1
|
Hossain MA, Rahman MZ, Bhuiyan T, Moni MA. Identification of Biomarkers and Molecular Pathways Implicated in Smoking and COVID-19 Associated Lung Cancer Using Bioinformatics and Machine Learning Approaches. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1392. [PMID: 39595659 PMCID: PMC11593889 DOI: 10.3390/ijerph21111392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 11/28/2024]
Abstract
Lung cancer (LC) is a significant global health issue, with smoking as the most common cause. Recent epidemiological studies have suggested that individuals who smoke are more susceptible to COVID-19. In this study, we aimed to investigate the influence of smoking and COVID-19 on LC using bioinformatics and machine learning approaches. We compared the differentially expressed genes (DEGs) between LC, smoking, and COVID-19 datasets and identified 26 down-regulated and 37 up-regulated genes shared between LC and smoking, and 7 down-regulated and 6 up-regulated genes shared between LC and COVID-19. Integration of these datasets resulted in the identification of ten hub genes (SLC22A18, CHAC1, ROBO4, TEK, NOTCH4, CD24, CD34, SOX2, PITX2, and GMDS) from protein-protein interaction network analysis. The WGCNA R package was used to construct correlation network analyses for these shared genes, aiming to investigate the relationships among them. Furthermore, we also examined the correlation of these genes with patient outcomes through survival curve analyses. The gene ontology and pathway analyses were performed to find out the potential therapeutic targets for LC in smoking and COVID-19 patients. Moreover, machine learning algorithms were applied to the TCGA RNAseq data of LC to assess the performance of these common genes and ten hub genes, demonstrating high performances. The identified hub genes and molecular pathways can be utilized for the development of potential therapeutic targets for smoking and COVID-19-associated LC.
Collapse
Affiliation(s)
- Md Ali Hossain
- Department of Computer Science and Engineering, Jahangirnagar University, Dhaka 1342, Bangladesh; (M.A.H.); (M.Z.R.)
- Health Informatics Lab, Department of Computer Science and Engineering, Daffodil International University, Dhaka 1216, Bangladesh
| | - Mohammad Zahidur Rahman
- Department of Computer Science and Engineering, Jahangirnagar University, Dhaka 1342, Bangladesh; (M.A.H.); (M.Z.R.)
| | - Touhid Bhuiyan
- School of IT, Washington University of Science and Technology, Alexandria, VA 22314, USA
| | - Mohammad Ali Moni
- Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane 4072, Australia
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Bathurst 2795, Australia
| |
Collapse
|
2
|
Yu X, Zheng L, Xia Z, Xu Y, Shen X, Huang Y, Dai Y. Comprehensive proteomic profiling of lung adenocarcinoma: development and validation of an innovative prognostic model. Transl Cancer Res 2024; 13:2187-2207. [PMID: 38881920 PMCID: PMC11170522 DOI: 10.21037/tcr-23-1940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/06/2024] [Indexed: 06/18/2024]
Abstract
Background Lung adenocarcinoma (LUAD), a global leading cause of cancer deaths, remains inadequately addressed by current protein biomarkers. Our study focuses on developing a protein-based risk signature for improved prognosis of LUAD. Methods We employed the least absolute shrinkage and selection operator (LASSO)-COX algorithm on The Cancer Genome Atlas database to construct a prognostic model incorporating six proteins (CD49B, UQCRC2, SMAD1, FOXM1, CD38, and KAP1). The model's performance was assessed using principal component, Kaplan-Meier (KM), and receiver operating characteristic (ROC) analysis, indicating strong predictive capability. The model stratifies LUAD patients into distinct risk groups, with further analysis revealing its potential as an independent prognostic factor. Additionally, we developed a predictive nomogram integrating clinicopathologic factors, aimed at assisting clinicians in survival prediction. Gene set enrichment analysis (GSEA) and examination of the tumor immune microenvironment were conducted, highlighting metabolic pathways in high-risk genes and immune-related pathways in low-risk genes, indicating varied immunotherapy sensitivity. Validation through immunohistochemistry from the Human Protein Atlas (HPA) database and immunofluorescence staining of clinical samples was performed, particularly focusing on CD38 expression. Results Our six-protein model (CD49B, UQCRC2, SMAD1, FOXM1, CD38, KAP1) effectively categorized LUAD patients into high and low-risk groups, confirmed by principal component, KM, and ROC analyses. The model showed high predictive accuracy, with distinct survival differences between risk groups. Notably, CD38, traditionally seen as protective, was paradoxically associated with poor prognosis in LUAD, a finding supported by immunohistochemistry and immunofluorescence data. GSEA revealed that high-risk genes are enriched in metabolic pathways, while low-risk genes align with immune-related pathways, suggesting better immunotherapy response in the latter group. Conclusions This study presented a novel prognostic protein model for LUAD, highlighting the CD38 expression paradox and enhancing our understanding of protein roles in lung cancer progression. It offered new clinical tools for prognosis prediction and provided assistance for future lung cancer pathogenesis research.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lei Zheng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zehai Xia
