1
|
Yesiltepe M, Yin T, Tambini M, Bao H, Pan M, d'Abramo C, Giliberto L, Han X, D'Adamio L. Analysis of early effects of human APOE isoforms on Alzheimer's disease and type III hyperlipoproteinemia pathways using knock-in rat models with humanized APP and APOE. Cell Commun Signal 2024; 22:458. [PMID: 39334477 PMCID: PMC11438110 DOI: 10.1186/s12964-024-01832-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
APOE is a major genetic factor in late-onset Alzheimer's disease (LOAD), with APOE4 increasing risk, APOE3 acting as neutral, and APOE2 offering protection. APOE also plays key role in lipid metabolism, affecting both peripheral and central systems, particularly in lipoprotein metabolism in triglyceride and cholesterol regulation. APOE2 is linked to Hyperlipoproteinemia type III (HLP), characterized by mixed hypercholesterolemia and hypertriglyceridemia due to impaired binding to Low-Density Lipoproteins receptors. To explore the impact of human APOE isoforms on LOAD and lipid metabolism, we developed Long-Evans rats with human APOE2, APOE3, or APOE4 in place of rat Apoe. These rats were crossed with those carrying a humanized App allele to express human Aβ, which is more aggregation-prone than rodent Aβ, enabling the study of human APOE-human Aβ interactions. In this study, we focused on 80-day-old adolescent rats to analyze early changes that may be associated with the later development of LOAD. We found that APOE2hAβ rats had the highest levels of APOE in serum and brain, with no significant transcriptional differences among isoforms, suggesting variations in protein translation or stability. Aβ43 levels were significantly higher in male APOE4hAβ rats compared to APOE2hAβ rats. However, no differences in Tau or phosphorylated Tau levels were observed across the APOE isoforms. Neuroinflammation analysis revealed lower levels of IL13, IL4 and IL5 in APOE2hAβ males compared to APOE4hAβ males. Neuronal transmission and plasticity tests using field Input-Output (I/O) and long-term potentiation (LTP) recordings showed increased excitability in all APOE-carrying rats, with LTP deficits in APOE2hAβand APOE4hAβ rats compared to ApoehAβ and APOE3hAβ rats. Additionally, a lipidomic analysis of 222 lipid molecular species in serum samples showed that APOE2hAβ rats displayed elevated triglycerides and cholesterol, making them a valuable model for studying HLP. These rats also exhibited elevated levels of phosphatidylglycerol, phosphatidylserine, phosphatidylethanolamine, sphingomyelin, and lysophosphatidylcholine. Minimal differences in lipid profiles between APOE3hAβ and APOE4hAβ rats reflect findings from mouse models. Future studies will include comprehensive lipidomic analyses in various CNS regions and at older ages to further validate these models and explore the effects of APOE isoforms on lipid metabolism in relation to AD pathology.
Collapse
Affiliation(s)
- Metin Yesiltepe
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, The State University of New Jersey, Rutgers, Newark, NJ, USA
| | - Tao Yin
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, The State University of New Jersey, Rutgers, Newark, NJ, USA
| | - Marc Tambini
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, The State University of New Jersey, Rutgers, Newark, NJ, USA
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Cristina d'Abramo
- Litwin-Zucker Center for the Study of Alzheimer's Disease and Memory Disorders, Feinstein Institutes for Medical Research, Institute of Molecular Medicine, Manhasset, NY, USA
| | - Luca Giliberto
- Litwin-Zucker Center for the Study of Alzheimer's Disease and Memory Disorders, Feinstein Institutes for Medical Research, Institute of Molecular Medicine, Manhasset, NY, USA
- Institute of Neurology and Neurosurgery, Northwell Health System, Manhasset, NY, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Medicine - Diabetes, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Luciano D'Adamio
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, The State University of New Jersey, Rutgers, Newark, NJ, USA.
| |
Collapse
|
2
|
Wang X, Feng S, Deng Q, Wu C, Duan R, Yang L. The role of estrogen in Alzheimer's disease pathogenesis and therapeutic potential in women. Mol Cell Biochem 2024:10.1007/s11010-024-05071-4. [PMID: 39088186 DOI: 10.1007/s11010-024-05071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Estrogens are pivotal regulators of brain function throughout the lifespan, exerting profound effects from early embryonic development to aging. Extensive experimental evidence underscores the multifaceted protective roles of estrogens on neurons and neurotransmitter systems, particularly in the context of Alzheimer's disease (AD) pathogenesis. Studies have consistently revealed a greater risk of AD development in women compared to men, with postmenopausal women exhibiting heightened susceptibility. This connection between sex factors and long-term estrogen deprivation highlights the significance of estrogen signaling in AD progression. Estrogen's influence extends to key processes implicated in AD, including amyloid precursor protein (APP) processing and neuronal health maintenance mediated by brain-derived neurotrophic factor (BDNF). Reduced BDNF expression, often observed in AD, underscores estrogen's role in preserving neuronal integrity. Notably, hormone replacement therapy (HRT) has emerged as a sex-specific and time-dependent strategy for primary cardiovascular disease (CVD) prevention, offering an excellent risk profile against aging-related disorders like AD. Evidence suggests that HRT may mitigate AD onset and progression in postmenopausal women, further emphasizing the importance of estrogen signaling in AD pathophysiology. This review comprehensively examines the physiological and pathological changes associated with estrogen in AD, elucidating the therapeutic potential of estrogen-based interventions such as HRT. By synthesizing current knowledge, it aims to provide insights into the intricate interplay between estrogen signaling and AD pathogenesis, thereby informing future research directions and therapeutic strategies for this debilitating neurodegenerative disorder.
