1
|
Hao D, Luo W, Yan Y, Zhou J. Focus on cuproptosis: Exploring new mechanisms and therapeutic application prospects of cuproptosis regulation. Biomed Pharmacother 2024; 178:117182. [PMID: 39053428 DOI: 10.1016/j.biopha.2024.117182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cuproptosis is a novel form of regulated cell death, which plays an important role in the physiological and pathological processes of the human body. Despite the increasing research on cuproptosis-related genes (CRGs) and their correlation with diseases, the pathogenesis of cuproptosis-related diseases remains unclear. Furthermore, there is a lack of reviews on the emerging technologies for regulating cuproptosis in disease treatment. This study delves into the copper-induced cell death mechanism, distinguishing cuproptosis from mechanisms like oxidative stress, glutathione synthesis inhibition, and ubiquitin-proteasome system inhibition. Several long-standing mysteries of diseases such as Wilson's disease and Menkes disease may be attributed to the occurrence of cuproptosis. In addition, we also review the detection indicators related to cuproptosis, providing targets for the diagnosis of cuproptosis-related diseases, and summarize the application value of cuproptosis in tumor therapy to better elucidate the impact of copper in cell death and diseases, and thus to promote the application prospects and possible strategies of cuproptosis-related substances, such as copper ion chelators, copper ion carriers, and copper nanomaterials, in disease therapy.
Collapse
Affiliation(s)
- Donglin Hao
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Wei Luo
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| |
Collapse
|
2
|
Göktaş MA, Yalcin N. Adherence to medical treatment for Wilson's disease in children and adolescents: a cohort study from Turkey. Orphanet J Rare Dis 2024; 19:105. [PMID: 38454433 PMCID: PMC10921804 DOI: 10.1186/s13023-024-03113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/03/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND This study aimed to assess medication adherence and demographic, clinical, and psychopathological parameters such as quality of life, depression, and anxiety levels that can affect pediatrics with Wilson's Disease (WD). METHODS A prospective cohort study was conducted at an outpatient clinic in Turkey among pediatric patients (2 to 18 years) with WD between November 2022 and April 2023. The Medication Adherence Report Scale (MARS-5) as a subjective and Medication Possession Ratio (MPR) as an objective assessment were scored. Physical, genetic and biochemical parameters, the Pediatric Quality of Life Inventory (PedsQL) for both parents and patients, Childhood Depression Inventory, State Trait Anxiety Inventory were also administered. RESULTS A total of 30 pediatric outpatients who were prescribed D-penicillamine (n = 27) or trientine (n = 3) as chelators and zinc (n = 29) and pyridoxine (n = 19) as supplements were included. Proteinuria (n = 3), skin rash (n = 2), and gastrointestinal upset (n = 2) were observed. When the correlation between MARS-5 and duration of follow-up was examined, a significant negative correlation was found (p = 0.014). According to MPRs, non-adherence rates (missed doses ≥ 20%) were 29.6%, 17.2% and 5.3% for D-penicillamine, zinc and pyridoxine, respectively. PedsQL scores were higher than those of parents, with a positive correlation between them (p < 0.001). Also, there was a significant positive correlation between PedsQL and State Anxiety Inventory (p < 0.001). Comparing the change in urinary copper levels between different levels of treatment knowledge, significant differences were observed between high- and low levels (p = 0.043). CONCLUSIONS Overall, nonadherence rates were 23.3% based on MARS-5 and 5.3-29.6% based on MPR. It is essential to consider factors such as the duration of follow-up, biochemical parameters, treatment knowledge, quality of life and anxiety as potential influencers of medication adherence.
Collapse
Affiliation(s)
- Mehmet Akif Göktaş
- Division of Pediatric Gastroenterology, Medical Park Göztepe Hospital, Bahçeşehir University, İstanbul, Turkey
| | - Nadir Yalcin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
3
|
Farag CM, Johnston EK, Antar RM, Issa SG, Gadiwalla Q, Tariq Z, Kim SA, Whalen MJ. Unveiling the genomic landscape of possible metastatic malignant transformation of teratoma secondary to cisplatin-chemotherapy: a Tempus gene analysis-based case report literature review. Front Oncol 2023; 13:1192843. [PMID: 37427132 PMCID: PMC10324607 DOI: 10.3389/fonc.2023.1192843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
In this case report, we describe a patient who developed metastatic liver cancer of unknown primary origin one year following the surgical removal of a retroperitoneal adenocarcinoma. The retroperitoneal adenocarcinoma is considered a malignant transformation of teratoma (MTT), given the patient's distant history of testicular tumor excised 25 years prior and treated with chemotherapy. Despite no primary tumor being identified, the leading primary hypothesis is that the liver metastasis stemmed from the resected retroperitoneal adenocarcinoma from one year prior. We theorize that the patient's cisplatin-based chemotherapy 25 years ago may have triggered the MTT, as documented in the existing literature. Using TEMPUS gene testing on both the retroperitoneal adenocarcinoma and the recently discovered liver metastasis, we identified several genes with variants of unknown significance (VUS) that could potentially be linked to cisplatin chemotherapy resistance. While we cannot conclude that this patient definitively underwent MTT, it remains the most plausible explanation. Future research should investigate both the validity of the genes we have uncovered with respect to cisplatin resistance, as well as other genes associated with cisplatin resistance to further understand the pathogenesis of cisplatin resistance for better prediction of treatment response. As the world of medicine shifts towards individualized therapies and precision medicine, reporting and analyzing genetic mutations derived from tumors remains imperative. Our case report aims to contribute to the growing database of defined mutations and underscores the immense potential of genetic analysis in directing personalized treatment options.
Collapse
Affiliation(s)
- Christian M. Farag
- Department of Medicine, George Washington University School of Medicine, Washington, DC, United States
| | - Elena K. Johnston
- Department of Medicine, George Washington University School of Medicine, Washington, DC, United States
| | - Ryan M. Antar
- Department of Urology, George Washington University School of Medicine, Washington, DC, United States
| | - Shaher G. Issa
- Department of Medicine, George Washington University School of Medicine, Washington, DC, United States
| | - Qasim Gadiwalla
- Department of Surgery, George Washington University School of Medicine, Washington, DC, United States
| | - Zoon Tariq
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Sun A. Kim
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Michael J. Whalen
- Department of Urology, George Washington University School of Medicine, Washington, DC, United States
| |
Collapse
|
4
|
Yang GM, Xu L, Wang RM, Tao X, Zheng ZW, Chang S, Ma D, Zhao C, Dong Y, Wu S, Guo J, Wu ZY. Structures of the human Wilson disease copper transporter ATP7B. Cell Rep 2023; 42:112417. [PMID: 37074913 DOI: 10.1016/j.celrep.2023.112417] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/22/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
The P-type ATPase ATP7B exports cytosolic copper and plays an essential role in the regulation of cellular copper homeostasis. Mutants of ATP7B cause Wilson disease (WD), an autosomal recessive disorder of copper metabolism. Here, we present cryoelectron microscopy (cryo-EM) structures of human ATP7B in the E1 state in the apo, the putative copper-bound, and the putative cisplatin-bound forms. In ATP7B, the N-terminal sixth metal-binding domain (MBD6) binds at the cytosolic copper entry site of the transmembrane domain (TMD), facilitating the delivery of copper from the MBD6 to the TMD. The sulfur-containing residues in the TMD of ATP7B mark the copper transport pathway. By comparing structures of the E1 state human ATP7B and E2-Pi state frog ATP7B, we propose the ATP-driving copper transport model of ATP7B. These structures not only advance our understanding of the mechanisms of ATP7B-mediated copper export but can also guide the development of therapeutics for the treatment of WD.