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yanling Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xihui Shen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yihui Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yifan Dai
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Cruz SM, Iranpur KR, Judge SJ, Ames E, Sturgill IR, Farley LE, Darrow MA, Crowley JS, Monjazeb AM, Murphy WJ, Canter RJ. Low-Dose Sorafenib Promotes Cancer Stem Cell Expansion and Accelerated Tumor Progression in Soft Tissue Sarcomas. Int J Mol Sci 2024; 25:3351. [PMID: 38542325 PMCID: PMC10969893 DOI: 10.3390/ijms25063351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 08/03/2024] Open
Abstract
The cancer stem cell (CSC) hypothesis postulates that heterogeneous human cancers harbor a population of stem-like cells which are resistant to cytotoxic therapies, thus providing a reservoir of relapse following conventional therapies like chemotherapy and radiation (RT). CSCs have been observed in multiple human cancers, and their presence has been correlated with worse clinical outcomes. Here, we sought to evaluate the impact of drug dosing of the multi-tyrosine kinase inhibitor, sorafenib, on CSC and non-CSCs in soft tissue sarcoma (STS) models, hypothesizing differential effects of sorafenib based on dose and target cell population. In vitro, human cancer cell lines and primary STS from surgical specimens were exposed to escalating doses of sorafenib to determine cell viability and expression of CSC marker aldehyde dehydrogenase (ALDH). In vivo, ALDHbright CSCs were isolated, exposed to sorafenib, and xenograft growth and survival analyses were performed. We observed that sarcoma CSCs appear to paradoxically respond to the tyrosine kinase inhibitor sorafenib at low doses with increased proliferation and stem-like function of CSCs, whereas anti-viability effects dominated at higher doses. Importantly, STS patients receiving neoadjuvant sorafenib and RT on a clinical trial (NCT00864032) showed increased CSCs post therapy, and higher ALDH scores post therapy were associated with worse metastasis-free survival. These data suggest that low-dose sorafenib may promote the CSC phenotype in STS with clinically significant effects, including increased tumor growth and higher rates of metastasis formation in sarcoma patients.
Collapse
Affiliation(s)
- Sylvia M. Cruz
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Khurshid R. Iranpur
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Sean J. Judge
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Erik Ames
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Ian R. Sturgill
- Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lauren E. Farley
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Morgan A. Darrow
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Jiwon Sarah Crowley
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California Davis, Sacramento, CA 95817, USA
| | - William J. Murphy
- Department of Dermatology, University of California Davis, Sacramento, CA 95817, USA;
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Kulesza J, Paluszkiewicz E, Augustin E. Cellular Effects of Selected Unsymmetrical Bisacridines on the Multicellular Tumor Spheroids of HCT116 Colon and A549 Lung Cancer Cells in Comparison to Monolayer Cultures. Int J Mol Sci 2023; 24:15780. [PMID: 37958764 PMCID: PMC10649579 DOI: 10.3390/ijms242115780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Multicellular tumor spheroids are a good tool for testing new anticancer drugs, including those that may target cancer stem cells (CSCs), which are responsible for cancer progression, metastasis, and recurrence. Therefore, we applied this model in our studies of highly active antitumor unsymmetrical bisacridines (UAs). We investigated the cellular response induced by UAs in 2D and 3D cultures of HCT116 colon and A549 lung cancer cells, with an additional focus on their impact on the CSC-like population. We showed that UAs affected the viability of the studied cells, as well as their spherogenic potential in the 2D and 3D cultures. Furthermore, we proved that the most promising UAs (C-2045 and C-2053) induced apoptosis in the HCT116 and A549 spheres to a similar, or even higher, extent than what was found in monolayer conditions. Next, we identified the population of the CSC-like cells in the 2D and 3D cultures of the studied cell lines by determining the levels of CD166, CD133, CD44, and EpCAM markers. We showed that the selected UAs affected the CSC-like population in both of the cell lines, and that A549 was affected more profoundly in 3D than in 2D cultures. Thus, the UAs exhibited high antitumor properties in both the 2D and 3D conditions, which makes them promising candidates for future therapeutic applications.
