1
|
Peng L, Li S, Cai H, Chen X, Tang Y. Ginsenoside Rg1 treats chronic heart failure by downregulating ERK1/2 protein phosphorylation. In Vitro Cell Dev Biol Anim 2024; 60:1085-1098. [PMID: 39251466 DOI: 10.1007/s11626-024-00960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/22/2024] [Indexed: 09/11/2024]
Abstract
In this study, we investigated the potential therapeutic mechanism of ginsenoside Rg1 (GRg1) in chronic heart failure (CHF), focusing on its regulation of ERK1/2 protein phosphorylation. H9c2 cardiomyocytes and SD rats were divided into the control group, CHF (ADR) group, and CHF+ginsenoside Rg1 group using an isolated cardiomyocyte model and an in vivo CHF rat model induced by adriamycin (ADR). Cell viability, proliferation, apoptosis, and the expression of relevant proteins were measured to assess the effects of GRg1. The results showed that treatment with GRg1 increased cell activity and proliferation, while significantly reducing levels of inflammatory and apoptotic factors compared to the CHF (ADR) group. Moreover, the CHF+ginsenoside Rg1 group exhibited higher levels of Bcl-2 mRNA and protein expression, as well as lower levels of Caspase3 and Bax mRNA and protein expression, compared to the CHF (ADR) group. Notably, the CHF+ginsenoside Rg1 group displayed decreased serum NT-proBNP levels and heart weight/body weight (HW/BW) index. Furthermore, the electrocardiogram of rats in the CHF+ginsenoside Rg1 group resembled that of rats in the control group. Overall, our findings suggested that GRg1 alleviated CHF by inhibiting ERK1/2 protein phosphorylation, thereby inhibiting apoptosis, enhancing cell activity and proliferation, and reducing cardiac inflammatory responses.
Collapse
Affiliation(s)
- Liqi Peng
- First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Shaodong Li
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Huzhi Cai
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Xueliang Chen
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yanping Tang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
2
|
Ran C, Lu M, Zhao F, Hao Y, Guo X, Li Y, Su Y, Wang H. Ginsenoside Rg1 alleviates vascular remodeling in hypoxia-induced pulmonary hypertension mice through the calpain-1/STAT3 signaling pathway. J Ginseng Res 2024; 48:405-416. [PMID: 39036731 PMCID: PMC11258379 DOI: 10.1016/j.jgr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 07/23/2024] Open
Abstract
Background Hypoxic pulmonary hypertension (HPH) is the main pathological change in vascular remodeling, a complex cardiopulmonary disease caused by hypoxia. Some research results have shown that ginsenoside Rg1 (Rg1) can improve vascular remodeling, but the effect and mechanism of Rg1 on hypoxia-induced pulmonary hypertension are not clear. The purpose of this study was to discuss the potential mechanism of action of Rg1 on HPH. Methods C57BL/6 mice, calpain-1 knockout mice and Pulmonary artery smooth muscle cells (PASMCs) were exposed to a low oxygen environment with or without different treatments. The effect of Rg1 and calpain-1 silencing on inflammation, fibrosis, proliferation and the protein expression levels of calpain-1, STAT3 and p-STAT3 were determined at the animal and cellular levels. Results At the mouse and cellular levels, hypoxia promotes inflammation, fibrosis, and cell proliferation, and the expression of calpain-1 and p-STAT3 is also increased. Ginsenoside Rg1 administration and calpain-1 knockdown, MDL-28170, and HY-13818 treatment showed protective effects on hypoxia-induced inflammation, fibrosis, and cell proliferation, which may be associated with the downregulation of calpain-1 and p-STAT3 expression in mice and cells. In addition, overexpression of calpain 1 increased p-STAT3 expression, accelerating the onset of inflammation, fibrosis and cell proliferation in hypoxic PASMCs. Conclusion Ginsenoside Rg1 may ameliorate hypoxia-induced pulmonary vascular remodeling by suppressing the calpain-1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Chenyang Ran
- The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Meili Lu
- The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Fang Zhao
- Institute of Innovation and Applied Research in Chinese Medicine and Department of Rheumatology of the First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yi Hao
- The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Xinyu Guo
- The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Yunhan Li
- The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Yuhong Su
- The College of Food and Health of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Hongxin Wang
- The Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
3
|
Sun Y, Chen C, Yan Q, Wang S, Tan Y, Long J, Lin Y, Ning S, Wang J, Zhang S, Ai Q, Liu S. A peripheral system disease-Pulmonary hypertension. Biomed Pharmacother 2024; 175:116787. [PMID: 38788548 DOI: 10.1016/j.biopha.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disorder characterized by substantial morbidity and mortality rates. It is a chronic condition characterized by intricate pathogenesis and uncontrollable factors. We summarized the pathological effects of estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification on PH. PH is not only a pulmonary vascular disease, but also a systemic disease. The findings emphasize that the onset of PH is not exclusively confined to the pulmonary vasculature, consequently necessitating treatment approaches that extend beyond targeting pulmonary blood vessels. Hence, the research on the pathological mechanism of PH is not limited to target organs such as pulmonary vessels, but also focuses on exploring other fields (such as estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification).
Collapse
Affiliation(s)
- Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Siying Wang
- Pharmacy Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shuangcheng Ning
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Jin Wang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Shusheng Zhang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| |
Collapse
|
4
|
Quan Q, Ma X, Li M, Li X, Yuan H. Ginsenoside Rg1 promotes β‑amyloid peptide degradation through inhibition of the ERK/PPARγ phosphorylation pathway in an Alzheimer's disease neuronal model. Exp Ther Med 2024; 27:31. [PMID: 38125359 PMCID: PMC10731411 DOI: 10.3892/etm.2023.12319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
β-Amyloid peptide (Aβ) deposition in the brain is an important pathological change in Alzheimer's disease (AD). Insulin-degrading enzyme (IDE), which is regulated transcriptionally by peroxisome proliferator-activated receptor γ (PPARγ), is able to proteolyze Aβ. One of the members of the MAPK family, ERK, is able to mediate the phosphorylation of PPARγ at Ser112, thereby inhibiting its transcriptional activity. Ginsenoside Rg1 is one of the active ingredients in the natural medicine ginseng and has inhibitory effects on Aβ production. The present study was designed to investigate whether ginsenoside Rg1 is able to affect the regulation of PPARγ based on the expression of its target gene, IDE, and whether it is able to promote Aβ degradation via inhibition of the ERK/PPARγ phosphorylation pathway. In the present study, primary cultured rat hippocampal neurons were treated with Aβ1-42, ginsenoside Rg1 and the ERK inhibitor PD98059, and subsequently TUNEL staining was used to detect the level of neuronal apoptosis. ELISA was subsequently employed to detect the intra- and extracellular Aβ1-42 levels, immunofluorescence staining and western blotting were used to detect the translocation of ERK from the cytoplasm to the nucleus, immunofluorescence double staining was used to detect the co-expression of ERK and PPARγ, and finally, western blotting was used to detect the phosphorylation of PPARγ at Ser112 and IDE expression. The results demonstrated that ginsenoside Rg1 or PD98059 were able to inhibit primary cultured hippocampal neuron apoptosis induced by Aβ1-42 treatment, reduce the levels of intra- and extraneuronal Aβ1-42 and inhibit the translocation of ERK from the cytoplasm to the nucleus. Furthermore, administration of ginsenoside Rg1 or PD98059 resulted in attenuated co-expression of ERK and PPARγ, inhibition of phosphorylation of PPARγ at Ser112 mediated by ERK and an increase in IDE expression. In addition, the effects when PD98059 to inhibit ERK followed by treatment with ginsenoside Rg1 were found to be more pronounced than those when using PD98059 alone. In conclusion, ginsenoside Rg1 was demonstrated to exert neuroprotective effects on AD via inhibition of the ERK/PPARγ phosphorylation pathway, which led to an increase in IDE expression, the promotion of Aβ degradation and the decrease of neuronal apoptosis. These results could provide a theoretical basis for the clinical application of ginsenoside Rg1 in AD.