Collapse
Affiliation(s)
- Guo-Min Yang
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Lingyi Xu
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Rou-Min Wang
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xin Tao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Zi-Wei Zheng
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shenghai Chang
- Department of Biophysics, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Demin Ma
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Cheng Zhao
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yi Dong
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China.
| | - Jiangtao Guo
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
| | - Zhi-Ying Wu
- Department of Medical Genetics and Center for Rare Diseases, and Department of Neurology in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
5
|
Evaluation of the Mechanism of Jiedu Huazhuo Quyu Formula in Treating Wilson's Disease-Associated Liver Fibrosis by Network Pharmacology Analysis and Molecular Dynamics Simulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9363131. [PMID: 35707473 PMCID: PMC9192323 DOI: 10.1155/2022/9363131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/28/2022] [Accepted: 05/14/2022] [Indexed: 12/23/2022]
Abstract
The Jiedu Huazhuo Quyu formula (JHQ) shows significant beneficial effects against liver fibrosis caused by Wilson's disease (WD). Hence, this study aimed to clarify the mechanisms of the JHQ treatment in WD-associated liver fibrosis. First, we collected 103 active compounds and 527 related targets of JHQ and 1187 targets related to WD-associated liver fibrosis from multiple databases. Next, 113 overlapping genes (OGEs) were obtained. Then, we built a protein-protein interaction (PPI) network with Cytoscape 3.7.2 software and performed the Gene Ontology (GO) term and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analyses with GENE DENOVO online sites. Furthermore, module analysis was performed, and the core target genes in the JHQ treatment of WD-associated liver fibrosis were obtained. Pathway and functional enrichment analyses, molecular docking studies, molecular dynamic (MD) simulation, and Western blot (WB) were then performed. The results indicated that 8 key active compounds including quercetin, luteolin, and obacunone in JHQ might affect the 6 core proteins including CXCL8, MAPK1, and AKT1 and 107 related signaling pathways including EGFR tyrosine kinase inhibitor resistance, Kaposi sarcoma-associated herpesvirus infection, and human cytomegalovirus infection signaling pathways to exhibit curative effects on WD-associated liver fibrosis. Mechanistically, JHQ might inhibit liver inflammatory processes and vascular hyperplasia, regulate the cell cycle, and suppress both the activation and proliferation of hepatic stellate cells (HSCs). This study provides novel insights for researchers to systematically explore the mechanism of JHQ in treating WD-associated liver fibrosis.
Collapse
|
6
|
Michniewicz F, Saletta F, Rouaen JRC, Hewavisenti RV, Mercatelli D, Cirillo G, Giorgi FM, Trahair T, Ziegler D, Vittorio O. Copper: An Intracellular Achilles' Heel Allowing the Targeting of Epigenetics, Kinase Pathways, and Cell Metabolism in Cancer Therapeutics. ChemMedChem 2021; 16:2315-2329. [PMID: 33890721 DOI: 10.1002/cmdc.202100172] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Copper is an essential transition metal frequently increased in cancer known to strongly influence essential cellular processes. Targeted therapy protocols utilizing both novel and repurposed drug agents initially demonstrate strong efficacy, before failing in advanced cancers as drug resistance develops and relapse occurs. Overcoming this limitation involves the development of strategies and protocols aimed at a wider targeting of the underlying molecular changes. Receptor Tyrosine Kinase signaling pathways, epigenetic mechanisms and cell metabolism are among the most common therapeutic targets, with molecular investigations increasingly demonstrating the strong influence each mechanism exerts on the others. Interestingly, all these mechanisms can be influenced by intracellular copper. We propose that copper chelating agents, already in clinical trial for multiple cancers, may simultaneously target these mechanisms across a wide variety of cancers, serving as an excellent candidate for targeted combination therapy. This review summarizes the known links between these mechanisms, copper, and copper chelation therapy.
Collapse
Affiliation(s)
- Filip Michniewicz
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Federica Saletta
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Jourdin R C Rouaen
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Rehana V Hewavisenti
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Toby Trahair
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - David Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Zinc Monotherapy as an Alternative Treatment Option for Decompensated Liver Disease due to Wilson Disease? Case Reports Hepatol 2020; 2020:1275940. [PMID: 32528738 PMCID: PMC7201455 DOI: 10.1155/2020/1275940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/03/2019] [Accepted: 12/21/2019] [Indexed: 11/17/2022] Open
Abstract
Background Wilson disease is a rare metabolic disorder involving copper metabolism, and patients may present with a variable degree of hepatic, neurologic, and psychiatric manifestations. In the case of hepatic presentation, treatment is usually initiated with potentially toxic copper chelators (D-penicillamine or Trenton). Although zinc is of low toxicity and low cost for treatment of Wilson disease, it has been limited to the adjunctive as a single maintenance drug or for asymptomatic patients. The use of zinc monotherapy in patients suffering from a severe liver disease was not well studied. In our case report, we describe a pediatric patient who presented with liver failure and the use of zinc monotherapy in patients with severe hepatic manifestations. Case presentation. A 15-year-old male patient from Ethiopia presented with generalized body swelling (edema and ascites) with yellowish discoloration of his eyes and easy fatigability. He had hyperbilirubinemia, coagulopathy, hypoalbuminemia, and deranged liver enzymes. He had a Keyser–Fleischer ring visible with the naked eye, which was confirmed by slit-lamp examination. He had very low serum ceruloplasmin (<8 mg/L) and high 24-hour urine copper (150 mcg/dl). In accordance with the scoring system proposed by the 8th International Meeting on Wilson Disease and Menkes Disease, a diagnosis of Wilson disease was made. Zinc monotherapy with low copper diet was initiated for decompensated liver disease due to Wilson disease because of the inaccessibility of chelators (D-penicillamine or Trientine). After months of treatment with zinc, the patient experienced normalization of hepatic synthetic function and resolution of hypoalbuminemia and coagulopathy. The patient had also clinically stabilized (ascites, lower extremity swelling, edema, and jaundice were improved. Currently, the patient is on follow-up almost for the last four years in the gastrointestinal clinic. Conclusion Our case shows that zinc has the potential for treatment in improving liver function. Though zinc has its own side effects, it is important and maybe an alternative treatment option in those with limited resources (not able to access chelators). This example hopefully will encourage future investigations and researches on zinc monotherapy for treating symptomatic decompensated hepatic Wilson disease.
Collapse
|
8
|
Jończy A, Lipiński P, Ogórek M, Starzyński RR, Krzysztofik D, Bednarz A, Krzeptowski W, Szudzik M, Haberkiewicz O, Miłoń A, Grzmil P, Lenartowicz M. Functional iron deficiency in toxic milk mutant mice (tx-J) despite high hepatic ferroportin: a critical role of decreased GPI-ceruloplasmin expression in liver macrophages. Metallomics 2020; 11:1079-1092. [PMID: 31011744 DOI: 10.1039/c9mt00035f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Jackson toxic milk mutant mice (tx-J) carrying a missense mutation in the Atp7b gene are animal models of the Wilson disease. In both the Wilson patients and the tx-J mice, mutations in the ATP7B/Atp7b gene lead to disturbances in copper metabolism. The dysfunction of ATP7B/Atp7b leads to a reduction in the incorporation of copper into apoceruloplasmin; this decreases the ferroxidase activity of ceruloplasmin necessary for the efflux of iron from cells and reduces the release of copper from hepatocytes to the bile; this results in a massive hepatic copper accumulation. A decrease in the ferroxidase activity of ceruloplasmin in the tx-J mice emphasises the practicality of this animal model for the exploration of disturbances in iron balance triggered by dysregulation of copper metabolism. We found that 6-month-old tx-J mutants developed mild anaemia caused by functional iron deficiency. The tx-J mutants showed decreased plasma iron levels with concomitant iron accumulation in hepatocytes and liver macrophages. Hepatic iron retention was accompanied by decreased expression of the membrane form of ceruloplasmin in both liver cell types. Interestingly, in the liver of mutants, we found high levels of ferroportin (an iron exporter) on the surface of liver macrophages despite increased hepatic expression of hepcidin, a peptide inducing internalization and degradation of ferroportin. We conclude that even when the ferroportin expression is high, ceruloplasmin remains a limiting factor in the release of iron to the extracellular environment.
Collapse
Affiliation(s)
- Aneta Jończy
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences Wólka Kosowska, Postepu 36A, 05-552 Magdalenka, Jastrzebiec, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Heysieattalab S, Sadeghi L. Effects of Delphinidin on Pathophysiological Signs of Nucleus Basalis of Meynert Lesioned Rats as Animal Model of Alzheimer Disease. Neurochem Res 2020; 45:1636-1646. [PMID: 32297026 DOI: 10.1007/s11064-020-03027-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is an advanced neurodegenerative disorder greatly accompanied by cognitive deficits, oxidative stress, inflammation, amyloid plaques deposition, and acetylcholinesterase (AChE) hyper-activation. Growing evidence suggests natural compounds with antioxidant and anti-inflammatory features improve pathophysiological signs of AD. The present study was designed to investigate the effects of Delphinidin (25, 50 mg/kg) as an anthocyanidin on spatial memory impairment and AD hallmarks such as hippocampal AChE activity, amyloid plaques deposition, oxidative stress and expression of amyloid precursor protein (APP), AChE, and amyloid beta (Aβ) proteins in nucleus basalis of Meynert (NBM) lesioned rats as the most prevalent animal model of AD. Interestingly, Delphinidin-treated animals showed a significant decrease in escape latency and distance moved. Furthermore, in probe test, NBM lesioned rats treated with both doses of Delphinidin spent more time in the target quadrant zone in Morris water maze task. It could also interact with catalytic site of AChE enzyme and inhibits acetylcholine hydrolysis in in vitro and in vivo conditions. In addition, Delphinidin could scavenge additional produced reactive oxygen molecules dose dependently. Our immunoblotting analysis confirmed high dose of Delphinidin reduced AChE, APP and Aβ contents in AD model. Staining of hippocampus tissue revealed that Delphinidin treatment decreased amyloid plaques formation in NBM lesion rats. It seems that Delphinidin is a plate-like molecule intercalated between β-plated sheets related to Aβ molecules and inhibited amyloid fibril formation. Altogether, Delphinidin and Delphinidin-rich fruits could be suggested as a therapeutic adjuvant in AD and other related cognitive disorders.