Collapse
Affiliation(s)
- Xinyi Wang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Wang K, Yang R, Chen TT, Qin MR, Wang P, Kong MW. Therapeutic Mechanism of Kai Xin San on Alzheimer’s Disease Based on Network Pharmacology and Experimental Validation. Chin J Integr Med 2022; 29:413-423. [PMID: 36474082 DOI: 10.1007/s11655-022-3589-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore the specific pharmacological molecular mechanisms of Kai Xin San (KXS) on treating Alzheimer's disease (AD) based on network pharmacology and experimental validation. METHODS The chemical compounds of KXS and their corresponding targets were screened using the Encyclopedia of Traditional Chinese Medicine (ETCM) database. AD-related target proteins were obtained from MalaCards database and DisGeNET databases. Key compounds and targets were identified from the compound-target-disease network and protein-protein interaction (PPI) network analysis. Functional enrichment analysis predicted the potential key signaling pathways involved in the treatment of AD with KXS. The binding affinities between key ingredients and targets were further verified using molecular docking. Finally, the predicted key signaling pathway was validated experimentally. Positioning navigation and space search experiments were conducted to evaluate the cognitive improvement effect of KXS on AD rats. Western blot was used to further examine and investigate the expression of the key target proteins related to the predicted pathway. RESULTS In total, 38 active compounds and 469 corresponding targets of KXS were screened, and 264 target proteins associated with AD were identified. The compound-target-disease and PPI networks identified key active ingredients and protein targets. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested a potential effect of KXS in the treatment of AD via the amyloid beta (A β)-glycogen synthase kinase-3 beta (GSK3 β)-Tau pathway. Molecular docking revealed a high binding affinity between the key ingredients and targets. In vivo, KXS treatment significantly improved cognitive deficits in AD rats induced by Aβ1-42, decreased the levels of Aβ, p-GSK3β, p-Tau and cyclin-dependent kinase 5, and increased the expressions of protein phosphatase 1 alpha (PP1A) and PP2A (P<0.05 or P<0.01). CONCLUSION KXS exerted neuroprotective effects by regulating the Aβ -GSK3β-Tau signaling pathway, which provides novel insights into the therapeutic mechanism of KXS and a feasible pharmacological strategy for the treatment of AD.
Collapse
|
4
|
Hou Y, Wei W, Li G, Sang N. Prenatal PM 2.5 exposure contributes to neuronal tau lesion in male offspring mice through mitochondrial dysfunction-mediated insulin resistance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114151. [PMID: 36228359 DOI: 10.1016/j.ecoenv.2022.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
The epidemiological evidence has linked prenatal exposure to fine particulate matter (PM2.5) pollution with neurological diseases in offspring. However, the biological process and toxicological mechanisms remain unclear. Tau protein is a neuronal microtubule-associated protein expressed in fetal brain and plays a critical role in mediating neuronal development. Aberrant expression of tau is associated with adverse neurodevelopmental outcomes. To study whether prenatal exposure to PM2.5 pollution induce tau lesion in mice offspring and elucidate the underlying pathogenic mechanism, we exposed pregnant mice to PM2.5 (3 mg/kg b.w.) by oropharyngeal aspiration every other day. The results indicate that prenatal PM2.5 exposure induced hyperphosphorylation of tau in the cortex of postnatal male offspring, which was accompanied by insulin resistance through the IRS-1/PI3K/AKT signaling pathway. Importantly, we further found that prenatal PM2.5 exposure induced mitochondrial dysfunction by disrupting mitochondrial ultrastructure and decreasing the expression of rate-limiting enzymes (CS, IDH2 and FH) in the Krebs cycle and the subunits of mitochondrial complex IV and V (CO1, CO4, ATP6, and ATP8) during postnatal neurodevelopment. The findings suggest that prenatal PM2.5 exposure could induce tauopathy-like changes in male offspring, in which mitochondrial dysfunction-induced insulin resistance might play an important role.
Collapse
Affiliation(s)
- Yanwen Hou
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Wei Wei
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
5
|
A familial Danish dementia rat shows impaired presynaptic and postsynaptic glutamatergic transmission. J Biol Chem 2021; 297:101089. [PMID: 34416235 PMCID: PMC8429969 DOI: 10.1016/j.jbc.2021.101089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
Familial British dementia and familial Danish dementia are neurodegenerative disorders caused by mutations in the gene integral membrane protein 2B (ITM2b) encoding BRI2, which tunes excitatory synaptic transmission at both presynaptic and postsynaptic termini. In addition, BRI2 interacts with and modulates proteolytic processing of amyloid-β precursor protein (APP), whose mutations cause familial forms of Alzheimer's disease (AD) (familial AD). To study the pathogenic mechanisms triggered by the Danish mutation, we generated rats carrying the Danish mutation in the rat Itm2b gene (Itm2bD rats). Given the BRI2/APP interaction and the widely accepted relevance of human amyloid β (Aβ), a proteolytic product of APP, to AD, Itm2bD rats were engineered to express two humanized App alleles and produce human Aβ. Here, we studied young Itm2bD rats to investigate early pathogenic changes in these diseases. We found that periadolescent Itm2bD rats not only present subtle changes in human Aβ levels along with decreased spontaneous glutamate release and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor–mediated responses but also had increased short-term synaptic facilitation in the hippocampal Schaeffer-collateral pathway. These alterations in excitatory interneuronal communication can impair learning and memory processes and were akin to those observed in adult mice producing rodent Aβ and carrying either the Danish or British mutations in the mouse Itm2b gene. Collectively, the data show that the pathogenic Danish mutation alters the physiological function of BRI2 at glutamatergic synapses across species and early in life. Future studies will determine whether this phenomenon represents an early pathogenic event in human dementia.