Collapse
Affiliation(s)
- Qiankun Quan
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xinxin Ma
- Department of Psychology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ming Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xi Li
- Department of Geriatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Haifeng Yuan
- Department of Rehabilitation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
5
|
Tang BL, Liu Y, Zhang JL, Lu ML, Wang HX. Ginsenoside Rg1 ameliorates hypoxia-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition and inflammation by regulating CCN1. Biomed Pharmacother 2023; 164:114920. [PMID: 37216706 DOI: 10.1016/j.biopha.2023.114920] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic obstructive disease characterized by vascular remodeling. Studies have confirmed that ginsenoside Rg1 can improve pulmonary hypertension to a certain extent, but the potential mechanism by which it improves hypoxia-induced PAH remains unclear. The aim of this study was to investigate the therapeutic effect of ginsenoside Rg1 on hypoxia-induced PAH. The results showed that hypoxia promoted inflammation, EndMT, and vascular remodeling, which were accompanied by decreased CCN1 levels and increased p-NFκB p65, TGF-β1, and p-Smad 2/3 levels. Treatment with ginsenoside Rg1, recombinant CCN1, BAY-11-7082, and SB-431542 could prevent hypoxia-induced vascular remodeling, reduce the expression of the hypoxia-induced inflammatory cytokines TNF-α and IL-1β, inhibit the expression of the mesenchymal markers α-SMA and Vimentin and restore the expression of the endothelial markers CD31 and VE-cadherin to improve hypoxia-induced EndMT, which may be associated with the upregulation of CCN1 protein expression and downregulation of p-NFκB p65, TGF-β1, and p-Smad 2/3 in rats and cells. siRNA CCN1 transfection increased the expression of p-NFκB p65, TGF-β1, and p-Smad 2/3 and accelerated the occurrence and development of inflammation and EndMT after hypoxia. In summary, our study indicated that hypoxia-induced EndMT and inflammation play a role in hypoxic pulmonary hypertension (HPH). Ginsenoside Rg1 treatment could reverse hypoxia-induced EndMT and inflammation by regulating CCN1 and has potential value in the prevention and treatment of HPH.
Collapse
Affiliation(s)
- Bai-Lin Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Yu Liu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Jing-Liang Zhang
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Mei-Li Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Hong-Xin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China.
| |
Collapse
|
6
|
Recent advances in ginsenosides against respiratory diseases: Therapeutic targets and potential mechanisms. Biomed Pharmacother 2023; 158:114096. [PMID: 36502752 DOI: 10.1016/j.biopha.2022.114096] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Respiratory diseases mainly include asthma, influenza, pneumonia, chronic obstructive pulmonary disease, pulmonary hypertension, lung fibrosis, and lung cancer. Given their high prevalence and poor prognosis, the prevention and treatment of respiratory diseases are increasingly essential. In particular, the development for the novel strategies of drug treatment has been a hot topic in the research field. Ginsenosides are the major component of Panax ginseng C. A. Meyer (ginseng), a food homology and well-known medicinal herb. In this review, we summarize the current therapeutic effects and molecular mechanisms of ginsenosides in respiratory diseases. METHODS The reviewed studies were retrieved via a thorough analysis of numerous articles using electronic search tools including Sci-Finder, ScienceDirect, PubMed, and Web of Science. The following keywords were used for the online search: ginsenosides, asthma, influenza, pneumonia, chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), lung fibrosis, lung cancer, and clinical trials. We summarized the findings and the conclusions from 176 manuscripts on ginsenosides, including research articles and reviews. RESULTS Ginsenosides Rb1, Rg1, Rg3, Rh2, and CK, which are the most commonly reported ginsenosides for treating of respiratory diseases, and other ginsenosides such as Rh1, Rk1, Rg5, Rd and Re, all primarily reduce pneumonia, fibrosis, and inhibit tumor progression by targeting NF-κB, TGF-β/Smad, PI3K/AKT/mTOR, and JNK pathways, thereby ameliorating respiratory diseases. CONCLUSION This review provides novel ideas and important aspects for the future research of ginsenosides for treating respiratory diseases.
Collapse
|
7
|
Zhao F, Lu M, Wang H. Ginsenoside Rg1 ameliorates chronic intermittent hypoxia-induced vascular endothelial dysfunction by suppressing the formation of mitochondrial reactive oxygen species through the calpain-1 pathway. J Ginseng Res 2023; 47:144-154. [PMID: 36644390 PMCID: PMC9834019 DOI: 10.1016/j.jgr.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
Background As the major pathophysiological feature of obstructive sleep apnea (OSA), chronic intermittent hypoxia (CIH) is vital for the occurrence of cardiovascular complications. The activation of calpain-1 mediates the production of endothelial reactive oxygen species (ROS) and impairs nitric oxide (NO) bioavailability, resulting in vascular endothelial dysfunction (VED). Ginsenoside Rg1 is thought to against endothelial cell dysfunction, but the potential mechanism of CIH-induced VED remains unclear. Methods C57BL/6 mice and human coronary artery endothelial cells (HCAECs) were exposed to CIH following knockout or overexpression of calpain-1. The effect of ginsenoside Rg1 on VED, oxidative stress, mitochondrial dysfunction, and the expression levels of calpain-1, PP2A and p-eNOS were detected both in vivo and in vitro. Results CIH promoted VED, oxidative stress and mitochondrial dysfunction accompanied by enhanced levels of calpain-1 and PP2A and reduced levels of p-eNOS in mice and cellular levels. Ginsenoside Rg1, calpain-1 knockout, OKA, NAC and TEMPOL treatment protected against CIH-induced VED, oxidative stress and mitochondrial dysfunction, which is likely concomitant with the downregulated protein expression of calpain-1 and PP2A and the upregulation of p-eNOS in mice and cellular levels. Calpain-1 overexpression increased the expression of PP2A, reduced the level of p-eNOS, and accelerated the occurrence and development of VED, oxidative stress and mitochondrial dysfunction in HCAECs exposed to CIH. Moreover, scavengers of O2 • -, H2O2, complex Ⅰ or mitoKATP abolished CIH-induced impairment in endothelial-dependent relaxation. Conclusion Ginsenoside Rg1 may alleviate CIH-induced vascular endothelial dysfunction by suppressing the formation of mitochondrial reactive oxygen species through the calpain-1 pathway.