Collapse
Affiliation(s)
| | - Leila Sadeghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, P.O. Box 5166616471, Tabriz, Iran.
| |
Collapse
|
10
|
Jojo GM, Kuppusamy G, Selvaraj K, Baruah UK. Prospective of managing impaired brain insulin signalling in late onset Alzheimers disease with excisting diabetic drugs. J Diabetes Metab Disord 2019; 18:229-242. [PMID: 31275894 DOI: 10.1007/s40200-019-00405-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/12/2019] [Indexed: 12/25/2022]
Abstract
Late onset Alzheimer's disease (AD) is the most common cause of dementia among elderly. The exact cause of the disease is until now unknown and there is no complete cure for the disease. Growing evidence suggest that AD is a metabolic disorder associated with impairment in brain insulin signalling. These findings enriched the scope for the repurposing of diabetic drugs in AD management. Even though many of these drugs are moving in a positive direction in the ongoing clinical studies, the extent of the success has seen to influence by several properties of these drugs since they were originally designed to manage the peripheral insulin resistance. In depth understandings of these properties is hence highly significant to optimise the use of diabetic drugs in the clinical management of AD; which is the primary aim of the present review article.
Collapse
Affiliation(s)
- Gifty M Jojo
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Kousalya Selvaraj
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| | - Uday Krishna Baruah
- Department of Pharmaceutics, JSS College of pharmacy, Ootacamund, JSS Academy of Higher Education & Research, Mysore, India
| |
Collapse
|
11
|
Gut Microbiota Disorder, Gut Epithelial and Blood-Brain Barrier Dysfunctions in Etiopathogenesis of Dementia: Molecular Mechanisms and Signaling Pathways. Neuromolecular Med 2019; 21:205-226. [PMID: 31115795 DOI: 10.1007/s12017-019-08547-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 05/17/2019] [Indexed: 12/12/2022]
Abstract
Emerging evidences indicate a critical role of the gut microbiota in etiopathogenesis of dementia, a debilitating multifactorial disorder characterized by progressive deterioration of cognition and behavior that interferes with the social and professional functions of the sufferer. Available data suggest that gut microbiota disorder that triggers development of dementia is characterized by substantial reduction in specific species belonging to the Firmicutes and Bacteroidetes phyla and presence of pathogenic species, predominantly, pro-inflammatory bacteria of the Proteobacteria phylum. These changes in gut microbiota microecology promote the production of toxic metabolites and pro-inflammatory cytokines, and reduction in beneficial substances such as short chain fatty acids and other anti-inflammatory factors, thereby, enhancing destruction of the gut epithelial barrier with concomitant activation of local and distant immune cells as well as dysregulation of enteric neurons and glia. This subsequently leads to blood-brain barrier dysfunctions that trigger neuroinflammatory reactions and predisposes to apoptotic neuronal and glial cell death, particularly in the hippocampus and cerebral cortex, which underlie the development of dementia. However, the molecular switches that control these processes in the histo-hematic barriers of the gut and brain are not exactly known. This review integrates very recent data on the molecular mechanisms that link gut microbiota disorder to gut epithelial and blood-brain barrier dysfunctions, underlying the development of dementia. The signaling pathways that link gut microbiota disorder with impairment in cognition and behavior are also discussed. The review also highlights potential therapeutic options for dementia.
Collapse
|
12
|
Li H, Tao R, Liu L, Shang S. Population screening and diagnostic strategies in screening family members of Wilson's disease patients. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S59. [PMID: 31179296 DOI: 10.21037/atm.2019.03.54] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Wilson's disease (WD), also named hepatolenticular degeneration, is an autosomal-recessive disorder in which abnormal copper metabolism leads to copper excretion disorder and deposition in target organs. WD has a high mortality rate and disability rate, however, it is one of the treatable hereditary diseases. Irreversible tissue injury can be prevented if WD was diagnosed and treated before the development of clinical symptoms. Thus it is necessary to screen WD in the family members of the proband. First-degree relatives of a proband with WD should be screened. First-degree relatives should include the previous generation, siblings and the next generation. If available, genetic testing can be used as the primary screening method. Although the relatives of a proband are more likely to be patients with WD, the diagnosis should be based on sufficient evidence to avoid unnecessary lifelong treatment.
Collapse
Affiliation(s)
- Huamei Li
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Ran Tao
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Lifang Liu
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Shiqiang Shang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| |
Collapse
|
13
|
Qian Z, Cui X, Huang Y, Liu Y, Li N, Zheng S, Jiang J, Cui S. Novel mutations found in the ATP7B gene in Chinese patients with Wilson's disease. Mol Genet Genomic Med 2019; 7:e649. [PMID: 30884209 PMCID: PMC6503029 DOI: 10.1002/mgg3.649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 11/29/2022] Open
Abstract
Background Wilson's disease (WD) is an autosomal recessive genetic disease caused by mutations in ATP7B and characterized by copper metabolism disorders. Methods Direct sequencing of the ATP7B gene is the most sensitive and widely used confirmatory testing method. Fourteen probands with WD and 12 family members participated in this study. The ATP7B gene was analyzed by direct sequencing. Results Twenty‐nine different variants (27 substitutions, 1 duplication, 1 deletion) were found. Of the 23 reported variants, nine nondisease variants, 11 disease variants, one silent variant, and two variants with uncertain functions were identified. The six novel variants included c.1875T>A, c.2306T>C, c.3028A>G, c.3243G>A, c.3437_3438 delTG, and c.3903+5G>A. Conclusion These findings will assist in the diagnosis of WD. The novel variants have enriched the WD database.
Collapse
Affiliation(s)
- Zhiling Qian
- Interventional Center for Oncology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiongwei Cui
- Interventional Center for Oncology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yunli Huang
- Department of Immunologic Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yanmin Liu
- Department of Immunologic Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Surgical Department, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Sujun Zheng
- Department of Artificial Liver Therapy, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Jun Jiang
- Beijing Macro & Micro Test Bio-Tech Co., Ltd, Beijing, China
| | - Shichang Cui
- Interventional Center for Oncology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Zhang L, Xu J, Gao J, Chen P, Yin M, Zhao W. Decreased immunoglobulin G in brain regions of elder female APOE4-TR mice accompany with Aβ accumulation. IMMUNITY & AGEING 2019; 16:2. [PMID: 30700991 PMCID: PMC6347753 DOI: 10.1186/s12979-018-0142-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022]
Abstract
Background Apolipoprotein E4 (APOE4) and ageing are the most important known risk factors for late-onset Alzheimer’s disease (AD). In the present study, we determined the alterations of IgG, CD19, and Aβ in various brain regions of uninfected male and female APOE3- and APOE4-TR mice at the age of 3 and 10 months to elucidate impacts of AD risk factors on alterations of brain IgG. Results Positive staining for IgG was distributed across the brain, including neocortex, entorhinal cortex, hippocampus, thalamus and cerebellum. IgG positive staining was mainly located on microglia, but not astrocytes. Some IgG positive neurons were also observed, but only in mediodorsal thalamic nucleus. Compared with APOE3-TR mice, 10-month-old female APOE4-TR mice had lower IgG level in AD susceptible brain regions such as neocortex, entorhinal cortex and hippocampus, but no significant changes in thalamus and cerebellum, two regions nearly intact in AD. In addition, the expression of CD19, a specific marker for mature B cells, was significantly reduced in the hippocampus of 10-month-old female APOE4-TR mice. Although there were no obvious differences in plasma IgG levels between APOE4- and age matched female APOE3-TR mice, significant decreased B cell amount in blood of 10-month-old female APOE4-TR mice have also been found. Moreover, more obvious positive staining for Aβ was observed in the cortex of 10-month-old female APOE4-TR mice than other groups. Conclusions Our study demonstrated that AD risk factors were associated with IgG alterations in various brain regions, which might result from the defects of humoral immunity and lead to the impairment of IgG-mediated clearance of Aβ by microglia, therefore facilitated AD progression.