Collapse
|
6
|
Tambini MD, Norris KA, D'Adamio L. Opposite changes in APP processing and human Aβ levels in rats carrying either a protective or a pathogenic APP mutation. eLife 2020; 9:52612. [PMID: 32022689 PMCID: PMC7018507 DOI: 10.7554/elife.52612] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cleavage of APP by BACE1/β-secretase initiates the amyloidogenic cascade leading to Amyloid-β (Aβ) production. α-Secretase initiates the non-amyloidogenic pathway preventing Aβ production. Several APP mutations cause familial Alzheimer's disease (AD), while the Icelandic APP mutation near the BACE1-cleavage site protects from sporadic dementia, emphasizing APP's role in dementia pathogenesis. To study APP protective/pathogenic mechanisms, we generated knock-in rats carrying either the protective (Appp) or the pathogenic Swedish mutation (Apps), also located near the BACE1-cleavage site. α-Cleavage is favored over β-processing in Appp rats. Consequently, non-amyloidogenic and amyloidogenic APP metabolites are increased and decreased, respectively. The reverse APP processing shift occurs in Apps rats. These opposite effects on APP β/α-processing suggest that protection from and pathogenesis of dementia depend upon combinatorial and opposite alterations in APP metabolism rather than simply on Aβ levels. The Icelandic mutation also protects from aging-dependent cognitive decline, suggesting that similar mechanisms underlie physiological cognitive aging.
Collapse
Affiliation(s)
- Marc D Tambini
- Department of Pharmacology Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, United States
| | - Kelly A Norris
- Department of Pharmacology Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, United States
| | - Luciano D'Adamio
- Department of Pharmacology Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, United States
| |
Collapse
|
7
|
Torrez VR, Zimmer ER, Kalinine E, Haas CB, Zenki KC, Muller AP, Souza DOD, Portela LV. Memantine mediates astrocytic activity in response to excitotoxicity induced by PP2A inhibition. Neurosci Lett 2019; 696:179-183. [DOI: 10.1016/j.neulet.2018.12.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/13/2018] [Accepted: 12/22/2018] [Indexed: 12/13/2022]
|
8
|
Yao F, Zhang K, Zhang Y, Guo Y, Li A, Xiao S, Liu Q, Shen L, Ni J. Identification of Blood Biomarkers for Alzheimer's Disease Through Computational Prediction and Experimental Validation. Front Neurol 2019; 9:1158. [PMID: 30671019 PMCID: PMC6331438 DOI: 10.3389/fneur.2018.01158] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background: Alzheimer's disease (AD) is the major cause of dementia in population aged over 65 years, accounting up to 70% dementia cases. However, validated peripheral biomarkers for AD diagnosis are not available up to present. In this study, we adopted a new strategy of combination of computational prediction and experimental validation to identify blood protein biomarkers for AD. Methods: First, we collected tissue-based gene expression data of AD patients and healthy controls from GEO database. Second, we analyzed these data and identified differentially expressed genes for AD. Third, we applied a blood-secretory protein prediction program on these genes and predicted AD-related proteins in blood. Finally, we collected blood samples of AD patients and healthy controls to validate the potential AD biomarkers by using ELISA experiments and Western blot analyses. Results: A total of 2754 genes were identified to express differentially in brain tissues of AD, among which 296 genes were predicted to encode AD-related blood-secretory proteins. After careful analysis and literature survey on these predicted blood-secretory proteins, ten proteins were considered as potential AD biomarkers, five of which were experimentally verified with significant change in blood samples of AD vs. controls by ELISA, including GSN, BDNF, TIMP1, VLDLR, and APLP2. ROC analyses showed that VLDLR and TIMP1 had excellent performance in distinguishing AD patients from controls (area under the curve, AUC = 0.932 and 0.903, respectively). Further validation of VLDLR and TIMP1 by Western blot analyses has confirmed the results obtained in ELISA experiments. Conclusion: VLDLR and TIMP1 had better discriminative abilities between ADs and controls, and might serve as potential blood biomarkers for AD. To our knowledge, this is the first time to identify blood protein biomarkers for AD through combination of computational prediction and experimental validation. In addition, VLDLR was first reported here as potential blood protein biomarker for AD. Thus, our findings might provide important information for AD diagnosis and therapies.
Collapse
Affiliation(s)
- Fang Yao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Kaoyuan Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Yan Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, Shenzhen, China
| | - Aidong Li
- Department of Rehabilitation, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiazuan Ni
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Abstract
In this chapter, we briefly review the use of rats as a genetic model for the study of behavior. Rats were the first mammalian species used for genetic and biological research. Since the development of the first inbred rat strain in 1909, more than 700 unique inbred and outbred rat lines have been generated. Although rats have been somewhat eclipsed by mice in the last few decades, a renewed appreciation of the advantages of rats for behavioral and other types of research is upon us. We briefly review the pertinent characteristics of the rat and highlight the key advantages of using the rat to examine behavioral phenotypes.