Collapse
Affiliation(s)
| | - Meili Lu
- Corresponding authors. Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, China.
| | - Hongxin Wang
- Corresponding authors. Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
8
|
Ouyang Y, Tang L, Hu S, Tian G, Dong C, Lai H, Wang H, Zhao J, Wu H, Zhang F, Yang H. Shengmai san-derived compound prescriptions: A review on chemical constituents, pharmacokinetic studies, quality control, and pharmacological properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154433. [PMID: 36191550 DOI: 10.1016/j.phymed.2022.154433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Shengmai San Formula (SMS), composed of Ginseng Radix et Rhizoma, Ophiopogon Radix and Schisandra chinensis Fructus, was a famous formula in Tradition Chinese Medicine (TCM). With the expansion of clinical applications, SMS was developed to different dosage forms, including Shengmai Yin Oral liquid (SMY), Shengmai Capsule (SMC), Shengmai Granule (SMG), Shengmai Injection (SMI) and Dengzhan Shengmai Capsule (DZSMC). These above SMS-derived compound prescriptions (SSCPs) play an important role in the clinical treatment. This review is aimed to providing a comprehensive perspective of SSCP. METHODS The relevant literatures were collected from classical TCM books and a variety of databases, including PubMed, Google Scholar, Science Direct, Springer Link, Web of Science, China National Knowledge Infrastructure, and Wanfang Data. RESULTS The chemical constituents of SSCPs, arrived from the individual medicinal materials including Ginseng Radix et Rhizoma, Ophiopogon Radix, Schisandra chinensis Fructus, Erigerontis Herba, were firstly summarized respectively. Then the pharmacokinetics studies, quality control, and pharmacological properties of SSCPs were all reviewed. The active compounds, pharmacokinetics characterizes, quality control markers, the effects and mechanisms of pharmacology of the different dosage forms of SSCPs were summarized. Furthermore, the research deficiencies of SSCPs and an innovative research paradigm for Chinese materia medica (CMM) formula were proposed. CONCLUSIONS SMS, as a famous CMM formula, has great values in drug research and in clinical treatment especially for cardiocerebrovascular diseases. This article firstly make a comprehensive and systematic review on SMS.
Collapse
Affiliation(s)
- Yi Ouyang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shaowei Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanghuan Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Zunyi Medical University, Zunyi, China
| | - Caihong Dong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
| | - Huaqing Lai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Zunyi Medical University, Zunyi, China
| | - Huanhuan Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jie Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Hongjun Yang
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Liu M, Lin Y, Xu H, Li L, Ding T. Combination of Sophora flavescens alkaloids and Panax quinquefolium saponins modulates different stages of experimental autoimmune myocarditis via the NF‑κB and TGF‑β1 pathways. Exp Ther Med 2022; 24:570. [PMID: 36034755 PMCID: PMC9400131 DOI: 10.3892/etm.2022.11507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Chronic cardiac inflammation and fibrosis can progress into severe forms of cardiomyopathy. Sophora flavescens alkaloids (KuShen) have been previously reported to exert anti-inflammatory effects, whereas Panax quinquefolium saponins (XiYangShen) has been shown to alleviate cardiac fibrosis. Therefore, the potential effects of their combination (KX) on different stages of autoimmune myocarditis were investigated in the present study. Mice were randomly divided into the following four groups: Control; experimental autoimmune myocarditis (EAM); KX-High (275 mg/kg); and KX-Low (138 mg/kg). A 21-day and a 60-day EAM model was established through multi-site subcutaneous injections of cardiac myosin mixed with complete Freund's adjuvant on days 0, 7, 21 and 42. Mice in the High and Low KX groups were treated by gavage (10 ml/kg) daily from day 0 (1 day before treatment) until sacrifice (day 21 or 60). Mice in the control and EAM groups received an equivalent volume of distilled water. The levels of lactate dehydrogenase (LDH), creatine kinase-myocardial band (CK-MB), cardiac troponin I (cTn-I), IL-1β, IL-6, TNF-α, TGF-β1, collagen type I (Col Ⅰ) and collagen type III (Col Ⅲ) were measured by ELISA in the mouse myocardial tissues or serum. Myocardial tissue structure and extent of fibrosis were visualized using H&E and Masson's staining. Western blotting and immunohistochemistry were used to measure the expression levels NF-κB and TGF-β1 pathway proteins in the myocardial tissues. The degree of inflammation in the 21-day EAM model was found to be significantly higher compared with that in the 60-day EAM model. KX significantly reduced the inflammatory response at 21 days by decreasing the expression levels of CK-MB, LDH, cTn-I, IL-1β, IL-6, TNF-α and TGF-β-activated kinase 1-binding protein 1/NF-κB pathway proteins. Myocardial fibrosis in the 60-day EAM model was also significantly worse compared with that in the 21-day EAM model. However, fibrosis was significantly delayed by treatment with KX. In addition, KX significantly decreased the expression levels of TGF-β1, Smad2, Smad4, Col I and Col III. Therefore, these data suggest that KX is beneficial for treating myocarditis by targeting multiple pathways.
Collapse
Affiliation(s)
- Menghui Liu
- Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Yue Lin
- Department of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Huibo Xu
- Pharmacodynamic and Toxicological Evaluation Center, Jilin Academy of Traditional Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Lixin Li
- Department of Pediatrics, Jilin Academy of Traditional Chinese Medicine, Changchun, Jilin 130000, P.R. China
| | - Tao Ding
- Pharmacodynamic and Toxicological Evaluation Center, Jilin Academy of Traditional Chinese Medicine, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
10
|
Karpov AA, Vaulina DD, Smirnov SS, Moiseeva OM, Galagudza MM. Rodent models of pulmonary embolism and chronic thromboembolic pulmonary hypertension. Heliyon 2022; 8:e09014. [PMID: 35295664 PMCID: PMC8919224 DOI: 10.1016/j.heliyon.2022.e09014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/06/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Abstract
Pulmonary embolism (PE) is the third most prevalent cardiovascular disease. It is associated with high in-hospital mortality and the development of acute and chronic complications. New approaches aimed at improving the prognosis of patients with PE are largely dependent on reliable animal models. Mice, rats, hamsters, and rabbits, are currently most commonly used for PE modeling because of their ethical acceptability and economic feasibility. This article provides an overview of the main approaches to PE modeling, and the advantages and disadvantages of each method. Special attention is paid to experimental endpoints, including morphological, functional, and molecular endpoints. All approaches to PE modeling can be broadly divided into three main groups: 1) induction of thromboembolism, either by thrombus formation in vivo or by injection of in vitro prepared blood clots; 2) introduction of particles of non-thrombotic origin; and 3) surgical procedures. The choice of a specific model and animal species is determined based on the objectives of the study. Rodent models of chronic thromboembolic pulmonary hypertension (CTEPH), which is the most devastating complication of PE, are also described. CTEPH models are especially challenging because of insufficient knowledge about the pathogenesis and high fibrinolytic activity of rodent plasma. The CTEPH model should demonstrate a persistent increase in pulmonary artery pressure and stable reduction of the vascular bed due to recurrent embolism. Based on the analysis of available evidence, one might conclude that currently, there is no single optimal method for modeling PE and CTEPH.
Collapse
|
11
|
Han J, Hou J, Liu Y, Liu P, Zhao T, Wang X. Using Network Pharmacology to Explore the Mechanism of Panax notoginseng in the Treatment of Myocardial Fibrosis. J Diabetes Res 2022; 2022:8895950. [PMID: 35372585 PMCID: PMC8975676 DOI: 10.1155/2022/8895950] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The mechanism of Panax notoginseng in treating myocardial fibrosis (MF) was investigated using network pharmacology. METHODS Effective ingredients and potential targets of Panax notoginseng were screened in relevant databases to construct a compound-target network. Targets of MF were then screened to select common targets and construct a protein-protein interaction network. This was followed by Gene Ontology and pathway enrichment analyses. Molecular docking then verified the results of network analysis. RESULTS A total of 14 effective ingredients and 119 potential targets for MF were predicted. Quercetin, beta-sitosterol, and gossypetin were speculated to be the main active ingredients. The mechanism of action may be related to AGE-RAGE, proteoglycans, and IL-17 signaling pathways. Five key targets (IL6, ALB, AKT1, TNF, and VEGFA) may be involved in the treatment of MF using Panax notoginseng. CONCLUSIONS This study embodies the complex network relationship of multicomponents, multitargets, and multipathways of Panax notoginseng in treating MF and provides a novel method for further research on this herb's mechanism.