Collapse
Affiliation(s)
| | | | - Ewa Augustin
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (J.K.); (E.P.)
| |
Collapse
|
5
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
6
|
Role of Nrf2 and mitochondria in cancer stem cells; in carcinogenesis, tumor progression, and chemoresistance. Biochimie 2020; 179:32-45. [PMID: 32946993 DOI: 10.1016/j.biochi.2020.09.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/05/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) are rare sub-population in tumor mass with self-renewal and differentiation abilities; CSCs are considered as the main cells which are responsible for tumor metastasis, cancer recurrence, and chemo/radio-resistance. CSCs are believed to contain low mitochondria in quantity, high concentration of nuclear factor erythroid 2-related factor 2 (Nrf2), and low reactive oxygen species (ROS) levels. Mitochondria regulate certain cellular functions, including controlling of cellular energetics, calcium signaling, cell growth and cell differentiation, cell cycle regulation, and cell death. Also, mitochondria are the main sources of intrinsic ROS production. Dysfunction of CSCs mitochondria due to oxidative phosphorylation is reported in several pathological conditions, including metabolic disorders, age-related diseases, and various types of cancers. ROS levels play a significant role in cellular signal transduction and CSCs' identity and differentiation capability. Nrf2 is a master transcription factor that plays critical functions in maintaining cellular redox hemostasis by regulating several antioxidant and detoxification pathways. Recently, the critical function of Nrf2 in CSCs has been revealed by several studies. Nrf2 is an essential molecule in the maintenance of CSCs' stemness and self-renewal in response to different oxidative stresses such as chemotherapy-induced elevation of ROS. Nrf2 enables these cells to recover from chemotherapy damages, and promotes establishment of invasion and dissemination. In this study, we have summarized the role of Nrf2 and mitochondria function CSCs, which promote cancer development. The significant role of Nrf2 in the regulation of mitochondrial function and ROS levels suggests this molecule as a potential target to eradicate CSCs.
Collapse
|
7
|
Gor R, Ramalingam S. Controversies in Isolation and Characterization of Cancer Stem Cells. CANCER STEM CELLS: NEW HORIZONS IN CANCER THERAPIES 2020:257-272. [DOI: 10.1007/978-981-15-5120-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Takke A, Shende P. Non-invasive Biodiversified Sensors: A Modernized Screening Technology for Cancer. Curr Pharm Des 2019; 25:4108-4120. [DOI: 10.2174/1381612825666191022162232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/14/2019] [Indexed: 01/30/2023]
Abstract
Background:
Biological sensors revolutionize the method of diagnoses of diseases from early to final
stages using the biomarkers present in the body. Biosensors are advantageous due to the involvement of minimal
sample collection with improved specificity and sensitivity for the detection of biomarkers.
Methods:
Conventional biopsies restrict problems like patient non-compliance, cross-infection and high cost and to
overcome these issues biological samples like saliva, sweat, urine, tears and sputum progress into clinical and diagnostic
research for the development of non-invasive biosensors. This article covers various non-invasive measurements
of biological samples, optical-based, mass-based, wearable and smartphone-based biosensors for the detection
of cancer.