Collapse
Affiliation(s)
- Yangsu Ren
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA. .,Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Focke C, Blume T, Zott B, Shi Y, Deussing M, Peters F, Schmidt C, Kleinberger G, Lindner S, Gildehaus FJ, Beyer L, von Ungern-Sternberg B, Bartenstein P, Ozmen L, Baumann K, Dorostkar MM, Haass C, Adelsberger H, Herms J, Rominger A, Brendel M. Early and Longitudinal Microglial Activation but Not Amyloid Accumulation Predicts Cognitive Outcome in PS2APP Mice. J Nucl Med 2018; 60:548-554. [DOI: 10.2967/jnumed.118.217703] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023] Open
|
11
|
Hampel H, Toschi N, Babiloni C, Baldacci F, Black KL, Bokde AL, Bun RS, Cacciola F, Cavedo E, Chiesa PA, Colliot O, Coman CM, Dubois B, Duggento A, Durrleman S, Ferretti MT, George N, Genthon R, Habert MO, Herholz K, Koronyo Y, Koronyo-Hamaoui M, Lamari F, Langevin T, Lehéricy S, Lorenceau J, Neri C, Nisticò R, Nyasse-Messene F, Ritchie C, Rossi S, Santarnecchi E, Sporns O, Verdooner SR, Vergallo A, Villain N, Younesi E, Garaci F, Lista S. Revolution of Alzheimer Precision Neurology. Passageway of Systems Biology and Neurophysiology. J Alzheimers Dis 2018; 64:S47-S105. [PMID: 29562524 PMCID: PMC6008221 DOI: 10.3233/jad-179932] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Precision Neurology development process implements systems theory with system biology and neurophysiology in a parallel, bidirectional research path: a combined hypothesis-driven investigation of systems dysfunction within distinct molecular, cellular, and large-scale neural network systems in both animal models as well as through tests for the usefulness of these candidate dynamic systems biomarkers in different diseases and subgroups at different stages of pathophysiological progression. This translational research path is paralleled by an "omics"-based, hypothesis-free, exploratory research pathway, which will collect multimodal data from progressing asymptomatic, preclinical, and clinical neurodegenerative disease (ND) populations, within the wide continuous biological and clinical spectrum of ND, applying high-throughput and high-content technologies combined with powerful computational and statistical modeling tools, aimed at identifying novel dysfunctional systems and predictive marker signatures associated with ND. The goals are to identify common biological denominators or differentiating classifiers across the continuum of ND during detectable stages of pathophysiological progression, characterize systems-based intermediate endophenotypes, validate multi-modal novel diagnostic systems biomarkers, and advance clinical intervention trial designs by utilizing systems-based intermediate endophenotypes and candidate surrogate markers. Achieving these goals is key to the ultimate development of early and effective individualized treatment of ND, such as Alzheimer's disease. The Alzheimer Precision Medicine Initiative (APMI) and cohort program (APMI-CP), as well as the Paris based core of the Sorbonne University Clinical Research Group "Alzheimer Precision Medicine" (GRC-APM) were recently launched to facilitate the passageway from conventional clinical diagnostic and drug development toward breakthrough innovation based on the investigation of the comprehensive biological nature of aging individuals. The APMI movement is gaining momentum to systematically apply both systems neurophysiology and systems biology in exploratory translational neuroscience research on ND.
Collapse
Affiliation(s)
- Harald Hampel
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Department of Radiology, “Athinoula A. Martinos” Center for Biomedical Imaging, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Claudio Babiloni
- Department of Physiology and Pharmacology “Vittorio Erspamer”, University of Rome “La Sapienza”, Rome, Italy
- Institute for Research and Medical Care, IRCCS “San Raffaele Pisana”, Rome, Italy
| | - Filippo Baldacci
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Arun L.W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - René S. Bun
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Francesco Cacciola
- Unit of Neurosurgery, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Enrica Cavedo
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
- IRCCS “San Giovanni di Dio-Fatebenefratelli”, Brescia, Italy
| | - Patrizia A. Chiesa
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Olivier Colliot
- Inserm, U1127, Paris, France; CNRS, UMR 7225 ICM, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France; Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France; Inria, Aramis project-team, Centre de Recherche de Paris, France; Department of Neuroradiology, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France; Department of Neurology, AP-HP, Hôpital de la Pitié-Salpêtrière, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Paris, France
| | - Cristina-Maria Coman
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Bruno Dubois
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Stanley Durrleman
- Inserm, U1127, Paris, France; CNRS, UMR 7225 ICM, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France; Institut du Cerveau et de la Moelle Épinière (ICM) Paris, France; Inria, Aramis project-team, Centre de Recherche de Paris, France
| | - Maria-Teresa Ferretti
- IREM, Institute for Regenerative Medicine, University of Zurich, Zürich, Switzerland
- ZNZ Neuroscience Center Zurich, Zürich, Switzerland
| | - Nathalie George
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle Épinière, ICM, Ecole Normale Supérieure, ENS, Centre MEG-EEG, F-75013, Paris, France
| | - Remy Genthon
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Marie-Odile Habert
- Département de Médecine Nucléaire, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
- Laboratoire d’Imagerie Biomédicale, Sorbonne Universités, UPMC Univ Paris 06, Inserm U 1146, CNRS UMR 7371, Paris, France
| | - Karl Herholz
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Wolfson Molecular Imaging Centre, Manchester, UK
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Foudil Lamari
- AP-HP, UF Biochimie des Maladies Neuro-métaboliques, Service de Biochimie Métabolique, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | | - Stéphane Lehéricy
- Centre de NeuroImagerie de Recherche - CENIR, Institut du Cerveau et de la Moelle Épinière - ICM, F-75013, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, F-75013, Paris, France
| | - Jean Lorenceau
- Institut de la Vision, INSERM, Sorbonne Universités, UPMC Univ Paris 06, UMR_S968, CNRS UMR7210, Paris, France
| | - Christian Neri
- Sorbonne Universités, Université Pierre et Marie Curie (UPMC) Paris 06, CNRS UMR 8256, Institut de Biologie Paris-Seine (IBPS), Place Jussieu, F-75005, Paris, France
| | - Robert Nisticò
- Department of Biology, University of Rome “Tor Vergata” & Pharmacology of Synaptic Disease Lab, European Brain Research Institute (E.B.R.I.), Rome, Italy
| | - Francis Nyasse-Messene