Collapse
Affiliation(s)
- Jingxue Han
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
- Heilongjiang Academy of Chinese Medical Sciences, Harbin 150036, China
| | - Jingyi Hou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Liu
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
- Heilongjiang Academy of Chinese Medical Sciences, Harbin 150036, China
| | - Peng Liu
- Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing 101300, China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xinwei Wang
- Heilongjiang Academy of Chinese Medical Sciences, Harbin 150036, China
| |
Collapse
|
12
|
Du X, Tao Q, Du H, Zhao Z, Dong Y, He S, Shao R, Wang Y, Han W, Wang X, Zhu Y. Tengdan Capsule Prevents Hypertensive Kidney Damage in SHR by Inhibiting Periostin-Mediated Renal Fibrosis. Front Pharmacol 2021; 12:638298. [PMID: 34084130 PMCID: PMC8167194 DOI: 10.3389/fphar.2021.638298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/08/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND: Hypertension-induced renal damage is a serious and complex condition that has not been effectively treated by conventional blood pressure-lowering drugs. Tengdan capsule (TDC) is a China FDA-approved compound herbal medicine for treating hypertension; however, its chemical basis and pharmacological efficacy have not been fully investigated in a preclinical setting. METHODS: High-performance liquid chromatography (HPLC) was used to identify and quantify the major chemical components of TDC extracted from ultrapure water. Adult spontaneously hypertensive rats (SHR) and age/sex-matched Wistar Kyoto normotensive rats (WKY) were both treated with TDC, losartan, or saline for one month, and their blood pressure (BP) was monitored at the same time by tail-cuff BP system. Biochemical indexes such as urine creatinine (CRE) and blood urea nitrogen (BUN) were determined. Kidney tissue sections were examined with (H&E), and Masson staining to evaluate the pathological effect of TDC on SHR’s kidneys. After TDC treatment, the differentially expressed proteins in the kidneys of SHR were identified by the TMT-based quantitative proteomics analysis, which may provide the targets and possible mechanisms of TDC action. In addition, Western blot analysis, RT-qPCR, and ELISA assays were carried out to further verify the proteomics findings. Finally, two different models involving in vitro renal injuries were established using human kidney HEK293 cells; and the molecular mechanism of TDC kidney protection was demonstrated. RESULTS: Seven chemical compounds, namely Notoginsenoside R1, Ginsenoside RG1, Ginsenoside Re, Ginsenoside Rb1, Sodium Danshensu, Protocatechualdehyde, and Salvianolic acid B, were identified and quantified from the water-soluble extracts of TDC by HPLC. In vivo study using rats showed that TDC effectively reduced BP, BUN, and CRE levels and attenuated renal fibrosis in SHR, and ameliorated damage to the kidneys. Proteomics and subsequent bioinformatics analyses indicated that periostin-mediated inflammatory response and TGFβ/Smad signaling pathway proteins were closely related to the therapeutic effect of TDC in rat kidneys. Western blot analysis and RT-qPCR showed that TDC markedly downregulated the mRNA and protein expression of periostin in renal tissues compared to the untreated SHR. In addition, TGF-β and COL1A1 mRNA levels also decreased in SHR renal tissues following TDC treatment. In vitro studies showed that low to medium doses of TDC down-regulated the expression of periostin in the injury model of HEK293 cell. In addition, medium to high doses of TDC significantly inhibited collagen deposition in TGFβ1-induced HEK293 cell fibrosis. CONCLUSIONS: Major components from the compound herbal medicine Tengdan Capsule are identified and quantified. TDC effectively lowers blood pressure and protects against renal damage caused by hypertension in SHR. Mechanistically, TDC blocks periostin by regulating the TGF-β/Smad signaling pathway in the kidney, both in vivo and in vitro. Preventing periostin-mediated renal fibrosis and inflammation might be a promising strategy for treating a hypertensive renal injury.
Collapse
Affiliation(s)
- Xiaoli Du
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of pharmacy, Inner Mongolia Medical College, Hohhot, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Qianqian Tao
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hongxia Du
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zhenbang Zhao
- Department of pharmacy, Inner Mongolia Medical College, Hohhot, China
| | - Yu Dong
- Department of pharmacy, Inner Mongolia Medical College, Hohhot, China.,Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuang He
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Rui Shao
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yule Wang
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Wenrun Han
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xintong Wang
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yan Zhu
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
13
|
Sarhene M, Ni JY, Duncan ES, Liu Z, Li S, Zhang J, Guo R, Gao S, Gao X, Fan G. Ginsenosides for cardiovascular diseases; update on pre-clinical and clinical evidence, pharmacological effects and the mechanisms of action. Pharmacol Res 2021; 166:105481. [PMID: 33549726 DOI: 10.1016/j.phrs.2021.105481] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/20/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) remains the major cause of death worldwide, accounting for almost 31% of the global mortality annually. Several preclinical studies have indicated that ginseng and the major bioactive ingredient (ginsenosides) can modulate several CVDs through diverse mechanisms. However, there is paucity in the translation of such experiments into clinical arena for cardiovascular ailments due to lack of conclusive specific pathways through which these activities are initiated and lack of larger, long-term well-structured clinical trials. Therefore, this review elaborates on current pharmacological effects of ginseng and ginsenosides in the cardiovascular system and provides some insights into the safety, toxicity, and synergistic effects in human trials. The review concludes that before ginseng, ginsenosides and their preparations could be utilized in the clinical treatment of CVDs, there should be more preclinical studies in larger animals (like the guinea pig, rabbit, dog, and monkey) to find the specific dosages, address the toxicity, safety and synergistic effects with other conventional drugs. This could lead to the initiation of large-scale, long-term well-structured randomized, and placebo-controlled clinical trials to test whether treatment is effective for a longer period and test the efficacy against other conventional therapies.
Collapse
Affiliation(s)
- Michael Sarhene
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Jing Yu Ni
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Esi Sophia Duncan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Zhihao Liu
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Sheng Li
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Jing Zhang
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Rui Guo
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China
| | - Shan Gao
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin 300193, China.
| |
Collapse
|
14
|
Zimmer A, Teixeira RB, Constantin RL, Campos-Carraro C, Aparicio Cordero EA, Ortiz VD, Donatti L, Gonzalez E, Bahr AC, Visioli F, Baldo G, Luz de Castro A, Araujo AS, Belló-Klein A. The progression of pulmonary arterial hypertension induced by monocrotaline is characterized by lung nitrosative and oxidative stress, and impaired pulmonary artery reactivity. Eur J Pharmacol 2021; 891:173699. [PMID: 33160936 DOI: 10.1016/j.ejphar.2020.173699] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023]
Abstract
The time-course of pulmonary arterial hypertension in the monocrotaline (MCT) model was investigated. Male rats were divided into two groups: MCT (received a 60 mg/kg i.p. injection) and control (received saline). The MCT and control groups were further divided into three cohorts, based on the follow-up interval: 1, 2, and 3 weeks. Right ventricle (RV) catheterization was performed and RV hypertrophy (RVH) was estimated. The lungs were used for biochemical, histological, molecular, and immunohistochemical analysis, while pulmonary artery rings were used for vascular reactivity. MCT promoted lung perivascular edema, inflammatory cells exudation, greater neutrophils and lymphocytes profile, and arteriolar wall thickness, compared to CTR group. Increases in pulmonary artery pressure and in RVH were observed in the MCT 2- and 3-week groups. The first week was marked by the presence of nitrosative stress (50% moderate and 33% accentuated staining by nitrotyrosine). These alterations lead to an adaptation of NO production by NO synthase activity after 2 weeks. Oxidative stress was evident in the third week, probably by an imbalance between endothelin-1 receptors, resulting in extracellular matrix remodeling, endothelial dysfunction, and RVH. Also, it was found a reduced pulmonary arterial vasodilatory response to acetylcholine after 2 (55%) and 3 (45%) weeks in MCT groups. The relevance of this study is precisely to show that nitrosative and oxidative stress predominate in distinct time windows of the disease progression.