Collapse
Affiliation(s)
- Lihang Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Juan Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Jinchao Gao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Peiqing Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Ming Yin
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| | - Wenjuan Zhao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 China
| |
Collapse
|
15
|
Lorenzo-Gutiérrez D, Gómez-Gil L, Guarro J, Roncero MIG, Fernández-Bravo A, Capilla J, López-Fernández L. Role of the Fusarium oxysporum metallothionein Mt1 in resistance to metal toxicity and virulence. Metallomics 2019; 11:1230-1240. [DOI: 10.1039/c9mt00081j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Soil organisms exhibit high tolerance to heavy metals, probably acquired through evolutionary adaptation to contaminated environments.
Collapse
Affiliation(s)
- Damaris Lorenzo-Gutiérrez
- Unitat de Microbiologia
- Facultat de Medicina i Ciències de la Salut and Institut d'Investigació Sanitària Pere Virgili (IISPV)
- Universitat Rovira i Virgili
- Reus
- Spain
| | - Lucía Gómez-Gil
- Departamento de Genetica
- Facultad de Ciencias and Campus de Excelencia Internacional Agroalimentario ceiA3
- Universidad de Cordoba
- 14071 Cordoba
- Spain
| | - Josep Guarro
- Unitat de Microbiologia
- Facultat de Medicina i Ciències de la Salut and Institut d'Investigació Sanitària Pere Virgili (IISPV)
- Universitat Rovira i Virgili
- Reus
- Spain
| | - M. Isabel G. Roncero
- Departamento de Genetica
- Facultad de Ciencias and Campus de Excelencia Internacional Agroalimentario ceiA3
- Universidad de Cordoba
- 14071 Cordoba
- Spain
| | - Ana Fernández-Bravo
- Unitat de Microbiologia
- Facultat de Medicina i Ciències de la Salut and Institut d'Investigació Sanitària Pere Virgili (IISPV)
- Universitat Rovira i Virgili
- Reus
- Spain
| | - Javier Capilla
- Unitat de Microbiologia
- Facultat de Medicina i Ciències de la Salut and Institut d'Investigació Sanitària Pere Virgili (IISPV)
- Universitat Rovira i Virgili
- Reus
- Spain
| | - Loida López-Fernández
- Unitat de Microbiologia
- Facultat de Medicina i Ciències de la Salut and Institut d'Investigació Sanitària Pere Virgili (IISPV)
- Universitat Rovira i Virgili
- Reus
- Spain
| |
Collapse
|
16
|
Presa FB, Marques MLM, Viana RLS, Nobre LTDB, Costa LS, Rocha HAO. The Protective Role of Sulfated Polysaccharides from Green Seaweed Udotea flabellum in Cells Exposed to Oxidative Damage. Mar Drugs 2018; 16:md16040135. [PMID: 29677120 PMCID: PMC5923422 DOI: 10.3390/md16040135] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/04/2018] [Accepted: 04/14/2018] [Indexed: 12/02/2022] Open
Abstract
Seaweed is a rich source of bioactive sulfated polysaccharides. We obtained six sulfated polysaccharide-rich fractions (UF-0.3, UF-0.5, UF-0.6, UF-0.7, UF-1.0, and UF-2.0) from the green seaweed Udotea flabellum (UF) by proteolytic digestion followed by sequential acetone precipitation. Biochemical analysis of these fractions showed that they were enriched with sulfated galactans. The viability and proliferative capacity of 3T3 fibroblasts exposed to FeSO4 (2 µM), CuSO4 (1 µM) or ascorbate (2 mM) was not affected. However, these cells were exposed to oxidative stress in the presence of FeSO4 or CuSO4 and ascorbate, which caused the activation of caspase-3 and caspase-9, resulting in apoptosis of the cells. We also observed increased lipid peroxidation, evaluated by the detection of malondialdehyde and decreased glutathione and superoxide dismutase levels. Treating the cells with the ultrafiltrate fractions (UF) fractions protected the cells from the oxidative damage caused by the two salts and ascorbate. The most effective protection against the oxidative damage caused by iron was provided by UF-0.7 (1.0 mg/mL); on treatment with UF-0.7, cell viability was 55%. In the case of copper, cell viability on treatment with UF-0.7 was ~80%, but the most effective fraction in this model was UF-2.0, with cell viability of more than 90%. The fractions, mainly UF-0.7 and UF-2.0, showed low iron chelating activity, but high copper chelating activity and total antioxidant capacity (TAC). These results suggested that some of their protective mechanisms stem from these properties.
Collapse
Affiliation(s)
- Fernando Bastos Presa
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Rio Grande do Norte, Brazil.
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Rio Grande do Norte, Brazil.
| | - Maxsuell Lucas Mendes Marques
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Rio Grande do Norte, Brazil.
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Rio Grande do Norte, Brazil.
| | - Rony Lucas Silva Viana
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Rio Grande do Norte, Brazil.
| | | | - Leandro Silva Costa
- Instituto Federal de Educação, Ciência, e Tecnologia do Rio Grande do Norte (IFRN), Ceara-Mirim 59900-000, Rio Grande do Norte, Brazil.
| | - Hugo Alexandre Oliveira Rocha
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Rio Grande do Norte, Brazil.
- Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Rio Grande do Norte, Brazil.
| |
Collapse
|
17
|
Biopolymer strategy for the treatment of Wilson's disease. J Control Release 2018; 273:131-138. [DOI: 10.1016/j.jconrel.2018.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 01/13/2023]
|
18
|
Global loss of acetylcholinesterase activity with mitochondrial complexes inhibition and inflammation in brain of hypercholesterolemic mice. Sci Rep 2017; 7:17922. [PMID: 29263397 PMCID: PMC5738385 DOI: 10.1038/s41598-017-17911-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
There exists an intricate relationship between hypercholesterolemia (elevated plasma cholesterol) and brain functions. The present study aims to understand the impact of hypercholesterolemia on pathological consequences in mouse brain. A chronic mouse model of hypercholesterolemia was induced by giving high-cholesterol diet for 12 weeks. The hypercholesterolemic mice developed cognitive impairment as evident from object recognition memory test. Cholesterol accumulation was observed in four discrete brain regions, such as cortex, striatum, hippocampus and substantia nigra along with significantly damaged blood-brain barrier by hypercholesterolemia. The crucial finding is the loss of acetylcholinesterase activity with mitochondrial dysfunction globally in the brain of hypercholesterolemic mice, which is related to the levels of cholesterol. Moreover, the levels of hydroxyl radical were elevated in the regions of brain where the activity of mitochondrial complexes was found to be reduced. Intriguingly, elevations of inflammatory stress markers in the cholesterol-rich brain regions were observed. As cognitive impairment, diminished brain acetylcholinesterase activity, mitochondrial dysfunctions, and inflammation are the prima facie pathologies of neurodegenerative diseases, the findings impose hypercholesterolemia as potential risk factor towards brain dysfunction.
Collapse
|
19
|
Kathawala M, Hirschfield GM. Insights into the management of Wilson's disease. Therap Adv Gastroenterol 2017; 10:889-905. [PMID: 29147139 PMCID: PMC5673017 DOI: 10.1177/1756283x17731520] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/08/2017] [Indexed: 02/04/2023] Open
Abstract
Wilson's disease is a rare, inherited autosomal recessive disease of copper metabolism, in which the causative gene, ATP7B, results in absent or reduced function of the ATP7B transporter important for biliary excretion of copper and incorporation of copper into caeruloplasmin. Affected patients accumulate excessive copper within the liver, brain and other tissues. A disease mainly of children, adolescents and young adults; clinical features vary from the asymptomatic state to chronic liver disease, acute liver failure, and neuropsychiatric manifestations. Diagnosis requires a high index of suspicion and is based on a combination of clinical signs, biochemical tests, hepatic copper content assay and mutation analysis of the ATP7B gene; to date, there are more than 500 mutations of ATP7B in patients with Wilson's disease. Early recognition and treatment can result in an excellent prognosis whereas untreated disease is almost always fatal. Drug therapies include chelating agents, such as penicillamine or trientine, and zinc salts. Liver transplantation is curative correcting the underlying pathophysiology and is traditionally indicated in acute liver failure or end-stage liver disease refractory to medical therapy. This review provides an overview of various aspects of Wilson's disease including molecular basis of the disease, clinical features, diagnostic and management strategies with their current limitations.