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière (ICM), Département de Neurologie, Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Hôpital Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
| | - Craig Ritchie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Simone Rossi
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Clinical Neurophysiology, Brain Investigation & Neuromodulation Lab. (Si-BIN Lab.), University of Siena, Siena, Italy
- Department of Medicine, Surgery and Neurosciences, Section of Human Physiology University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Department of Medicine, Surgery and Neurosciences, Unit of Neurology and Clinical Neurophysiology, Brain Investigation & Neuromodulation Lab. (Si-BIN Lab.), University of Siena, Siena, Italy
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- IU Network Science Institute, Indiana University, Bloomington, IN, USA
| | | | - Andrea Vergallo
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | - Nicolas Villain
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| | | | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Casa di Cura “San Raffaele Cassino”, Cassino, Italy
| | - Simone Lista
- AXA Research Fund & Sorbonne Université Chair, Paris, France
- Sorbonne Université, AP-HP, GRC n° 21, Alzheimer Precision Medicine (APM), Hôpital de la Pitié-Salpêtrière, Boulevard de l’hôpital, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Épinière (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l’hôpital, F-75013, Paris, France
- Institut de la Mémoire et de la Maladie d’Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Boulevard de l’hôpital, F-75013, Paris, France
| |
Collapse
|
12
|
Lever SZ, Fan KH, Lever JR. Tactics for preclinical validation of receptor-binding radiotracers. Nucl Med Biol 2017; 44:4-30. [PMID: 27755986 PMCID: PMC5161541 DOI: 10.1016/j.nucmedbio.2016.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Aspects of radiopharmaceutical development are illustrated through preclinical studies of [125I]-(E)-1-(2-(2,3-dihydrobenzofuran-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-BF-PE-PIPZE), a radioligand for sigma-1 (σ1) receptors, coupled with examples from the recent literature. Findings are compared to those previously observed for [125I]-(E)-1-(2-(2,3-dimethoxy-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-DM-PE-PIPZE). METHODS Syntheses of E-IA-BF-PE-PIPZE and [125I]-E-IA-BF-PE-PIPZE were accomplished by standard methods. In vitro receptor binding studies and autoradiography were performed, and binding potential was predicted. Measurements of lipophilicity and protein binding were obtained. In vivo studies were conducted in mice to evaluate radioligand stability, as well as specific binding to σ1 sites in brain, brain regions and peripheral organs in the presence and absence of potential blockers. RESULTS E-IA-BF-PE-PIPZE exhibited high affinity and selectivity for σ1 receptors (Ki = 0.43 ± 0.03 nM, σ2/σ1 = 173). [125I]-E-IA-BF-PE-PIPZE was prepared in good yield and purity, with high specific activity. Radioligand binding provided dissociation (koff) and association (kon) rate constants, along with a measured Kd of 0.24 ± 0.01 nM and Bmax of 472 ± 13 fmol/mg protein. The radioligand proved suitable for quantitative autoradiography in vitro using brain sections. Moderate lipophilicity, Log D7.4 2.69 ± 0.28, was determined, and protein binding was 71 ± 0.3%. In vivo, high initial whole brain uptake, >6% injected dose/g, cleared slowly over 24 h. Specific binding represented 75% to 93% of total binding from 15 min to 24 h. Findings were confirmed and extended by regional brain biodistribution. Radiometabolites were not observed in brain (1%). CONCLUSIONS Substitution of dihydrobenzofuranylethyl for dimethoxyphenethyl increased radioligand affinity for σ1 receptors by 16-fold. While high specific binding to σ1 receptors was observed for both radioligands in vivo, [125I]-E-IA-BF-PE-PIPZE displayed much slower clearance kinetics than [125I]-E-IA-DM-PE-PIPZE. Thus, minor structural modifications of σ1 receptor radioligands lead to major differences in binding properties in vitro and in vivo.
Collapse
Affiliation(s)
- Susan Z Lever
- Department of Chemistry, University of Missouri, Columbia, MO, USA; University of Missouri Research Reactor Center, Columbia, MO, USA.
| | - Kuo-Hsien Fan
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - John R Lever
- Department of Radiology, University of Missouri, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| |
Collapse
|
13
|
Zhang X, Liu F, Slikker W, Wang C, Paule MG. Minimally invasive biomarkers of general anesthetic-induced developmental neurotoxicity. Neurotoxicol Teratol 2016; 60:95-101. [PMID: 27784630 DOI: 10.1016/j.ntt.2016.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/29/2016] [Accepted: 10/21/2016] [Indexed: 12/22/2022]
Abstract
The association of general anesthesia with developmental neurotoxicity, while nearly impossible to study in pediatric populations, is clearly demonstrable in a variety of animal models from rodents to nonhuman primates. Nearly all general anesthetics tested have been shown to cause abnormal brain cell death in animals when administered during periods of rapid brain growth. The ability to repeatedly assess in the same subjects adverse effects induced by general anesthetics provides significant power to address the time course of important events associated with exposures. Minimally-invasive procedures provide the opportunity to bridge the preclinical/clinical gap by providing the means to more easily translate findings from the animal laboratory to the human clinic. Positron Emission Tomography or PET is a tool with great promise for realizing this goal. PET for small animals (microPET) is providing valuable data on the life cycle of general anesthetic induced neurotoxicity. PET radioligands (annexin V and DFNSH) targeting apoptotic processes have demonstrated that a single bout of general anesthesia effected during a vulnerable period of CNS development can result in prolonged apoptotic signals lasting for several weeks in the rat. A marker of cellular proliferation (FLT) has demonstrated in rodents that general anesthesia-induced inhibition of neural progenitor cell proliferation is evident when assessed a full 2weeks after exposure. Activated glia express Translocator Protein (TSPO) which can be used as a marker of presumed neuroinflammatory processes and a PET ligand for the TSPO (FEPPA) has been used to track this process in both rat and nonhuman primate models. It has been shown that single bouts of general anesthesia can result in elevated TSPO expression lasting for over a week. These examples demonstrate the utility of specific PET tracers to inform, in a minimally-invasive fashion, processes associated with general anesthesia-induced developmental neurotoxicity. The fact that PET procedures are also used clinically suggests an opportunity to confirm in humans what has been repeatedly observed in animals.