Collapse
Affiliation(s)
- Alexsandra Zimmer
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Rayane Brinck Teixeira
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Rosalia Lempk Constantin
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Cristina Campos-Carraro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | | | - Vanessa Duarte Ortiz
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Luiza Donatti
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Esteban Gonzalez
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Alan Christhian Bahr
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Fernanda Visioli
- Faculty of Dentistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Guilherme Baldo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Alexandre Luz de Castro
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Alex Sander Araujo
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Adriane Belló-Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Physiology Department, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
15
|
Wu GS, Li HK, Zhang WD. Metabolomics and its application in the treatment of coronary heart disease with traditional Chinese medicine. Chin J Nat Med 2020; 17:321-330. [PMID: 31171266 DOI: 10.1016/s1875-5364(19)30037-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Traditional Chinese Medicine (TCM) is the treasure of Chinese Nation and gained the gradual acceptance of the international community. However, the methods and theories of TCM understanding of diseases are lack of appropriate modern scientific characterization systems. Moreover, traditional risk factors cannot promote to detection and prevent those patients with coronary artery disease (CAD) who have not developed acute myocardial infarction (MI) in time. To sum up, there is still no objective systematic evaluation system for the therapeutic mechanism of TCM in the prevention and cure of cardiovascular disease. Thus, new ideas and technologies are needed. The development of omics technology, especially metabolomics, can be used to predict the level of metabolites in vivo and diagnose the physiological state of the body in time to guide the corresponding intervention. In particular, metabolomics is also a very powerful tool to promote the modernization of TCM and the development of TCM in personalized medicine. This article summarized the application of metabolomics in the early diagnosis, the discovery of biomarkers and the treatment of TCM in CAD.
Collapse
Affiliation(s)
- Gao-Song Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hou-Kai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wei-Dong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
16
|
Ginsenosides: potential therapeutic source for fibrosis-associated human diseases. J Ginseng Res 2019; 44:386-398. [PMID: 32372860 PMCID: PMC7195584 DOI: 10.1016/j.jgr.2019.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/25/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue fibrosis is an eventual pathologic change of numerous chronic illnesses, which is characterized by resident fibroblasts differentiation into myofibroblasts during inflammation, coupled with excessive extracellular matrix deposition in tissues, ultimately leading to failure of normal organ function. Now, there are many mechanistic insights into the pathogenesis of tissue fibrosis, which facilitate the discovery of effective antifibrotic drugs. Moreover, many chronic diseases remain a significant clinical unmet need. For the past five years, many research works have undoubtedly addressed the functional dependency of ginsenosides in different types of fibrosis and the successful remission in various animal models treated with ginsenosides. Caveolin-1, interleukin, thrombospondin-1 (TSP-1), liver X receptors (LXRs), Nrf2, microRNA-27b, PPARδ-STAT3, liver kinase B1 (LKB1)-AMPK, and TGF-β1/Smads are potential therapy targeting using ginsenosides. Ginsenosides can play a targeting role and suppress chronic inflammatory response, collagen deposition, and epithelial-mesenchymal transition (EMT), as well as myofibroblast activation to attenuate fibrosis. In this report, our aim was to focus on the therapeutic prospects of ginsenosides in fibrosis-related human diseases making use of results acquired from various animal models. These findings should provide important therapeutic clues and strategies for the exploration of new drugs for fibrosis treatment.
Collapse
|
17
|
Zimmer A, Teixeira RB, Bonetto JHP, Bahr AC, Türck P, de Castro AL, Campos-Carraro C, Visioli F, Fernandes-Piedras TR, Casali KR, Scassola CMC, Baldo G, Araujo AS, Singal P, Belló-Klein A. Role of inflammation, oxidative stress, and autonomic nervous system activation during the development of right and left cardiac remodeling in experimental pulmonary arterial hypertension. Mol Cell Biochem 2019; 464:93-109. [DOI: 10.1007/s11010-019-03652-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022]
|
18
|
Ma S, Ma J, Mai X, Zhao X, Guo L, Zhang M. Danqi soft capsule prevents infarct border zone remodelling and reduces susceptibility to ventricular arrhythmias in post-myocardial infarction rats. J Cell Mol Med 2019; 23:5454-5465. [PMID: 31232519 PMCID: PMC6653321 DOI: 10.1111/jcmm.14428] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 12/15/2022] Open
Abstract
Danqi soft capsule (DQ) is a traditional Chinese medicine containing Salvia miltiorrhiza and Panax notoginseng; it is safe and efficient in treating ischaemic heart diseases. The purpose of the present study was to assess whether DQ could prevent infarct border zone (IBZ) remodelling and decrease ventricular arrhythmias occurrence in post‐myocardial infarction (MI) stage. MI was induced by a ligation of the left anterior descending coronary artery. DQ was administered to the post‐MI rats started from 1 week after MI surgery for 4 weeks. The results showed that DQ treatment significantly attenuated tachyarrhythmia induction rates and arrhythmia score in post‐MI rats. In echocardiography, DQ improved left ventricular (LV) systolic and diastolic function. Histological assessment revealed that DQ significantly reduced fibrotic areas and myocyte areas, and increased connexin (Cx) 43 positive areas in IBZ. Western blot revealed that DQ treatment significantly reduced the protein expression levels of type I and III collagens, α‐smooth muscle actin (α‐SMA), transforming growth factor‐β1 (TGF‐β1) and Smad3 phosphorylation, while increasing Cx43 amounts. Overall, these findings mainly indicated that DQ intervention regulates interstitial fibrosis, Cx43 expression and myocyte hypertrophy by TGF‐β1/Smad3 pathway in IBZ, inhibits LV remodelling and reduces vulnerability to tachyarrhythmias after MI. This study presents a proof of concept for novel antiarrhythmic strategies in preventing IBZ remodelling, modifying the healed arrhythmogenic substrate and thus reducing susceptibility to ventricular arrhythmias in the late post‐MI period.
