to discover new information, predict early detection, and makes decision over the critical situation for the improvement of the quality of life. In this paper, we have made a detailed study on the recent emerging technologies in the personalized healthcare systems with the focus towards cloud computing, fog computing, Big Data analytics, IoT and mobile based applications. We have analyzed the challenges in designing a better healthcare system to make early detection and diagnosis of diseases and discussed the possible solutions while providing e-health services in secure manner. This paper poses a light on the rapidly growing needs of the better healthcare systems in real-time and provides possible future work guidelines.
Collapse
Affiliation(s)
- V. Jagadeeswari
- School of Computing, SASTRA Deemed University, Thanjavur, India
| | | | - R. Logesh
- School of Computing, SASTRA Deemed University, Thanjavur, India
| | - V. Vijayakumar
- School of Computing Science and Engineering, Vellore Institute of Technology, Chennai, India
| |
Collapse
|