Collapse
|
14
|
Schilling LP, Zimmer ER, Shin M, Leuzy A, Pascoal TA, Benedet AL, Borelli WV, Palmini A, Gauthier S, Rosa-Neto P. Imaging Alzheimer's disease pathophysiology with PET. Dement Neuropsychol 2016; 10:79-90. [PMID: 29213438 PMCID: PMC5642398 DOI: 10.1590/s1980-5764-2016dn1002003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) has been reconceptualised as a dynamic pathophysiological process characterized by preclinical, mild cognitive impairment (MCI), and dementia stages. Positron emission tomography (PET) associated with various molecular imaging agents reveals numerous aspects of dementia pathophysiology, such as brain amyloidosis, tau accumulation, neuroreceptor changes, metabolism abnormalities and neuroinflammation in dementia patients. In the context of a growing shift toward presymptomatic early diagnosis and disease-modifying interventions, PET molecular imaging agents provide an unprecedented means of quantifying the AD pathophysiological process, monitoring disease progression, ascertaining whether therapies engage their respective brain molecular targets, as well as quantifying pharmacological responses. In the present study, we highlight the most important contributions of PET in describing brain molecular abnormalities in AD.
Collapse
Affiliation(s)
- Lucas Porcello Schilling
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre RS, Brazil
| | - Eduardo R Zimmer
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre RS, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre RS, Brazil
| | - Monica Shin
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada
| | - Antoine Leuzy
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada.,Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada
| | - Andréa L Benedet
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada
| | - Wyllians Vendramini Borelli
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre RS, Brazil
| | - André Palmini
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre RS, Brazil
| | - Serge Gauthier
- Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada
| |
Collapse
|
15
|
Brendel M, Jaworska A, Probst F, Overhoff F, Korzhova V, Lindner S, Carlsen J, Bartenstein P, Harada R, Kudo Y, Haass C, Van Leuven F, Okamura N, Herms J, Rominger A. Small-Animal PET Imaging of Tau Pathology with 18F-THK5117 in 2 Transgenic Mouse Models. J Nucl Med 2016; 57:792-8. [PMID: 26912432 DOI: 10.2967/jnumed.115.163493] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/21/2016] [Indexed: 11/16/2022] Open
Abstract
Abnormal accumulation of tau aggregates in the brain is one of the hallmarks of Alzheimer disease neuropathology. We visualized tau deposition in vivo with the previously developed 2-arylquinoline derivative (18)F-THK5117 using small-animal PET in conjunction with autoradiography and immunohistochemistry gold standard assessment in 2 transgenic mouse models expressing hyperphosphorylated tau. Small-animal PET recordings were obtained in groups of P301S (n = 11) and biGT mice (n = 16) of different ages, with age-matched wild-type (WT) serving as controls. After intravenous administration of 16 ± 2 MBq of (18)F-THK5117, a dynamic 90-min emission recording was initiated for P301S mice and during 20-50 min after injection for biGT mice, followed by a 15-min transmission scan. After coregistration to the MRI atlas and scaling to the cerebellum, we performed volume-of-interest-based analysis (SUV ratio [SUVR]) and statistical parametric mapping. Small-animal PET results were compared with autoradiography ex vivo and in vitro and further validated with AT8 staining for neurofibrillary tangles. SUVRs calculated from static recordings during the interval of 20-50 min after tracer injection correlated highly with estimates of binding potential based on the entire dynamic emission recordings (R = 0.85). SUVR increases were detected in the brain stem of aged P301S mice (+11%; P < 0.001) and in entorhinal/amygdaloidal areas (+15%; P < 0.001) of biGT mice when compared with WT, whereas aged WT mice did not show increased tracer uptake. Immunohistochemical tau loads correlated with small-animal PET SUVR for both P301S (R = 0.8; P < 0.001) and biGT (R = 0.7; P < 0.001) mice, and distribution patterns of AT8-positive neurons matched voxelwise statistical parametric mapping analysis. Saturable binding of the tracer was verified by autoradiographic blocking studies. In the first dedicated small-animal PET study in 2 different transgenic tauopathy mouse models using the tau tracer (18)F-THK5117, the temporal and spatial progression could be visualized in good correlation with gold standard assessments of tau accumulation. The serial small-animal PET method could afford the means for preclinical testing of novel therapeutic approaches by accommodating interanimal variability at baseline, while detection thresholds in young animals have to be considered.