Collapse
Affiliation(s)
- Shiyu Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Myocardial Infarction, Guangzhou, China
| | - Jin Ma
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaoyi Mai
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Myocardial Infarction, Guangzhou, China
| | - Xujie Zhao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Liheng Guo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Minzhou Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Myocardial Infarction, Guangzhou, China
| |
Collapse
|
19
|
Chang CM, Shih PH, Chen TJ, Ho WC, Yang CP. Integrated therapy decreases the mortality of patients with polymyositis and dermatomyositis: A Taiwan-wide population-based retrospective study. JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:70-81. [PMID: 30818007 DOI: 10.1016/j.jep.2019.02.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The issue of whether integrated treatment with conventional medicine (CM) and herbal medicine (HM) can reduce mortality in patients with polymyositis/dermatomyositis (PM/DM) had not been addressed. AIM OF THE STUDY In this study, we investigated the effect of integrated therapy on mortality in a retrospective PM/DM cohort in the Taiwan National Health Insurance Research Database (NHIRD). MATERIALS AND METHODS Patients with PM/DM were retrospectively enrolled from the PM/DM Registry of Catastrophic Illnesses cohort in the Taiwan NHIRD between 1997 and 2011. The patients were divided into an integrated medicine (IM) group that received CM and HM and a non-IM group that received CM alone. The Cox proportional hazards regression model and Kaplan-Meier method were used to evaluate the hazard ratio (HR) for mortality. RESULTS Three hundred and eighty-five of 2595 patients with newly diagnosed PM/DM had received IM and 99 had received non-IM. The adjusted HR for mortality was lower in the IM group than in the non-IM group (0.42, 95% confidence interval 0.26-0.68, p < 0.001). The adjusted HR for mortality was also lower in the IM group that had received CM plus HM than in the group that received CM alone (0.48, 95% confidence interval 0.28-0.84, p < 0.05). The core pattern of HM prescriptions integrated with methylprednisolone, methotrexate, azathioprine, or cyclophosphamide to decrease mortality included "San-Qi" (Panax notoginseng), "Bai-Ji" (Bletilla striata), "Chen-Pi" (Citrus reticulata), "Hou-Po" (Magnolia officinalis), and "Dan-Shan" (Salvia miltiorrhiza). CONCLUSION Integrated therapy has reduced mortality in patients with PM/DM in Taiwan. Further investigation of the clinical effects and pharmaceutical mechanism involved is needed.
Collapse
Affiliation(s)
- Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Po-Hsuan Shih
- Department of Chinese Medicine, Cheng Hsin General Hospital, Taipei, Taiwan; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Tzeng-Ji Chen
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Family Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Wen-Chao Ho
- Department of Public Health, China Medical University, Taichung, Taiwan.
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan; Department of Nutrition, Huang-Kuang University, Taichung, Taiwan.
| |
Collapse
|
20
|
Zhang Y, Liu H, Zhang Y, Wu Q, Zhang Y, Zhang J, Zhou X, Jiao H, Fan F, Xue Q, Wang X, Zhong Z. Efficacy evaluation of reteplase in a novel canine acute pulmonary thromboembolism model developed by minimally invasive surgery and digital subtraction angiography. Drug Des Devel Ther 2018; 12:3717-3730. [PMID: 30464403 PMCID: PMC6219412 DOI: 10.2147/dddt.s180151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose In order to evaluate the thrombolytic effects of reteplase in pulmonary thromboembolism (PTE), we developed a novel canine PTE model. The efficacy of reteplase against PTE in comparison to alteplase was clarified for the first time, and this PTE model could be further applied to studies of novel thrombolytic therapies. Patients and methods Twenty-four dogs were divided into four groups: sham operation, vehicle, alteplase, and reteplase. Autologous thrombi/saline were injected into the pulmonary artery, and thrombolytic agents were administrated. Thrombus formation and dissolution were monitored by real-time digital subtraction angiography (DSA), and pulmonary pressures were measured simultaneously. Blood coagulation, blood gas, hematology, and histopathologic examinations were used as subsidiary methods. Results The canine PTE model was established with a significant decrease of blood flow and ~75% blocking area. Administration of reteplase (0.6 mg/kg) resulted in effective thrombus dissolution with a recovery of over 80% blood flow, as effective as alteplase (1.6 mg/kg). Correspondingly, the elevated pulmonary systolic, diastolic, and mean arterial pressures declined to the normal level. Blood coagulation was changed by reteplase, with a dramatic elongation of prothrombin time, activated partial thromboplastin time, and thrombin time, even longer than alteplase. In contrast to the vehicle group, no obvious pathological changes were found in the two thrombolytic groups. Hematological, blood biochemical, and blood gas results also indicated that reteplase had no adverse reactions in this PTE model. Conclusion Reteplase proved to be an effective and safe therapy for PTE for the first time, and a small dosage of reteplase exerted an efficacy comparable to the routine dosage of alteplase. Our findings indicated the potential of reteplase as clinical treatment against PTE. This technically innovative, stability- and validity-proved canine PTE model developed by minimally invasive surgery and DSA resembled major clinical features. This may further facilitate our understanding of thrombotic disorders and development of prophylactic and therapeutic approaches.
Collapse
Affiliation(s)
- Yinbing Zhang
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, , .,Sichuan Kangcheng Biomed Co., Ltd., Chengdu, China, ,
| | - Haifeng Liu
- Angde Biotech Pharmaceutical Co., Ltd., Liaocheng, China
| | - Yingqian Zhang
- Department of Physiology, Southwest Medical University, Luzhou, China
| | - Qiong Wu
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, ,
| | - Yanyan Zhang
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, , .,Sichuan Kangcheng Biomed Co., Ltd., Chengdu, China, ,
| | - Jie Zhang
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, , .,Sichuan Kangcheng Biomed Co., Ltd., Chengdu, China, ,
| | - Xiangshan Zhou
- Angde Biotech Pharmaceutical Co., Ltd., Liaocheng, China
| | - He Jiao
- Department of Interventional therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Fan
- Department of Neurointervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Xue
- Food and Drug Administration of Shibei District Government, Qingdao, China
| | - Xin Wang
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, , .,Sichuan Kangcheng Biomed Co., Ltd., Chengdu, China, ,
| | - Zhihui Zhong
- Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China, , .,Sichuan Kangcheng Biomed Co., Ltd., Chengdu, China, ,
| |
Collapse
|
21
|
Huang Y, Li L, Li X, Fan S, Zhuang P, Zhang Y. Ginseng Compatibility Environment Attenuates Toxicity and Keeps Efficacy in Cor Pulmonale Treated by Fuzi Beimu Incompatibility Through the Coordinated Crosstalk of PKA and Epac Signaling Pathways. Front Pharmacol 2018; 9:634. [PMID: 29962951 PMCID: PMC6013823 DOI: 10.3389/fphar.2018.00634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
Cor pulmonale is characterized by severe right ventricular dysfunction caused by lung disease, particularly chronic obstructive pulmonary disease, which can lead to pulmonary hypertension. Our previous study has demonstrated that Fuzi and Beimu compatibility (FBC), a traditional TCM compatibility taboo, improves lung function in early-stage of pulmonary hypertension through the synergistic action of β-ARs signals. However, FBC increases cardiotoxicity with prolonged treatment and disease progression. Considering that the compatibility environment influences the exertion of the medicine, we selected ginseng for coordinating the compatibility environment to improve the security and extend the therapeutic time window of FBC. Monocrotaline-induced cor pulmonale rats were treated with FBC, ginseng, or ginseng combined with FBC (G/FBC). Then, the pulmonary and cardiac functions of the rats were examined to evaluate the toxicity and efficacy of the treatments. The crosstalk between PKA and Epac pathways was also studied. Results showed that G/FBC ameliorated lung function similar to or even better than FBC treatment did. Furthermore, G/FBC treatment attenuated FBC-induced cardiotoxicity, which significantly restored cardiac dysfunction and clearly decreased myocardial enzymes and apoptosis. The βAR-Gs-PKA/CaMKII pathway was inhibited and the Epac1/ERK1/2 axis was activated in G/FBC group. These findings indicate that ginseng compatibility environment could improve pulmonary function and attenuate cardiotoxicity in cor pulmonale via the coordinated crosstalk of PKA and Epac pathways, implying that ginseng could be used to prevent detrimental cardiotoxicity in cor pulmonale treatment.