Results:
The demand for non-invasive, rapid and economic analysis techniques escalated due to the modernization
of the introduction of self-diagnostics and miniature forms of devices. Biosensors have high sensitivity and
specificity for whole cells, microorganisms, enzymes, antibodies, and genetic materials.
Conclusion:
Biosensors provide a reliable early diagnosis of cancer, which results in faster therapeutic outcomes
with in-depth fundamental understanding of the disease progression.
Collapse
Affiliation(s)
- Anjali Takke
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
9
|
Ge Y, Long Y, Xiao S, Liang L, He Z, Yue C, Wei X, Zhou Y. CD38 affects the biological behavior and energy metabolism of nasopharyngeal carcinoma cells. Int J Oncol 2018; 54:585-599. [PMID: 30535454 PMCID: PMC6317656 DOI: 10.3892/ijo.2018.4651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most common malignant tumor type in Southern China and South-East Asia. Cluster of differentiation (CD)38 is highly expressed in the human immune system and participates in the activation of T, natural killer and plasma cells mediated by CD2 and CD3 through synergistic action. CD38 is a type II transmembrane glycoprotein, which was observed to mediate diverse activities, including signal transduction, cell adhesion and cyclic ADP-ribose synthesis. However, the significance of CD38 in NPC biological behavior and cellular energy metabolism has not been examined. In order to elucidate the effect of CD38 on the biological behavior of NPC cells, stable CD38-overexpressed NPC cell lines were established. It was demonstrated that CD38 promoted NPC cell proliferation with Cell Counting Kit-8 and colony formation assays. It was also indicated that CD38 inhibited cell senescence, and promoted cell metastasis. Furthermore, it was determined that CD38 promoted the conversion of cells to the S phase and decreased the content of reactive oxygen species and Ca2+. Additionally, cell metabolism assays demonstrated that CD38 increased the concentration of ATP, lactic acid, cyclic adenosine monophosphate and human ADP/acrp30 concentration in NPC cells. To investigate the possible mechanism, bioinformatics analysis and mass spectrometry technology was used to determine the most notably changing molecule and signaling pathways, and it was determined and verified that CD38 regulated the metabolic-associated signaling pathways associated with tumor protein 53, hypoxia inducible factor-1α and sirtuin 1. The present results indicated that CD38 may serve a carcinogenic role in NPC by regulating metabolic-associated signaling pathways.
Collapse
Affiliation(s)
- Yanshan Ge
- Department of Oncology, Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yuehua Long
- Department of Oncology, Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Lin Liang
- Department of Oncology, Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Zhengxi He
- Department of Oncology, Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Chunxue Yue
- Department of Oncology, Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Xiong Wei
- Department of Oncology, Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Yanhong Zhou
- Department of Oncology, Hunan Provincial Tumor Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
10
|
Liu DH, An M, Bao BL, Ren F, Xia P. Nicotine inhibits CD24 expression in Lewis lung carcinoma cells by upregulation of RAS expression. Int J Oncol 2018; 53:815-822. [PMID: 29845249 DOI: 10.3892/ijo.2018.4415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/08/2018] [Indexed: 11/06/2022] Open
Abstract
Cluster of ddifferentiation 24 (CD24) is a widely used cancer stem cell (CSC) marker in numerous cancer types. However, a number of studies have shown that CD24 is a prognostic marker, but not a CSC marker for lung adenocarcinoma. In the present study, firstly, bioinformatic analyses were used to identify the CD24 mRNA levels in the subtypes of lung cancer. Secondly, CD24high and CD24low cells were isolated from the side population of Lewis lung carcinoma (LLC) cells using flow cytometry. Furthermore, the stemness of CD24high and CD24low cells were determined in vivo and in vitro. Lastly, the mechanism(s) of nicotine-inhibited CD24 expression in LLC cells were assessed. The main findings of this study are that: i) CD24 could be used as a prognostic marker for human lung adenocarcinoma; ii) the in vitro and in vivo experiments did not determine a significant influence of CD24 on the tumorgenicity of LLC cells; and iii) nicotine inhibited CD24 expression in LLC cells by upregulation of RAS. However, the detailed mechanism(s) of these results require further analysis.