Collapse
Affiliation(s)
- Matthias Brendel
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anna Jaworska
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Federico Probst
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Felix Overhoff
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Viktoria Korzhova
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Janette Carlsen
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | | | | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany Biomedical Center (BMC), Ludwig-Maximilians-University of Munich, Munich, Germany; and
| | | | | | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
16
|
Declercq L, Celen S, Lecina J, Ahamed M, Tousseyn T, Moechars D, Alcazar J, Ariza M, Fierens K, Bottelbergs A, Mariën J, Vandenberghe R, Andres IJ, Van Laere K, Verbruggen A, Bormans G. Comparison of New Tau PET-Tracer Candidates With [18F]T808 and [18F]T807. Mol Imaging 2016; 15:15/0/1536012115624920. [PMID: 27030397 PMCID: PMC5470083 DOI: 10.1177/1536012115624920] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/15/2015] [Indexed: 12/27/2022] Open
Abstract
Early clinical results of two tau tracers, [(18)F]T808 and [(18)F]T807, have recently been reported. In the present study, the biodistribution, radiometabolite quantification, and competition-binding studies were performed in order to acquire comparative preclinical data as well as to establish the value of T808 and T807 as benchmark compounds for assessment of binding affinities of eight new/other tau tracers. Biodistribution studies in mice showed high brain uptake and fast washout.In vivoradiometabolite analysis using high-performance liquid chromatography showed the presence of polar radiometabolites in plasma and brain. No specific binding of [(18)F]T808 was found in transgenic mice expressing mutant human P301L tau. In semiquantitative autoradiography studies on human Alzheimer disease slices, we observed more than 50% tau selective blocking of [(18)F]T808 in the presence of 1 µmol/L of the novel ligands. This study provides a straightforward comparison of the binding affinity and selectivity for tau of the reported radiolabeled tracers BF-158, BF-170, THK5105, lansoprazole, astemizole, and novel tau positron emission tomography ligands against T807 and T808. Therefore, these data are helpful to identify structural requirements for selective interaction with tau and to compare the performance of new highly selective and specific radiolabeled tau tracers.
Collapse
Affiliation(s)
- Lieven Declercq
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Sofie Celen
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Joan Lecina
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Muneer Ahamed
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Tousseyn
- Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Diederik Moechars
- Janssen Research and Development, Neuroscience Discovery Biology, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jesus Alcazar
- Janssen Research and Development, Discovery Sciences, a division of Janssen-Cilag NV, Toledo, Belgium
| | - Manuela Ariza
- Janssen Research and Development, Discovery Sciences, a division of Janssen-Cilag NV, Toledo, Belgium
| | - Katleen Fierens
- Janssen Research and Development, Discovery Sciences, a division of Janssen-Cilag NV, Toledo, Belgium
| | - Astrid Bottelbergs
- Janssen Research and Development, Neuroscience Discovery Biology, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Jonas Mariën
- Janssen Research and Development, Neuroscience Discovery Biology, a division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ignacio Jose Andres
- Janssen Research and Development, Discovery Sciences, a division of Janssen-Cilag NV, Toledo, Belgium
| | - Koen Van Laere
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Alfons Verbruggen
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Castrillo JI, Oliver SG. Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks. Methods Mol Biol 2016; 1303:3-48. [PMID: 26235058 DOI: 10.1007/978-1-4939-2627-5_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), and many neurodegenerative disorders, are multifactorial in nature. They involve a combination of genomic, epigenomic, interactomic and environmental factors. Progress is being made, and these complex diseases are beginning to be understood as having their origin in altered states of biological networks at the cellular level. In the case of AD, genomic susceptibility and mechanisms leading to (or accompanying) the impairment of the central Amyloid Precursor Protein (APP) processing and tau networks are widely accepted as major contributors to the diseased state. The derangement of these networks may result in both the gain and loss of functions, increased generation of toxic species (e.g., toxic soluble oligomers and aggregates) and imbalances, whose effects can propagate to supra-cellular levels. Although well sustained by empirical data and widely accepted, this global perspective often overlooks the essential roles played by the main counteracting homeostatic networks (e.g., protein quality control/proteostasis, unfolded protein response, protein folding chaperone networks, disaggregases, ER-associated degradation/ubiquitin proteasome system, endolysosomal network, autophagy, and other stress-protective and clearance networks), whose relevance to AD is just beginning to be fully realized. In this chapter, an integrative perspective is presented. Alzheimer's disease is characterized to be a result of: (a) intrinsic genomic/epigenomic susceptibility and, (b) a continued dynamic interplay between the deranged networks and the central homeostatic networks of nerve cells. This interplay of networks will underlie both the onset and rate of progression of the disease in each individual. Integrative Systems Biology approaches are required to effect its elucidation. Comprehensive Systems Biology experiments at different 'omics levels in simple model organisms, engineered to recapitulate the basic features of AD may illuminate the onset and sequence of events underlying AD. Indeed, studies of models of AD in simple organisms, differentiated cells in culture and rodents are beginning to offer hope that the onset and progression of AD, if detected at an early stage, may be stopped, delayed, or even reversed, by activating or modulating networks involved in proteostasis and the clearance of toxic species. In practice, the incorporation of next-generation neuroimaging, high-throughput and computational approaches are opening the way towards early diagnosis well before irreversible cell death. Thus, the presence or co-occurrence of: (a) accumulation of toxic Aβ oligomers and tau species; (b) altered splicing and transcriptome patterns; (c) impaired redox, proteostatic, and metabolic networks together with, (d) compromised homeostatic capacities may constitute relevant 'AD hallmarks at the cellular level' towards reliable and early diagnosis. From here, preventive lifestyle changes and tailored therapies may be investigated, such as combined strategies aimed at both lowering the production of toxic species and potentiating homeostatic responses, in order to prevent or delay the onset, and arrest, alleviate, or even reverse the progression of the disease.