Collapse
Affiliation(s)
- Mohmadshakil Kathawala
- Centre for Liver Research, NIHR Birmingham Liver Biomedical Research Unit, Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
20
|
Dufouil C, Dubois B, Vellas B, Pasquier F, Blanc F, Hugon J, Hanon O, Dartigues JF, Harston S, Gabelle A, Ceccaldi M, Beauchet O, Krolak-Salmon P, David R, Rouaud O, Godefroy O, Belin C, Rouch I, Auguste N, Wallon D, Benetos A, Pariente J, Paccalin M, Moreaud O, Hommet C, Sellal F, Boutoleau-Bretonniére C, Jalenques I, Gentric A, Vandel P, Azouani C, Fillon L, Fischer C, Savarieau H, Operto G, Bertin H, Chupin M, Bouteloup V, Habert MO, Mangin JF, Chêne G. Cognitive and imaging markers in non-demented subjects attending a memory clinic: study design and baseline findings of the MEMENTO cohort. ALZHEIMERS RESEARCH & THERAPY 2017; 9:67. [PMID: 28851447 PMCID: PMC5576287 DOI: 10.1186/s13195-017-0288-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 07/17/2017] [Indexed: 12/14/2022]
Abstract
Background The natural history and disease mechanisms of Alzheimer’s disease and related disorders (ADRD) are still poorly understood. Very few resources are available to scrutinise patients as early as needed and to use integrative approaches combining standardised, repeated clinical investigations and cutting-edge biomarker measurements. Methods In the nationwide French MEMENTO cohort study, participants were recruited in memory clinics and screened for either isolated subjective cognitive complaints (SCCs) or mild cognitive impairment (MCI; defined as test performance 1.5 SD below age, sex and education-level norms) while not demented (Clinical Dementia Rating [CDR] <1). Baseline data collection included neurological and physical examinations as well as extensive neuropsychological testing. To be included in the MEMENTO cohort, participants had to agree to undergo both brain magnetic resonance imaging (MRI) and blood sampling. Cerebral 18F-fluorodeoxyglucose positon emission tomography and lumbar puncture were optional. Automated analyses of cerebral MRI included assessments of volumes of whole-brain, hippocampal and white matter lesions. Results The 2323 participants, recruited from April 2011 to June 2014, were aged 71 years, on average (SD 8.7), and 62% were women. CDR was 0 in 40% of participants, and 30% carried at least one apolipoprotein E ε4 allele. We observed that more than half (52%) of participants had amnestic mild cognitive impairment (17% single-domain aMCI), 32% had non-amnestic mild cognitive impairment (16.9% single-domain naMCI) and 16% had isolated SCCs. Multivariable analyses of neuroimaging markers associations with cognitive categories showed that participants with aMCI had worse levels of imaging biomarkers than the others, whereas participants with naMCI had markers at intermediate levels between SCC and aMCI. The burden of white matter lesions tended to be larger in participants with aMCI. Independently of CDR, all neuroimaging and neuropsychological markers worsened with age, whereas differences were not consistent according to sex. Conclusions MEMENTO is a large cohort with extensive clinical, neuropsychological and neuroimaging data and represents a platform for studying the natural history of ADRD in a large group of participants with different subtypes of MCI (amnestic or not amnestic) or isolated SCCs. Trial registration Clinicaltrials.gov, NCT01926249. Registered on 16 August 2013. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0288-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carole Dufouil
- Centre Inserm U1219, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Bordeaux School of Public Health, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux cedex, France. .,CHU de Bordeaux, Pole de sante publique, F-33000, Bordeaux, France.
| | - Bruno Dubois
- Institute of Memory and Alzheimer's Disease (IM2A) and Brain and Spine Institute (ICM) UMR S 1127, Department of Neurology, AP-HP, Pitié-Salpêtrière University Hospital, Sorbonne Universities, Pierre et Marie Curie University, F-75006, Paris, France
| | - Bruno Vellas
- Memory Resource and Research Centre of Toulouse, CHU de Toulouse, Hôpital La Grave-Casselardit, F-31000, Toulouse, France
| | - Florence Pasquier
- Memory Resource and Research Centre of Lille, CHRU de Lille, Hôpital Roger Salengro, F-59000, Lille, France.,University Lille, INSERM U1171, F-59000, Lille, France
| | - Frédéric Blanc
- Memory Resource and Research Centre of Strasbourg/Colmar, Department of Geriatrics, laboratoire ICube UMR 7357, FMTS, Hôpitaux Universitaires de Strasbourg, F-67000, Strasbourg, France
| | - Jacques Hugon
- Memory Resource and Research Centre of Paris Nord, AP-HP, Groupe Hospitalier Saint-Louis Lariboisière Fernand Widal, F-75010, Paris, France
| | - Olivier Hanon
- Memory Resource and Research Centre of Paris Broca, AP-HP, Hôpital Broca, F-75013, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, EA 4468, Paris, France
| | - Jean-François Dartigues
- Centre Inserm U1219, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Bordeaux School of Public Health, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux cedex, France.,Memory Resource and Research Centre of Bordeaux, CHU de Bordeaux, Hôpital Pellegrin, F-33000, Bordeaux, France
| | - Sandrine Harston
- Memory Resource and Research Centre of Bordeaux, CHU de Bordeaux, Hôpital Xavier Arnozan, F-33000, Bordeaux, France
| | - Audrey Gabelle
- Memory Resource and Research Centre of Montpellier, CHU de Montpellier, Hôpital Gui de Chauliac, F-34000, Montpellier, France
| | - Mathieu Ceccaldi
- Memory Resource and Research Centre of Marseille, CHU de Marseille, Hôpital La Timone, F-13000, Marseille, France
| | - Olivier Beauchet
- Memory Resource and Research Centre of Angers, CHU d'Angers, F-49000, Angers, France
| | - Pierre Krolak-Salmon
- Memory Resource and Research Centre of Lyon, Hospices Civils de Lyon, Hôpital des Charpennes, F-69000, Lyon, France
| | - Renaud David
- Memory Resource and Research Centre of Nice, CHU de Nice, Institut Claude Pompidou, EA 7276 CoBTeK "Cognition Behaviour Technology", F-06100, Nice, France
| | - Olivier Rouaud
- Memory Resource and Research Centre of Dijon, CHU Dijon Bourgogne, Hôpital du Bocage, Hôpital de Champmaillot, F-21000, Dijon, France
| | - Olivier Godefroy
- Memory Resource and Research of Amiens, CHU Amiens Picardie, Hôpital Nord, F-80000, Amiens, France
| | - Catherine Belin
- Memory Clinic, Hôpital Avicenne, AP-HP, Hôpitaux Universitaires Paris-Seine-Saint-Denis, F-93009, Bobigny, France
| | - Isabelle Rouch
- Memory Resource and Research Centre of Saint-Etienne, CHU de Saint-Etienne, Hôpital Nord, F-42000, Saint-Etienne, France
| | - Nicolas Auguste
- Memory Resource and Research Centre of Saint-Etienne, CHU de Saint-Etienne, Hôpital de la Charité, F-42000, Saint-Etienne, France
| | - David Wallon
- Memory Resource and Research Centre of Rouen, Neurology Department, Rouen University Hospital, F-76031, Rouen, France
| | - Athanase Benetos
- Memory Resource and Research Centre of Nancy, CHU de Nancy, F-54000, Nancy, France
| | - Jérémie Pariente
- Memory Resource and Research Centre of Toulouse, CHU de Toulouse, Hôpital Purpan, F-31000, Toulouse, France
| | - Marc Paccalin
- Memory Resource and Research Centre of Poitiers, CHU de Poitiers, Hôpital de La Milétrie, F-86000, Poitiers, France
| | - Olivier Moreaud
- Memory Resource and Research Centre of Grenoble, CHU de Grenoble Alpes, Hôpital de la Tronche, F-38000, Grenoble, France
| | - Caroline Hommet
- Memory Resource and Research Centre of Center Region, CHRU de Tours, Hôpital Bretonneau, F-37000, Tours, France
| | - François Sellal
- Memory Resource and Research Centre of Strasbourg/Colmar, Hôpitaux Civils de Colmar, F-68000, Colmar, France.,Inserm U-118, Strasbourg University, F-67000, Strasbourg, France
| | | | - Isabelle Jalenques
- Memory Resource and Research Centre of Clermont-Ferrand, CHU de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Armelle Gentric
- Memory Resource and Research Centre of Brest, CHRU de Brest, F-29000, Brest, France
| | - Pierre Vandel