Collapse
Affiliation(s)
- Yingying Huang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lili Li
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaojin Li
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Simiao Fan
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
22
|
Multitarget Effects of Danqi Pill on Global Gene Expression Changes in Myocardial Ischemia. Int J Genomics 2018; 2018:9469670. [PMID: 29487863 PMCID: PMC5816862 DOI: 10.1155/2018/9469670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/27/2017] [Accepted: 09/18/2017] [Indexed: 12/30/2022] Open
Abstract
Danqi pill (DQP) is a widely prescribed traditional Chinese medicine (TCM) in the treatment of cardiovascular diseases. The objective of this study is to systematically characterize altered gene expression pattern induced by myocardial ischemia (MI) in a rat model and to investigate the effects of DQP on global gene expression. Global mRNA expression was measured. Differentially expressed genes among the sham group, model group, and DQP group were analyzed. The gene ontology enrichment analysis and pathway analysis of differentially expressed genes were carried out. We quantified 10,813 genes. Compared with the sham group, expressions of 339 genes were upregulated and 177 genes were downregulated in the model group. The upregulated genes were enriched in extracellular matrix organization, response to wounding, and defense response pathways. Downregulated genes were enriched in fatty acid metabolism, pyruvate metabolism, PPAR signaling pathways, and so forth. This indicated that energy metabolic disorders occurred in rats with MI. In the DQP group, expressions of genes in the altered pathways were regulated back towards normal levels. DQP reversed expression of 313 of the 516 differentially expressed genes in the model group. This study provides insight into the multitarget mechanism of TCM in the treatment of complex diseases.
Collapse
|
23
|
Ginsenoside Rb1 for Myocardial Ischemia/Reperfusion Injury: Preclinical Evidence and Possible Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6313625. [PMID: 29430282 PMCID: PMC5753014 DOI: 10.1155/2017/6313625] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/01/2017] [Accepted: 11/12/2017] [Indexed: 11/18/2022]
Abstract
Ginseng is an important herbal drug that has been used worldwide for many years. Ginsenoside Rb1 (G-Rb1), the major pharmacological extract from ginseng, possesses a variety of biological activities in the cardiovascular systems. Here, we conducted a preclinical systematic review to investigate the efficacy of G-Rb1 for animal models of myocardial ischemia/reperfusion injury and its possible mechanisms. Ten studies involving 211 animals were identified by searching 6 databases from inception to May 2017. The methodological quality was assessed by using the CAMARADES 10-item checklist. All the data were analyzed using RevMan 5.3 software. As a result, the score of study quality ranged from 3 to 7 points. Meta-analyses showed that G-Rb1 can significantly decrease the myocardial infarct size and cardiac enzymes (including lactate dehydrogenase, creatine kinase, and creatine kinase-MB) when compared with control group (P < 0.01). Significant decrease in cardiac troponin T and improvement in the degree of ST-segment depression were reported in one study (P < 0.05). Additionally, the possible mechanisms of G-Rb1 for myocardial infarction are antioxidant, anti-inflammatory, antiapoptosis, promoting angiogenesis and improving the circulation. Thus, G-Rb1 is a potential cardioprotective candidate for further clinical trials of myocardial infarction.
Collapse
|
24
|
Deng C, Wu D, Yang M, Chen Y, Ding H, Zhong Z, Lian N, Zhang Q, Wu S, Liu K. The role of tissue factor and autophagy in pulmonary vascular remodeling in a rat model for chronic thromboembolic pulmonary hypertension. Respir Res 2016; 17:65. [PMID: 27234007 PMCID: PMC4884382 DOI: 10.1186/s12931-016-0383-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/24/2016] [Indexed: 02/03/2023] Open
Abstract
Background Few reports have examined tissue factor (TF) and autophagy expression in chronic pulmonary thromboembolic hypertension (CTEPH) animal models. Objectives: To investigate the role of tissue factor (TF), autophagy and their interactions during chronic thromboembolic pulmonary hypertension (CTEPH) pathogenesis in a rat model. Methods Autologous blood clots were repeatedly injected into the left jugular vein of rats with injecting endogenous fibrinolysis inhibitor tranexamic acid (TXA). Mean pulmonary arterial pressure (mPAP), histopathology and TF, Beclin-1 and microtubule-associated protein 1 light chain (LC3) expression levels were detected. Results The mPAP and vessel wall area/total area (WA/TA) ratio in the experiment group increased significantly (P < 0.05). TF mRNA and protein expression levels in the experiment group increased significantly (P < 0.05). Beclin-1 and LC3B mRNA and protein expression levels were lower in the experiment group (P < 0.05). The mPAP had a positive correlation with WA/TA ratio (r = 0.955, P < 0.05). Beclin-1 and LC3B protein expression had a negative correlation with the WA/TA ratio (r = -0.963, P < 0.05, r = -0.965, P < 0.05, respectively). TF protein expression had a negative correlation with both Beclin-1 and LC3B protein expression (r = -0.995, P <0.05, r = -0972, P < 0.05, respectively). Conclusions A rat model of CTEPH can be established by repeatedly introducing autologous blood clots into the pulmonary artery with injecting TXA. TF and autophagy may play a key role during CTEPH pathogenesis, especially in vascular remodeling.
Collapse
Affiliation(s)
- Chaosheng Deng
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China.
| | - Dawen Wu
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Minxia Yang
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Yunfei Chen
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Haibo Ding
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Zhanghua Zhong
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Ningfang Lian
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Qiaoxian Zhang
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Shuang Wu
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| | - Kaixiong Liu
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, 350005, China
| |
Collapse
|
25
|
Yu HT, Zhen J, Pang B, Gu JN, Wu SS. Ginsenoside Rg1 ameliorates oxidative stress and myocardial apoptosis in streptozotocin-induced diabetic rats. J Zhejiang Univ Sci B 2016; 16:344-54. [PMID: 25990051 DOI: 10.1631/jzus.b1400204] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We evaluated the cardioprotective effects of ginsenoside Rg1 in a diabetic rat model induced with high-fat diet and intraperitoneal injection of streptozotocin. Ginsenoside Rg1 was injected intraperitoneally for 12 weeks. Myocardial injury indices and oxidative stress markers were determined. Changes in cardiac ultrastructure were evaluated with transmission electron microscopy. Myocardial apoptosis was assessed via terminal deoxynucleotidyl transferase (TDT)-mediated DNA nick-end labeling (TUNEL) and immunohistochemistry. Ginsenoside Rg1 was associated with a significant dose-dependent reduction in serum levels of creatinine kinase MB and cardiac troponin I, and lessened ultrastructural disorders in diabetic myocardium, relative to the untreated diabetic model rats. Also, compared with the untreated diabetic rats, significant reductions in serum and myocardial levels of malondialdehyde were noted in the ginsenoside Rg1-treated groups, and increased levels of the antioxidants (superoxide dismutase, catalase, and glutathione peroxidase) were detected. TUNEL staining indicated reduced myocardial apoptosis in ginsenoside Rg1-treated rats, which may be associated with reduced levels of caspase-3 (CASP3) and increased levels of B-cell lymphoma-extra-large (Bcl-xL) in the diabetic myocardium. Ginsenoside Rg1 treatment of diabetic rats was associated with reduced oxidative stress and attenuated myocardial apoptosis, suggesting that ginsenoside Rg1 may be of potential preventative and therapeutic value for cardiovascular injury in diabetic patients.