Collapse
Affiliation(s)
- Da-Hua Liu
- Biological Anthropology Institute, Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Min An
- Department of Cardiology, Jinzhou Central Hospital, Jinzhou, Liaoning 121000, P.R. China
| | - Bai-Li Bao
- Department of Cardiology, Jinzhou Central Hospital, Jinzhou, Liaoning 121000, P.R. China
| | - Fu Ren
- Biological Anthropology Institute, Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Pu Xia
- Biological Anthropology Institute, Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
11
|
Eyvazi S, Kazemi B, Bandehpour M, Dastmalchi S. Identification of a novel single chain fragment variable antibody targeting CD24-expressing cancer cells. Immunol Lett 2017; 190:240-246. [DOI: 10.1016/j.imlet.2017.08.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/29/2017] [Accepted: 08/28/2017] [Indexed: 02/06/2023]
|
12
|
Liao S, Xiao S, Chen H, Zhang M, Chen Z, Long Y, Gao L, Zhu G, He J, Peng S, Xiong W, Zeng Z, Li Z, Zhou M, Li X, Ma J, Wu M, Xiang J, Li G, Zhou Y. CD38 enhances the proliferation and inhibits the apoptosis of cervical cancer cells by affecting the mitochondria functions. Mol Carcinog 2017; 56:2245-2257. [PMID: 28544069 DOI: 10.1002/mc.22677] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/28/2017] [Accepted: 05/20/2017] [Indexed: 01/10/2023]
Abstract
Cervical cancer is one of the most common malignant tumors in women all over the world. The exact mechanism of occurrence and development of cervical cancer has not been fully elucidated. CD38 is a type II transmembrane glycoprotein, which was found to mediate diverse activities, including signal transduction, cell adhesion, and cyclic ADP-ribose synthesis. Here, we reported that CD38 promoted cell proliferation and inhibited cell apoptosis in cervical cancer cells by affecting the mitochondria functions. We established stable cervical cancer cell lines with CD38 over-expressed. CCK8 assay and colony formation assay indicated that CD38 promoted cervical cancer cell proliferation. Nude mouse tumorigenicity assay showed that CD38 significantly promotes tumor growth in vivo. CD38 also induced S phase accumulation in cell cycle analysis and suppressed cell apoptosis in cervical cancer cells. Meanwhile, flow cytometry analysis of mitochondria functions suggested that CD38 decreased intracellular Ca2+ levels in cervical cancer cells and CD38 was involved in down-regulation of ROS levels and prevented mitochondrial apoptosis in cervical cancer cells. The percentage of cells with loss of mitochondrial membrane potential (Δψm) in CD38-overexpressed cervical cancer cells was less than control groups. Furthermore, we found an up-regulation of MDM2, cyclinA1, CDK4, cyclinD1, NF-kB P65, c-rel, and a downregulation of P53, P21, and P38 by Western blot analysis. These results indicated that CD38 enhanced the proliferation and inhibited the apoptosis of cervical cancer cells by affecting the mitochondria functions.