- Memory Resource and Research Centre of Besançon, CHU de Besançon, Hôpital Jean Minjoz, Hôpital Saint-Jacques, F-25000, Besançon, France
| | - Chabha Azouani
- Centre pour l'Acquisition et le Traitement des Images, NeuroSpin, I2BM, Commissariat à l'Energie Atomique, F-91400, Saclay, France.,Sorbonne Universités, UPMC Université Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
| | - Ludovic Fillon
- Centre pour l'Acquisition et le Traitement des Images, NeuroSpin, I2BM, Commissariat à l'Energie Atomique, F-91400, Saclay, France.,Sorbonne Universités, UPMC Université Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
| | - Clara Fischer
- Centre pour l'Acquisition et le Traitement des Images, NeuroSpin, I2BM, Commissariat à l'Energie Atomique, F-91400, Saclay, France.,Sorbonne Universités, UPMC Université Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
| | - Helen Savarieau
- Centre Inserm U1219, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Bordeaux School of Public Health, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux cedex, France.,CHU de Bordeaux, Pole de sante publique, F-33000, Bordeaux, France
| | - Gregory Operto
- Centre pour l'Acquisition et le Traitement des Images, NeuroSpin, I2BM, Commissariat à l'Energie Atomique, F-91400, Saclay, France.,Sorbonne Universités, UPMC Université Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
| | - Hugo Bertin
- Centre pour l'Acquisition et le Traitement des Images, NeuroSpin, I2BM, Commissariat à l'Energie Atomique, F-91400, Saclay, France.,Nuclear Medicine Department, Pitié-Salpêtrière University Hospital, AP-HP, F-75006, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, F-75006, Paris, France
| | - Marie Chupin
- Centre pour l'Acquisition et le Traitement des Images, NeuroSpin, I2BM, Commissariat à l'Energie Atomique, F-91400, Saclay, France.,Sorbonne Universités, UPMC Université Paris 06, Inserm, CNRS, Institut du cerveau et la moelle (ICM) - Hôpital Pitié-Salpêtrière, Boulevard de l'hôpital, F-75013, Paris, France
| | - Vincent Bouteloup
- Centre Inserm U1219, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Bordeaux School of Public Health, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux cedex, France.,CHU de Bordeaux, Pole de sante publique, F-33000, Bordeaux, France
| | - Marie-Odile Habert
- Nuclear Medicine Department, Pitié-Salpêtrière University Hospital, AP-HP, F-75006, Paris, France.,Laboratoire d'Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, F-75006, Paris, France
| | - Jean-François Mangin
- Centre pour l'Acquisition et le Traitement des Images, NeuroSpin, I2BM, Commissariat à l'Energie Atomique, F-91400, Saclay, France.,NeuroSpin, I2BM, Commissariat à l'Energie Atomique, Université Paris-Saclay, F-91400, Saclay, France
| | - Geneviève Chêne
- Centre Inserm U1219, Institut de Santé Publique, d'Epidémiologie et de Développement (ISPED), Bordeaux School of Public Health, Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux cedex, France.,CHU de Bordeaux, Pole de sante publique, F-33000, Bordeaux, France
| | | |
Collapse
|
21
|
Chemical structure, antiproliferative and antioxidant activities of a cell wall α-d-mannan from yeast Kluyveromyces marxianus. Carbohydr Polym 2017; 157:1298-1305. [DOI: 10.1016/j.carbpol.2016.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022]
|
22
|
Kinetics and molecular docking studies of loganin, morroniside and 7-O-galloyl-d-sedoheptulose derived from Corni fructus as cholinesterase and β-secretase 1 inhibitors. Arch Pharm Res 2016; 39:794-805. [DOI: 10.1007/s12272-016-0745-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 04/17/2016] [Indexed: 12/11/2022]
|
23
|
Deiber JA, Peirotti MB, Piaggio MV. Charge regulation phenomenon predicted from the modeling of polypeptide electrophoretic mobilities as a relevant mechanism of amyloid-beta peptide oligomerization. Electrophoresis 2016; 37:711-8. [DOI: 10.1002/elps.201500391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/10/2015] [Accepted: 12/16/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Maria V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas, Facultad de Bioquímica y Ciencias Biológicas; UNL; Santa Fe Argentina
| |
Collapse
|
24
|
Eslami M, Hashemianzadeh SM, Bagherzadeh K, Seyed Sajadi SA. Molecular perception of interactions between bis(7)tacrine and cystamine-tacrine dimer with cholinesterases as the promising proposed agents for the treatment of Alzheimer's disease. J Biomol Struct Dyn 2015; 34:855-69. [PMID: 26043757 DOI: 10.1080/07391102.2015.1057526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The infamous chronic neurodegenerative disease, Alzheimer's, that starts with short-term memory loss and eventually leads to gradual bodily function decline which has been attributed to the deficiency in brain neurotransmitters, acetylcholine, and butylcholine. As a matter of fact, design of compounds that can inhibit cholinesterases activities (acetylcholinesterase and butylcholinesterase) has been introduced as an efficient method to treat Alzheimer's. Among proposed compounds, bis(7)tacrine (B7T) is recognized as a noteworthy suppressor for Alzheimer's disease. Recently a new analog of B7T, cystamine-tacrine dimer is offered as an agent to detain Alzheimer's complications, even better than the parent compound. In this study, classical molecular dynamic simulations have been employed to take a closer look into the modes of interactions between the mentioned ligands and both cholinesterase enzymes. According to our obtained results, the structural differences in the target enzymes active sites result in different modes of interactions and inhibition potencies of the ligands against both enzymes. The obtained information can help to investigate those favorable fragments in the studied ligands skeletons that have raised the potency of the analog in comparison with the parent compound to design more potent multi target ligands to heal Alzheimer's disease.
Collapse
Affiliation(s)
- Mahboobeh Eslami
- a Molecular Simulation Research Laboratory, Department of Chemistry , Iran University of Science & Technology , Tehran , Iran
| | - Seyed Majid Hashemianzadeh
- a Molecular Simulation Research Laboratory, Department of Chemistry , Iran University of Science & Technology , Tehran , Iran
| | - Kowsar Bagherzadeh
- b Faculty of Pharmacy and Medicinal Plants Research Center, Department of Medicinal Chemistry , Tehran University of Medical Sciences , Tehran , Iran
| | - Seyed Abolfazl Seyed Sajadi
- a Molecular Simulation Research Laboratory, Department of Chemistry , Iran University of Science & Technology , Tehran , Iran
| |
Collapse
|
25
|
Huang HC, Chang P, Lu SY, Zheng BW, Jiang ZF. Protection of curcumin against amyloid-β-induced cell damage and death involves the prevention from NMDA receptor-mediated intracellular Ca2+ elevation. J Recept Signal Transduct Res 2015; 35:450-7. [PMID: 26053510 DOI: 10.3109/10799893.2015.1006331] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is one of the common neurodegenerative diseases and amyloid-β (Aβ) is thought to be a key molecule contributing to AD pathology. Recently, curcumin is supposed to be beneficial to AD treatment. This study investigates the inhibitory effects of curcumin on Aβ-induced cell damage and death involving NMDA receptor-mediated intracellular Ca(2+) elevation in human neuroblastoma SH-SY5Y cells. Cells were impaired significantly in Aβ-damaged group compared with the control group, and cell viability was decreased while the released LDH from the cytosol was increased. Curcumin promotes cell growth and decreases cell impairment induced by Aβ. Curcmin attenuates Aβ-induced elevation of the ratio of cellular glutamate/γ-aminobutyric acid (GABA) with a concentration-dependent manner. Curcumin inhibits Aβ-induced increase of cellular Ca(2+) and depresses Aβ-induced phosphorylations of both NMDA receptor and cyclic AMP response element-binding protein (CREB) and activating transcription factor 1 (ATF-1). These results indicated that curcumin inhibits Aβ-induced neuronal damage and cell death involving the prevention from intracellular Ca(2+) elevation mediated by the NMDA receptor.