Collapse
Affiliation(s)
- Hai-tao Yu
- Department of Cardiovascular Medicine, the First Hospital of Jilin University, Changchun 130021, China; Department of Cardiovascular Medicine, PLA No. 208 Hospital, Changchun 130062, China; Department of Cardiovascular Medicine, the Second Hospital of Jilin University, Changchun 130041, China
| | | | | | | | | |
Collapse
|
26
|
Zhang C, Ye L, Jin H, Zhao M, Zheng M, Song L, Wang W. Different Concentrations of Notoginsenoside Rg1 Attenuate Hypoxic and Hypercapnia Pulmonary Hypertension by Reducing the Expression of ERK in Rat PASMCs. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/abc.2016.61002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Liu QF, Deng ZY, Ye JM, He AL, Li SS. Ginsenoside Rg1 protects chronic cyclosporin a nephropathy from tubular cell apoptosis by inhibiting endoplasmic reticulum stress in rats. Transplant Proc 2015; 47:566-9. [PMID: 25769608 DOI: 10.1016/j.transproceed.2014.10.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 12/16/2022]
Abstract
INTRODUCTION This study tested the effect of ginsenoside Rg1 (G-Rg1) in cyclosporin A (CsA)-induced endoplasmic reticulum (ER) stress on renal tubular cell apoptosis in a rat model of chronic CsA nephropathy. MATERIALS AND METHODS Twenty-two Sprague-Dawley rats were randomized into 3 groups: a control group, a model group (CsA 25 mg/kg per day), and a G-Rg1 treatment group (CsA 25 mg/kg per day and G-Rg1 20 mg/kg per day). We examined the effects of G-Rg1 on histopathology, terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, and expression of glucose-regulated protein 78, CCAAT/enhancer-binding protein homologous protein, and caspase-3 by using Western blot analysis. RESULTS G-Rg1 attenuated CsA-induced tubulointerstitial fibrosis and reduced tubular epithelial cell apoptosis as assessed by terminal deoxynucleotidyl transferase dUTP nick-end labeling staining and caspase-3 expression. Compared with the model group, it reduced the expression of glucose-regulated protein 78 and CCAAT/enhancer-binding protein homologous protein (0.12 ± 0.03 vs 0.48 ± 0.05 [P < .01]; 0.55 ± 0.11 vs 1.08 ± 0.07 [P < .05]), respectively. CONCLUSIONS G-Rg1 mitigates the progression of chronic CsA nephropathy, at least in part, through inhibition of ER stress-triggered tubular cell apoptosis.
Collapse
Affiliation(s)
- Q-F Liu
- Department of Nephrology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Z-Y Deng
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - J-M Ye
- Department of Nephrology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - A-L He
- Centre Laboratory, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - S-S Li
- Centre Laboratory, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China.
| |
Collapse
|
28
|
YU MEILING, YU XIAOBING, GUO DAOHUA, YU BINBIN, LI LI, LIAO QIAO, XING RONG. Ginsenoside Rg1 attenuates invasion and migration by inhibiting transforming growth factor-β1-induced epithelial to mesenchymal transition in HepG2 cells. Mol Med Rep 2014; 11:3167-73. [DOI: 10.3892/mmr.2014.3098] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 11/19/2014] [Indexed: 11/06/2022] Open
|
29
|
LI LI, WANG YIWEN, QI BENQUAN, YUAN DONGDONG, DONG SHUYING, GUO DAOHUA, ZHANG CUILING, YU MEILING. Suppression of PMA-induced tumor cell invasion and migration by ginsenoside Rg1 via the inhibition of NF-κB-dependent MMP-9 expression. Oncol Rep 2014; 32:1779-86. [PMID: 25174454 PMCID: PMC4203332 DOI: 10.3892/or.2014.3422] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/10/2014] [Indexed: 01/14/2023] Open
Abstract
Ginseng has become one of the most commonly used alternative herbal medicines, and its active component, ginsenoside Rg1 has known pharmacological effects, including anticancer properties. However, the effects of ginsenoside Rg1 on metastasis have yet to be investigated. In this study, we demonstrated the ability of ginsenoside Rg1 to suppress phorbol myristate acetate (PMA)-induced invasion and migration in MCF-7 breast cancer cells. MCF-7 cells were treated with ginsenoside Rg1 and incubated with or without PMA. The protein and mRNA expression of MMP-9 and MMP-2 was analyzed using Transwell and wound‑healing assays and western blotting. The results showed that suppression was associated with the reduced secretion of MMP-9, a key metastatic enzyme. MMP-9 levels were regulated transcriptionally and correlated with the suppression of NF-κB phosphorylation and DNA binding activity. Conversely, ginsenoside Rg1 did not affect MMP-2 mRNA and TIMP-1 mRNA levels, or the activation of AP-1, suggesting a specificity of pathway inhibition. Inhibition of NF‑κB activation by p65 small‑interfering RNA (siRNA) was shown to suppress PMA-induced cell invasion and migration. The siRNA studies also showed that PMA-induced MMP-9 expression is NF-κB-dependent. The results suggested that the anticancer properties of ginsenoside Rg1 may derive from its ability to inhibit invasion and migration, and that these processes are regulated in breast cancer cells through the NF-κB‑mediated regulation of MMP-9 expression.
Collapse
Affiliation(s)
- LI LI
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - YIWEN WANG
- Department of Pharmacy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - BENQUAN QI
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - DONGDONG YUAN
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510700, P.R. China
| | - SHUYING DONG
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - DAOHUA GUO
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - CUILING ZHANG
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - MEILING YU
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
30
|
Jiang M, Kang L, Wang Y, Zhao X, Liu X, Xu L, Li Z. A metabonomic study of cardioprotection of ginsenosides, schizandrin, and ophiopogonin D against acute myocardial infarction in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:350. [PMID: 25249156 PMCID: PMC4182767 DOI: 10.1186/1472-6882-14-350] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/19/2014] [Indexed: 01/19/2023]
Abstract
Background Metabonomics is a useful tool for studying mechanisms of drug treatment using systematic metabolite profiles. Ginsenosides Rg1 and Rb1, ophiopogonin D, and schizandrin are the main bioactive components of a traditional Chinese formula (Sheng-Mai San) widely used for the treatment of coronary heart disease. It remains unknown the effect of individual bioactive component and how the multi-components in combination affect the treating acute myocardial infarction (AMI). Methods Rats were divided into 7 groups and dosed consecutively for 7 days with mono and combined-therapy administrations. Serum samples were analyzed by proton nuclear magnetic resonance (1H NMR) spectroscopy. Partial least squares discriminate analysis (PLS-DA) was employed to distinguish the metabolic profile of rats in different groups and identify potential biomarkers. Results Score plots of PLS-DA exhibited that combined-therapy groups were significantly different from AMI group, whereas no differences were observed for mono-therapy groups. We found that AMI caused comprehensive metabolic changes involving stimulation of glycolysis, suppression of fatty acid oxidation, together with disturbed metabolism of arachidonic acid, linoleate, leukotriene, glycerophospholipid, phosphatidylinositol phosphate, and some amino acids. β-hydroxybutyrate, cholines and glucose were regulated by mono-therapy of schizandrin and ginsenosides respectively. Besides these metabolites, combined-therapy ameliorated more of the AMI-induced metabolic changes including glycerol, and O-acetyl glycoprotein. A remarkable reduction of lactate suggested the therapeutic effect of combined-therapy through improving myocardial energy metabolism. Conclusions This study provided novel metabonomic insights on the mechanism of synergistic cardioprotection of combined-therapy with ginsenosides, schizandrin, and ophiopogonin D, and demonstrated the potential of discovering new drugs by combining bioactive components from traditional Chinese formula. Electronic supplementary material The online version of this article (doi:10.1186/1472-6882-14-350) contains supplementary material, which is available to authorized users.
Collapse
|