Collapse
Affiliation(s)
- Shan Liao
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongxiang Chen
- The Gynecology Department, People's Hospital of Xinjiang, Urumchi, Xinjiang, China
| | - Manying Zhang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhifang Chen
- The Gynecology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Yuehua Long
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Lu Gao
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guangchao Zhu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junyu He
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zheng Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jian Ma
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Minghua Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Juanjuan Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yanhong Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Abstract
Cancer stem cells (CSCs), with their self-renewal ability and multilineage differentiation potential, are a critical subpopulation of tumor cells that can drive tumor initiation, growth, and resistance to therapy. Like embryonic and adult stem cells, CSCs express markers that are not expressed in normal somatic cells and are thus thought to contribute towards a 'stemness' phenotype. This review summarizes the current knowledge of stemness-related markers in human cancers, with a particular focus on important transcription factors, protein surface markers and signaling pathways.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| | - Yvonne Li
- Dana Farber cancer Institute and Harvard Medical School, Boston, Massachusetts 02115
| | - Xun Zhang
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
14
|
Ehlerding EB, England CG, Jiang D, Graves SA, Kang L, Lacognata S, Barnhart TE, Cai W. CD38 as a PET Imaging Target in Lung Cancer. Mol Pharm 2017; 14:2400-2406. [PMID: 28573863 DOI: 10.1021/acs.molpharmaceut.7b00298] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Daratumumab (Darzalex, Janssen Biotech) is a clinically approved antibody targeting CD38 for the treatment of multiple myeloma. However, CD38 is also expressed by other cancer cell types, including lung cancer, where its expression or absence may offer prognostic value. We therefore developed a PET tracer based upon daratumumab for tracking CD38 expression, utilizing murine models of non-small cell lung cancer to verify its specificity. Daratumumab was prepared for radiolabeling with 89Zr (t1/2 = 78.4 h) through conjugation with desferrioxamine (Df). Western blot, flow cytometry, and saturation binding assays were utilized to characterize CD38 expression and binding of daratumumab to three non-small cell lung cancer cell lines: A549, H460, and H358. Murine xenograft models of the cell lines were also generated for further in vivo studies. Longitudinal PET imaging was performed following injection of 89Zr-Df-daratumumab out to 120 h postinjection, and nonspecific uptake was also evaluated through the injection of a radiolabeled control IgG antibody in A549 mice, 89Zr-Df-IgG. Ex vivo biodistribution and histological analyses were also performed after the terminal imaging time point at 120 h postinjection. Through cellular studies, A549 cells were found to express higher levels of CD38 than the H460 or H358 cell lines. PET imaging and ex vivo biodistribution studies verified in vitro trends, with A549 tumor uptake peaking at 8.1 ± 1.2%ID/g at 120 h postinjection according to PET analysis, and H460 and H358 at lower levels at the same time point (6.7 ± 0.7%ID/g and 5.1 ± 0.4%ID/g, respectively; n = 3 or 4). Injection of a nonspecific radiolabeled IgG into A549 tumor-bearing mice also demonstrated lower tracer uptake of 4.4 ± 1.3%ID/g at 120 h. Immunofluorescent staining of tumor tissues showed higher staining levels present in A549 tissues over H460 and H358. Thus, 89Zr-Df-daratumumab is able to image CD38-expressing tissues in vivo using PET, as verified through the exploration of non-small cell lung cancer models in this study. This agent therefore holds potential to image CD38 in other malignancies and aid in patient stratification and elucidation of the biodistribution of CD38.
Collapse
Affiliation(s)
- Emily B Ehlerding
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Christopher G England
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Dawei Jiang
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Stephen A Graves
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Lei Kang
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Saige Lacognata
- Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Radiology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin 53705, United States
| |
Collapse
|
15
|
Zakaria N, Satar NA, Abu Halim NH, Ngalim SH, Yusoff NM, Lin J, Yahaya BH. Targeting Lung Cancer Stem Cells: Research and Clinical Impacts. Front Oncol 2017; 7:80. [PMID: 28529925 PMCID: PMC5418222 DOI: 10.3389/fonc.2017.00080] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 04/11/2017] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the most common cancer worldwide, accounting for 1.8 million new cases and 1.6 million deaths in 2012. Non-small cell lung cancer (NSCLC), which is one of two types of lung cancer, accounts for 85–90% of all lung cancers. Despite advances in therapy, lung cancer still remains a leading cause of death. Cancer relapse and dissemination after treatment indicates the existence of a niche of cancer cells that are not fully eradicated by current therapies. These chemoresistant populations of cancer cells are called cancer stem cells (CSCs) because they possess the self-renewal and differentiation capabilities similar to those of normal stem cells. Targeting the niche of CSCs in combination with chemotherapy might provide a promising strategy to eradicate these cells. Thus, understanding the characteristics of CSCs has become a focus of studies of NSCLC therapies.