Collapse
Affiliation(s)
- Han-Chang Huang
- a Beijing Key Laboratory of Bioactive Substances and Functional Foods , College of Arts and Science, Beijing Union University , Beijing , China
| | - Ping Chang
- a Beijing Key Laboratory of Bioactive Substances and Functional Foods , College of Arts and Science, Beijing Union University , Beijing , China
| | - Shu-Yan Lu
- a Beijing Key Laboratory of Bioactive Substances and Functional Foods , College of Arts and Science, Beijing Union University , Beijing , China
| | - Bo-Wen Zheng
- a Beijing Key Laboratory of Bioactive Substances and Functional Foods , College of Arts and Science, Beijing Union University , Beijing , China
| | - Zhao-Feng Jiang
- a Beijing Key Laboratory of Bioactive Substances and Functional Foods , College of Arts and Science, Beijing Union University , Beijing , China
| |
Collapse
|
26
|
Mohamed IN, Ishrat T, Fagan SC, El-Remessy AB. Role of inflammasome activation in the pathophysiology of vascular diseases of the neurovascular unit. Antioxid Redox Signal 2015; 22:1188-206. [PMID: 25275222 PMCID: PMC4403234 DOI: 10.1089/ars.2014.6126] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE Inflammation is the standard double-edged defense mechanism that aims at protecting the human physiological homeostasis from devastating threats. Both acute and chronic inflammation have been implicated in the occurrence and progression of vascular diseases. Interference with components of the immune system to improve patient outcome after ischemic injury has been uniformly unsuccessful. There is a need for a deeper understanding of the innate immune response to injury in order to modulate, rather than to block inflammation and improve the outcome for vascular diseases. RECENT ADVANCES Nucleotide-binding oligomerization domain-like receptors or NOD-like receptor proteins (NLRPs) can be activated by sterile and microbial inflammation. NLR family plays a major role in activating the inflammasome. CRITICAL ISSUES The aim of this work is to review recent findings that provided insights into key inflammatory mechanisms and define the place of the inflammasome, a multi-protein complex involved in instigating inflammation in neurovascular diseases, including retinopathy, neurodegenerative diseases, and stroke. FUTURE DIRECTIONS The significant contribution of NLRP-inflammasome activation to vascular disease of the neurovascular unit in the brain and retina suggests that therapeutic strategies focused on specific targeting of inflammasome components could significantly improve the outcomes of these diseases.
Collapse
Affiliation(s)
- Islam N Mohamed
- 1 Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia , Augusta, Georgia
| | | | | | | |
Collapse
|
27
|
Wu F, Wang J, Pu C, Qiao L, Jiang C. Wilson's disease: a comprehensive review of the molecular mechanisms. Int J Mol Sci 2015; 16:6419-31. [PMID: 25803104 PMCID: PMC4394540 DOI: 10.3390/ijms16036419] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 02/06/2023] Open
Abstract
Wilson’s disease (WD), also known as hepatolenticular degeneration, is an autosomal recessive inherited disorder resulting from abnormal copper metabolism. Reduced copper excretion causes an excessive deposition of the copper in many organs such as the liver, central nervous system (CNS), cornea, kidney, joints, and cardiac muscle where the physiological functions of the affected organs are impaired. The underlying molecular mechanisms for WD have been extensively studied. It is now believed that a defect in P-type adenosine triphosphatase (ATP7B), the gene encoding the copper transporting P-type ATPase, is responsible for hepatic copper accumulation. Deposited copper in the liver produces toxic effects via modulating several molecular pathways. WD can be a lethal disease if left untreated. A better understanding of the molecular mechanisms causing the aberrant copper deposition and organ damage is the key to developing effective management approaches.
Collapse
Affiliation(s)
- Fei Wu
- Department of imaging, the Affiliated Zhongshan Hospital of Dalian University, 6 Jiefang Street, Zhongshan District, Dalian 116001, Liaoning, China.
| | - Jing Wang
- Department of Internal Medicine, the Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian 116023, Liaoning, China.
| | - Chunwen Pu
- Department of Biobank, the Sixth People's Hospital of Dalian, 269 Luganghuibai Road, Ganjingzi District, Dalian 116031, Liaoning, China.
| | - Liang Qiao
- Storr Liver Centre, Westmead Millennium Institute for Medical Research, Faculty of Medicine, the University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Chunmeng Jiang
- Department of Internal Medicine, the Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian 116023, Liaoning, China.
| |
Collapse
|
28
|
Asih PR, Chatterjee P, Verdile G, Gupta VB, Trengove RD, Martins RN. Clearing the amyloid in Alzheimer's: progress towards earlier diagnosis and effective treatments – an update for clinicians. Neurodegener Dis Manag 2014; 4:363-78. [DOI: 10.2217/nmt.14.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
SUMMARY A beta (Aβ or β-amyloid) is a key molecule in Alzheimer's disease (AD) pathogenesis. According to the ‘amyloid hypothesis’, the gradual accumulation of Aβ triggers events which results in neuronal loss in regions of the brain involved with memory and learning. Diverse agents have been developed to reduce brain Aβ accumulation or to enhance its clearance. Some have progressed to human trials, however all have failed to improve cognition in patients. This has led researchers to question whether Aβ is really the problem. However, the trials have been targeting end stages of AD, by which stage extensive irreversible neuronal damage has already occurred. Intervention is required preclinically, therefore preclinical AD biomarkers are needed. In this regard, amyloid imaging and cerebrospinal fluid biomarkers are leading the way, with plasma biomarkers and eye tests also being investigated. This review covers the current state of knowledge of Aβ as an early diagnostic biomarker and as a therapeutic target in AD.
Collapse
Affiliation(s)
- Prita R Asih
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- Separation Science & Metabolomics Laboratory, Murdoch University, Murdoch, WA 6150, Australia
| | - Pratishtha Chatterjee
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- School of Psychiatry & Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
- The Cooperative Research Centre for Mental Health, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- School of Psychiatry & Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
- School of Biomedical Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Veer B Gupta
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- The Cooperative Research Centre for Mental Health, Australia
| | - Robert D Trengove
- Separation Science & Metabolomics Laboratory, Murdoch University, Murdoch, WA 6150, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
- School of Psychiatry & Clinical Neurosciences, University of Western Australia, Crawley, WA 6009, Australia
- The Cooperative Research Centre for Mental Health, Australia
| |
Collapse
|
29
|
Arriazu E, Ruiz de Galarreta M, Cubero FJ, Varela-Rey M, Pérez de Obanos MP, Leung TM, Lopategi A, Benedicto A, Abraham-Enachescu I, Nieto N. Extracellular matrix and liver disease. Antioxid Redox Signal 2014; 21:1078-97. [PMID: 24219114 PMCID: PMC4123471 DOI: 10.1089/ars.2013.5697] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE The extracellular matrix (ECM) is a dynamic microenvironment that undergoes continuous remodeling, particularly during injury and wound healing. Chronic liver injury of many different etiologies such as viral hepatitis, alcohol abuse, drug-induced liver injury, obesity and insulin resistance, metabolic disorders, and autoimmune disease is characterized by excessive deposition of ECM proteins in response to persistent liver damage. CRITICAL ISSUES This review describes the main collagenous and noncollagenous components from the ECM that play a significant role in pathological matrix deposition during liver disease. We define how increased myofibroblasts (MF) from different origins are at the forefront of liver fibrosis and how liver cell-specific regulation of the complex scarring process occurs. RECENT ADVANCES Particular attention is paid to the role of cytokines, growth factors, reactive oxygen species, and newly identified matricellular proteins in the regulation of fibrillar type I collagen, a field to which our laboratory has significantly contributed over the years. We compile data from recent literature on the potential mechanisms driving fibrosis resolution such as MF' apoptosis, senescence, and reversal to quiescence. FUTURE DIRECTIONS We conclude with a brief description of how epigenetics, an evolving field, can regulate the behavior of MF and of how new "omics" tools may advance our understanding of the mechanisms by which the fibrogenic response to liver injury occurs.
Collapse
Affiliation(s)
- Elena Arriazu
- 1 Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine , New York, New York
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu H, Wang L, Lv M, Pei R, Li P, Pei Z, Wang Y, Su W, Xie XQ. AlzPlatform: an Alzheimer's disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J Chem Inf Model 2014; 54:1050-60. [PMID: 24597646 PMCID: PMC4010297 DOI: 10.1021/ci500004h] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Alzheimer’s
disease (AD) is one of the most complicated progressive neurodegeneration
diseases that involve many genes, proteins, and their complex interactions.
No effective medicines or treatments are available yet to stop or
reverse the progression of the disease due to its polygenic nature.
To facilitate discovery of new AD drugs and better understand the
AD neurosignaling pathways involved, we have constructed an Alzheimer’s
disease domain-specific chemogenomics knowledgebase, AlzPlatform (www.cbligand.org/AD/) with cloud computing and sourcing
functions. AlzPlatform is implemented with powerful computational
algorithms, including our established TargetHunter, HTDocking, and
BBB Predictor for target identification and polypharmacology analysis
for AD research. The platform has assembled various AD-related chemogenomics
data records, including 928 genes and 320 proteins related to AD,
194 AD drugs approved or in clinical trials, and 405 188 chemicals
associated with 1 023 137 records of reported bioactivities
from 38 284 corresponding bioassays and 10 050 references.