Collapse
Affiliation(s)
- Juan I Castrillo
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK,
| | | |
Collapse
|
18
|
Snir JA, Suchy M, Lawrence KS, Hudson RH, Pasternak S, Bartha R. Prolonged In Vivo Retention of a Cathepsin D Targeted Optical Contrast Agent in a Mouse Model of Alzheimer’s Disease. J Alzheimers Dis 2015; 48:73-87. [DOI: 10.3233/jad-150123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jonatan A. Snir
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| | - Mojmir Suchy
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | - Keith St. Lawrence
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Medical Imaging, Lawson Health Research Institute, London, Ontario, Canada
| | - Robert H.E. Hudson
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | - Stephen H. Pasternak
- J. Allyn Taylor Centre for Cell Biology, Molecular Brain Research Group, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Robert Bartha
- Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
19
|
Inhibition of Protein Phosphatase 2A: Focus on the Glutamatergic System. Mol Neurobiol 2015; 53:3753-3755. [DOI: 10.1007/s12035-015-9321-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
|
20
|
Bannon D, Landau AM, Doudet DJ. How Relevant Are Imaging Findings in Animal Models of Movement Disorders to Human Disease? Curr Neurol Neurosci Rep 2015; 15:53. [DOI: 10.1007/s11910-015-0571-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Abstract
ABSTRACTThe presence of neurofibrillary tangles in the brain is a hallmark feature of several neurodegenerative diseases termed “tauopathies,” including Alzheimer’s disease (AD) and the tau molecular subgroup of frontotemporal lobar degeneration (FTLD-tau). Recently, several positron emission tomography (PET) radiopharmaceuticals targeting abnormal conformations of the tau protein have been developed. To date, six novel tau imaging agents—[18F]THK523, [18F]THK5105, [18F]THK5117, [18F]T807, [18F]T808, and [11C]PBB3—have been described and are considered promising as potential tau radioligands. Tau imaging agents offer the opportunity of in vivo topographical mapping and quantification of tau aggregates in parallel with clinical and cognitive assessments. As such, tau imaging is considered of key importance for progress toward earlier and more accurate diagnosis of tauopathies as well as for the monitoring of therapeutic interventions and drug development. Here, we shed light on the most important developments in tau radiopharmaceuticals, highlighting challenges, possibilities and future directions.
Collapse
|
22
|
Zimmer ER, Parent MJ, Cuello AC, Gauthier S, Rosa-Neto P. MicroPET imaging and transgenic models: a blueprint for Alzheimer's disease clinical research. Trends Neurosci 2014; 37:629-41. [PMID: 25151336 DOI: 10.1016/j.tins.2014.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 04/30/2014] [Accepted: 07/22/2014] [Indexed: 01/23/2023]
Abstract
Over the past decades, developments in neuroimaging have significantly contributed to the understanding of Alzheimer's disease (AD) pathophysiology. Specifically, positron emission tomography (PET) imaging agents targeting amyloid deposition have provided unprecedented opportunities for refining in vivo diagnosis, monitoring disease propagation, and advancing AD clinical trials. Furthermore, the use of a miniaturized version of PET (microPET) in transgenic (Tg) animals has been a successful strategy for accelerating the development of novel radiopharmaceuticals. However, advanced applications of microPET focusing on the longitudinal propagation of AD pathophysiology or therapeutic strategies remain in their infancy. This review highlights what we have learned from microPET imaging in Tg models displaying amyloid and tau pathology, and anticipates cutting-edge applications with high translational value to clinical research.
Collapse
Affiliation(s)
- Eduardo R Zimmer
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada; Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maxime J Parent
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada; PET unit, Montreal Neurological Institute (MNI), Montreal, Quebec, Canada.
| |
Collapse
|
23
|
Li L, Wang W, Welford S, Zhang T, Wang X, Zhu X. Ionizing radiation causes increased tau phosphorylation in primary neurons. J Neurochem 2014; 131:86-93. [PMID: 24861936 DOI: 10.1111/jnc.12769] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/29/2022]
Abstract
Radiotherapy is the major treatment modality for primary and metastatic brain tumors which involves the exposure of brain to ionizing radiation. Ionizing radiation can induce various detrimental pathophysiological effects in the adult brain, and Alzheimer's disease and related neurodegenerative disorders are considered to be late effects of radiation. In this study, we investigated whether ionizing radiation causes changes in tau phosphorylation in cultured primary neurons similar to that in Alzheimer's disease. We demonstrated that exposure to 0.5 or 2 Gy γ rays causes increased phosphorylation of tau protein at several phosphorylation sites in a time- and dose-dependent manner. Consistently, we also found ionizing radiation causes increased activation of GSK3β, c-Jun N-terminal kinase and extracellular signal-regulated kinase before radiation-induced increase in tau phosphorylation. Specific inhibitors of these kinases almost fully blocked radiation-induced tau phosphorylation. Our studies further revealed that oxidative stress plays an important role in ionizing radiation-induced tau phosphorylation, likely through the activation of c-Jun N-terminal kinase and extracellular signal-regulated kinase, but not GSK3β. Overall, our studies suggest that ionizing radiation may cause increased risk for development of Alzheimer's disease by promoting abnormal tau phosphorylation.
Collapse
Affiliation(s)
- Li Li
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA; Yueyang Hospital and Clinical Research Institute of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
24
|
Shared mechanisms of neurodegeneration in Alzheimer's disease and Parkinson's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:648740. [PMID: 24900975 PMCID: PMC4037122 DOI: 10.1155/2014/648740] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/16/2014] [Accepted: 04/20/2014] [Indexed: 12/03/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) have markedly different clinical and pathological features, but these two diseases are the most common neurodegenerative disorders. Previous studies have showed that there are common mechanisms in AD and PD. Several genetic studies have revealed mutations in genes associated with the risk of AD and PD. Circumstantial evidences have shown that dysregulation of brain iron homeostasis leads to abnormal iron accumulation and results in AD as well as PD. α-Synuclein and tau take part in the mechanisms of these diseases by oxidative stress and mitochondrial dysfunction. Some studies indicated that the loss of LC noradrenergic neurons may occur early in the progression of AD and PD. Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily of pentameric ligand-gated ion channels; some evidence showed that nicotinic receptors may be associated with AD and PD. These experimental and clinical studies may provide a scientific foundation for common shared mechanisms in AD and PD.
Collapse
|