Collapse
Affiliation(s)
- Norashikin Zakaria
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Nazilah Abdul Satar
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Noor Hanis Abu Halim
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Siti Hawa Ngalim
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Narazah Mohd Yusoff
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Juntang Lin
- College of Life Science and Technology, Xinxiang Medical University (XXMU), Xinxiang, China.,College of Biomedical Engineering, Xinxiang Medical University (XXMU), Xinxiang, China
| | - Badrul Hisham Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| |
Collapse
|
16
|
Mendoza A, Torrisi DM, Sell S, Cady NC, Lawrence DA. Grating coupled SPR microarray analysis of proteins and cells in blood from mice with breast cancer. Analyst 2017; 141:704-12. [PMID: 26539568 DOI: 10.1039/c5an01749a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biomarker discovery for early disease diagnosis is highly important. Of late, much effort has been made to analyze complex biological fluids in an effort to develop new markers specific for different cancer types. Recent advancements in label-free technologies such as surface plasmon resonance (SPR)-based biosensors have shown promise as a diagnostic tool since there is no need for labeling or separation of cells. Furthermore, SPR can provide rapid, real-time detection of antigens from biological samples since SPR is highly sensitive to changes in surface-associated molecular and cellular interactions. Herein, we report a lab-on-a-chip microarray biosensor that utilizes grating-coupled surface plasmon resonance (GCSPR) and grating-coupled surface plasmon coupled fluorescence (GCSPCF) imaging to detect circulating tumor cells (CTCs) from a mouse model (FVB-MMTV-PyVT). GCSPR and GCSPCF analysis was accomplished by spotting antibodies to surface cell markers, cytokines and stress proteins on a nanofabricated GCSPR microchip and screening blood samples from FVB control mice or FVB-MMTV-PyVT mice with developing mammary carcinomas. A transgenic MMTV-PyVT mouse derived cancer cell line was also analyzed. The analyses indicated that CD24, CD44, CD326, CD133 and CD49b were expressed in both cell lines and in blood from MMTV-PyVT mice. Furthermore, cytokines such as IL-6, IL-10 and TNF-α, along with heat shock proteins HSP60, HSP27, HSc70(HSP73), HSP90 total, HSP70/HSc70, HSP90, HSP70, HSP90 alpha, phosphotyrosine and HSF-1 were overexpressed in MMTV-PyVT mice.
Collapse
Affiliation(s)
- A Mendoza
- Wadsworth Center, New York State Department of Health, 150 New Scotland Avenue, Albany, NY 12208, USA
| | - D M Torrisi
- Wadsworth Center, New York State Department of Health, 150 New Scotland Avenue, Albany, NY 12208, USA
| | - S Sell
- Wadsworth Center, New York State Department of Health, 150 New Scotland Avenue, Albany, NY 12208, USA
| | - N C Cady
- SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12203, USA.
| | - D A Lawrence
- Wadsworth Center, New York State Department of Health, 150 New Scotland Avenue, Albany, NY 12208, USA
| |
Collapse
|
17
|
He H, Tu X, Zhang J, Acheampong DO, Ding L, Ma Z, Ren X, Luo C, Chen Z, Wang T, Xie W, Wang M. A novel antibody targeting CD24 and hepatocellular carcinoma in vivo by near-infrared fluorescence imaging. Immunobiology 2015; 220:1328-36. [PMID: 26255089 DOI: 10.1016/j.imbio.2015.07.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/13/2015] [Accepted: 07/07/2015] [Indexed: 12/24/2022]
Abstract
Liver cancer is one of the most common malignant cancers worldwide. The poor response of liver cancer to chemotherapy has whipped up the interest in targeted therapy with monoclonal antibodies because of its potential efficiency. One promising target is cluster of differentiation 24 (CD24), which is known to beover-expressed on hepatocellular carcinoma (HCC), providing prospect for HCC targeted diagnosis and therapy. In this study we developed a novel CD24 targeted monoclonal antibody G7mAb based on hybridoma technology and then generated a single-chain antibodyfragment (scFv) G7S. Firstly, ELISA, western blot, and flow cytometry assays demonstrated specific binding of CD24 by G7mAb and G7S. Further, G7mAb was demonstrated to have similar binding capacity as ML5 (a commercial Anti-CD24 Mouse Antibody) inimmunohistochemical assay. Further more, a near-infrared fluorescent dye multiplex probe amplification (MPA) was conjugated to G7mAb and G7S to form G7mAb-MPA and G7S-MPA. The near-infrared fluorescence imaging revealed that G7mAb and G7S aggregate in CD24+Huh7 hepatocellular carcinoma xenograft tissuevia specific binding to CD24 in vivo. In conclussion, G7mAb and G7S were tumor targeted therapeutic and diagnostic potentials in vitro and in vivo as anticipated.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xiaojie Tu