Furthermore, we have demonstrated the application of the AlzPlatform
in three case studies for identification of multitargets and polypharmacology
analysis of FDA-approved drugs and also for screening and prediction
of new AD active small chemical molecules and potential novel AD drug
targets by our established TargetHunter and/or HTDocking programs.
The predictions were confirmed by reported bioactivity data and our
in vitro experimental validation. Overall, AlzPlatform will enrich
our knowledge for AD target identification, drug discovery, and polypharmacology
analyses and, also, facilitate the chemogenomics data sharing and
information exchange/communications in aid of new anti-AD drug discovery
and development.
Collapse
Affiliation(s)
- Haibin Liu
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy; Drug Discovery Institute; University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
As radiologists, our role in the workup of the dementia patient has long been limited by the sensitivity of our imaging tools and lack of effective treatment options. Over the past 30 years, we have made tremendous strides in understanding the genetic, molecular, and cellular basis of Alzheimer disease (AD). We now know that the pathologic features of AD are present 1 to 2 decades prior to development of symptoms, though currently approved symptomatic therapies are administered much later in the disease course. The search for true disease-modifying therapy continues and many clinical trials are underway. Current outcome measures, based on cognitive tests, are relatively insensitive to pathologic disease progression, requiring long, expensive trials with large numbers of participants. Biomarkers, including neuroimaging, have great potential to increase the power of trials by matching imaging methodology with therapeutic mechanism. One of the most important advances over the past decade has been the development of in vivo imaging probes targeted to amyloid beta protein, and one agent is already available for clinical use. Additional advances include automated volumetric imaging methods to quantitate cerebral volume loss. Use of such techniques in small, early phase trials are expected to significantly increase the number and quality of candidate drugs for testing in larger trials. In addition to a critical role in trials, structural, molecular, and functional imaging techniques can give us a window on the etiology of AD and other neurodegenerative diseases. This combination of developments has potential to bring diagnostic radiology to the forefront in AD research, therapeutic trials, and patient care.
Collapse
Affiliation(s)
- Jeffrey R Petrella
- From the Division of Neuroradiology, Duke University Medical Center, DUMC-Box 3808, Durham, NC
| |
Collapse
|
32
|
Nephrotic syndrome after treatment with D-penicillamine in a patient with Wilson’s disease. REV ROMANA MED LAB 2014. [DOI: 10.2478/rrlm-2014-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Padayachee ER, Arowolo A, Whiteley CG. Nanomedicine: Action of Metal Nanoparticles on Neuronal Nitric Oxide Synthase—Fluorimetric Analysis on the Mechanism for Fibrillogenesis. Neurochem Res 2013; 39:194-201. [DOI: 10.1007/s11064-013-1206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/16/2013] [Accepted: 11/20/2013] [Indexed: 12/23/2022]
|
34
|
Huang HC, Tang D, Xu K, Jiang ZF. Curcumin attenuates amyloid-β-induced tau hyperphosphorylation in human neuroblastoma SH-SY5Y cells involving PTEN/Akt/GSK-3β signaling pathway. J Recept Signal Transduct Res 2013; 34:26-37. [DOI: 10.3109/10799893.2013.848891] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Braak H, Zetterberg H, Del Tredici K, Blennow K. Intraneuronal tau aggregation precedes diffuse plaque deposition, but amyloid-β changes occur before increases of tau in cerebrospinal fluid. Acta Neuropathol 2013; 126:631-41. [PMID: 23756600 DOI: 10.1007/s00401-013-1139-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/23/2013] [Accepted: 06/03/2013] [Indexed: 02/06/2023]
Abstract
In comparison to the levels in age and gender-matched controls, reduced levels of pathological amyloid-β protein in cerebrospinal fluid routinely precede the onset of Alzheimer's disease-related symptoms by several years, whereas elevated soluble abnormal tau fractions (phosphorylated tau, total tau protein) in cerebrospinal fluid are detectable only with the onset and progression of clinical symptoms. This sequence of events in cerebrospinal fluid (amyloid-β changes detectable prior to abnormal tau changes) contrasts with that in which both proteins develop in the brain, where intraneuronal tau inclusions (pretangles, neurofibrillary tangles, neuropil threads) appear decades before the deposition of amyloid-β plaques (diffuse plaques, neuritic plaques). This viewpoint attempts to address questions arising in connection with this apparent sequential discrepancy-questions and issues for which there are currently no clear-cut answers.
Collapse
Affiliation(s)
- Heiko Braak
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Helmholtzstrasse 8/1, 89081, Ulm, Germany,
| | | | | | | |
Collapse
|
36
|
|
37
|
Kang M, Kim SY, An SSA, Ju YR. Characterizing affinity epitopes between prion protein and β-amyloid using an epitope mapping immunoassay. Exp Mol Med 2013; 45:e34. [PMID: 23907583 PMCID: PMC3789258 DOI: 10.1038/emm.2013.63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/12/2013] [Accepted: 05/02/2013] [Indexed: 12/11/2022] Open
Abstract
Cellular prion protein, a membrane protein, is expressed in all mammals. Prion protein is also found in human blood as an anchorless protein, and this protein form is one of the many potential sources of misfolded prion protein replication during transmission. Many studies have suggested that β-amyloid1-42 oligomer causes neurotoxicity associated with Alzheimer's disease, which is mediated by the prion protein that acts as a receptor and regulates the hippocampal potentiation. The prevention of the binding of these proteins has been proposed as a possible preventative treatment for Alzheimer's disease; therefore, a greater understanding of the binding hot-spots between the two molecules is necessary. In this study, the epitope mapping immunoassay was employed to characterize binding epitopes within the prion protein and complementary epitopes in β-amyloid. Residues 23-39 and 93-119 in the prion protein were involved in binding to β-amyloid1-40 and 1-42, and monomers of this protein interacted with prion protein residues 93-113 and 123-166. Furthermore, β-amyloid antibodies against the C-terminus detected bound β-amyloid1-42 at residues 23-40, 104-122 and 159-175. β-Amyloid epitopes necessary for the interaction with prion protein were not determined. In conclusion, charged clusters and hydrophobic regions of the prion protein were involved in binding to β-amyloid1-40 and 1-42. The 3D structure appears to be necessary for β-amyloid to interact with prion protein. In the future, these binding sites may be utilized for 3D structure modeling, as well as for the pharmaceutical intervention of Alzheimer's disease.
Collapse
Affiliation(s)
- Mino Kang
- Department of Bionanotechnology, Gachon University, Gyeonggi, Korea
| | - Su Yeon Kim
- Division of Zoonoses, Center for Immunology and Pathology, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong, Republic of Korea
| | - Seong Soo A An
- Department of Bionanotechnology, Gachon University, Gyeonggi, Korea
| | - Young Ran Ju
- Division of Zoonoses, Center for Immunology and Pathology, National Institute of Health, Korea Centers for Disease Control and Prevention, Osong, Republic of Korea
| |
Collapse
|
38
|
Duan Y, Dong S, Gu F, Hu Y, Zhao Z. Advances in the pathogenesis of Alzheimer's disease: focusing on tau-mediated neurodegeneration. Transl Neurodegener 2012; 1:24. [PMID: 23241453 PMCID: PMC3598890 DOI: 10.1186/2047-9158-1-24] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/11/2012] [Indexed: 12/25/2022] Open
Abstract
In addition to senile plaques and cerebral amyloid angiopathy, the hyperphosphorylation of tau protein and formation of intraneuronal neurofibrillary tangles (NFTs) represents another neuropathological hallmark in AD brain. Tau is a microtubule-associated protein and localizes predominantly in the axons of neurons with the primary function in maintaining microtubules stability. When the balance between tau phosphorylation and dephosphorylation is changed in favor of the former, tau is hyperphosphorylated and the level of the free tau fractions elevated. The hyperphosphorylation of tau protein and formation of NFTs represent a characteristic neuropathological feature in AD brain. We have discussed the role of Aβ in AD in our previous review, this review focused on the recent advances in tau-mediated AD pathology, mainly including tau hyperphosphorylation, propagation of tau pathology and the relationship between tau and Aβ.
Collapse
Affiliation(s)
- Yale Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education,Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, 3663 Zhongshan Road (N), Shanghai 200062, China.
| | | | | | | | | |
Collapse
|