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Juan Zhang
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Desmond Omane Acheampong
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Li Ding
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhaoxiong Ma
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xueyan Ren
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chen Luo
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhiguo Chen
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tong Wang
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wei Xie
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Min Wang
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
18
|
Li YH, Sun X, Wang HB. Role of CD24 in anoikis resistance of ovarian cancer cells. ACTA ACUST UNITED AC 2015; 35:390-396. [PMID: 26072079 DOI: 10.1007/s11596-015-1443-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/05/2015] [Indexed: 01/24/2023]
Abstract
This study examined the effect of CD24 on anoikis of ovarian cancer cells. The expression of CD24 was detected by RT-PCR and Western blotting in ovarian cancer cells with high metastatic potential (HO-8910PM cells) and low metastatic potential (A2780 cells). Cell viability and cell proliferation were detected by MTT assay in suspension culture and adhesion culture. Soft agar culture was used to observe the colony formation. Anoikis was flow cytometrically detected. The results showed that the expression levels of CD24 mRNA and protein were significantly higher in HO-8910PM cells than in A2780 cells (P<0.01). In the suspension culture and soft agar culture, the HO-8910PM cells formed larger and more colonies (35.33 ± 5.51 vs. 16.67 ± 4.04; P<0.01), and showed a stronger resistance to anoikis than A2780 cells did (cell apoptosis rate: 5.93% ± 2 .38% vs. 16.32% ± 2.00%; P<0.01). After treated with CD24 monoclonal antibodies, the number of colony formed in HO-8910PM and A2780 cells was significantly decreased (9.33 ± 2.52 and 8.00 ± 2.00, respectively), and the anoikis rate of the two cell lines was also markedly increased (23.11% ± 2.87% and 28.36% ± 2.29%, respectively). Our study suggested that CD24 may play an important role in the development of anoikis resistance and CD24 can be used as a new therapeutic target to induce anoikis and inhibit metastasis in ovarian cancer.
Collapse
Affiliation(s)
- Yan-Hui Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiang Sun
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Bo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
19
|
High CD133 expression in the nucleus and cytoplasm predicts poor prognosis in non-small cell lung cancer. DISEASE MARKERS 2015; 2015:986095. [PMID: 25691807 PMCID: PMC4323063 DOI: 10.1155/2015/986095] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/08/2014] [Accepted: 12/22/2014] [Indexed: 01/31/2023]
Abstract
Objective. The aim of this study was to investigate the expression of Prominin-1 (CD133) in cancer cells and its potential value as a prognostic indicator of survival in patients with non-small cell lung cancer (NSCLC). Methods. Cancerous tissues and matched normal tissues adjacent to the carcinoma from 239 NSCLC patients were obtained immediately after surgery. Immunohistochemistry of tissue microarrays was used to characterize the expression of CD133 in NSCLC and adjacent tissues. The correlation of CD133 expression with clinical characteristics and prognosis was determined by statistical analysis. Results. CD133 protein expression levels in both the cytoplasm and nucleus were significantly higher in NSCLC tissues compared with corresponding peritumoral tissue (P < 0.05). CD133 expression in the nucleus of NSCLC cells was related to tumor diameter (P = 0.027), tumor differentiation (P < 0.001), and TNM stage (P = 0.007). Kaplan-Meier survival and Cox regression analyses revealed that high CD133 expression in the nucleus was an independent predictor of poor prognosis of NSCLC, as was high cytoplasmic CD133 expression (P < 0.001). Conclusion. Our findings provide the first evidence that high expression of CD133 in both the nucleus and cytoplasm is associated with poor prognosis in NSCLC.
Collapse
|