1
|
Lin C, Huang Y, Lin Q. The impact of tonsillectomy and/or adenoidectomy on cognitive function and brain structure in pediatric patients with OSAHS. Technol Health Care 2024:THC241028. [PMID: 39302401 DOI: 10.3233/thc-241028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND Tonsillectomy and/or adenoidectomy can treat children with obstructive sleep apnea/hypopnea syndrome (OSAHS). OBJECTIVE This study investigated the effects of tonsillectomy and/or adenoidectomy on cognitive function and brain structure in children with OSAHS. METHODS This study included 40 obstructive sleep apnea/hypopnea syndrome children and 40 healthy children. The cognitive function and brain structure changes of OSAHS children before and after surgery and 40 healthy children were evaluated by the Swanson, Nolan, and Pelham Rating Scale (SNAP-IV) and the Integrated Visual and Auditory Continuous Performance Test (IVA-CPT), as well as brain resting-state fMRI functional magnetic resonance imaging (rs-fMRI). RESULTS Children with OSAHS showed higher Swanson, Nolan, and Pelham Rating Scale and lower Integrated Visual and Auditory Continuous Performance Test scores than healthy peers, indicating cognitive impairment. Post-surgery, there was a significant improvement in cognitive function, evidenced by decreased Swanson, Nolan, and Pelham Rating Scale and increased Integrated Visual and Auditory Continuous Performance Test scores. Compared to healthy children, OSAHS children displayed altered ReHo values in certain brain regions, such as decreased values in the right angular gyrus, right precuneus, left parahippocampal gyrus, and left middle frontal gyrus, but increased values in the right posterior cerebellum. After surgery, ReHo values increased in regions like the right precuneus, right temporal lobe, right posterior cingulate gyrus, and left limbic lobe, suggesting neurological changes associated with treatment. CONCLUSIONS Children with obstructive sleep apnea/hypopnea syndrome had cognitive impairment and abnormal changes in multiple brain regions. Tonsillectomy and/or adenoidectomy could improve cognitive function and contribute to the reconstruction of brain function and structure in children with obstructive sleep apnea/hypopnea syndrome.
Collapse
|
2
|
Sirek T, Sirek A, Opławski M, Boroń D, Chalcarz M, Ossowski P, Dziobek K, Zmarzły N, Strojny D, Grabarek BO. Expression profile of messenger and micro RNAs related to the histaminergic system in patients with five subtypes of breast cancer. Front Oncol 2024; 14:1407538. [PMID: 39267843 PMCID: PMC11390352 DOI: 10.3389/fonc.2024.1407538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Disparities in estrogen receptor (ER), progesterone receptor, human epidermal growth factor receptor 2 (HER2), and Ki67 proliferation indices facilitate the categorization of breast cancer into four principal subtypes: luminal A, luminal B, HER2-positive, and triple-negative breast cancer (TNBC). Preclinical studies investigating the therapeutic potential of histaminergic system targeting in breast cancer have shown promising results. This study aimed to assess the expression profiles of messenger ribonucleic acid (mRNA) and micro RNA (miRNA) related to the histaminergic system in five subtypes of breast cancer among Polish women. Patients with five breast cancer subtypes were included in the study: luminal A (n = 130), luminal B (n = 196, including HER2-, n =100; HER2+, n= 96), HER2+ (n = 36), and TNBC (n = 43). They underwent surgery during which the tumor tissue was removed along with a margin of healthy tissue (control material). Molecular analysis included the determination of a microarray profile of mRNAs and miRNAs associated with the histaminergic system, real-time polymerase chain reaction preceded by reverse transcription of selected genes, and determination of histamine receptors (human histamine H1 receptor [HRH1], human histamine H2 receptor [HRH2], and human histamine H4 receptor [HRH4]) using an enzyme-linked immunosorbent assay. Statistical analysis was performed with statistical significance at p < 0.05. Nine mRNAs were significantly differentiated in breast cancer sections, regardless of subtype, compared to control samples: HRH1, HRH2, HRH4, histamine N-methyltransferase (HNMT), 5-hydroxytryptamine receptor 6 (HTR6), endothelin 1 (EDN1), endothelin receptor type A (EDNRA), adenosine deaminase (ADA), solute carrier family 22 member 3 (SLC3A2). Predictive analysis showed that hsa-miR-34a potentially regulates HRH1 expression, whereas hsa-miR-3140-5p and hsa-miR-4251 potentially affect HRH2 expression. In contrast, HRH4 and EDN1 expression were regulated by hsa-miR-1-3p. The expression of HNMT is potentially regulated by one miRNA, hsa-miR-382, whereas EDNRA expression is regulated by two miRNA molecules: hsa-miR-34a and hsa-miR-16. In contrast, hsa-miR-650 is involved in the regulation of HTR6 expression, whereas hsa-miR-1275 potentially interacts with three mRNAs: ADA, SLC23A2, and HRH1. Molecular analysis confirmed that the selected mRNA and miRNA transcripts could be promising molecular markers and therapeutic targets.
Collapse
Affiliation(s)
- Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, Poland
| | - Agata Sirek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Kraków, Kraków, Poland
| | - Dariusz Boroń
- Uczelnia Medyczna im, Marii Skłodowskiej-Curie, Warszawa, Poland
| | - Michał Chalcarz
- Chalcarz Clinic-Aesthetic Surgery, Aesthetic Medicine, Poznan, Poland
- Bieńkowski Medical Center-Plastic Surgery, Bydgoszcz, Poland
| | - Piotr Ossowski
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Konrad Dziobek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Nikola Zmarzły
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Damian Strojny
- Institute of Health Care, National Academy of Applied Sciences in Przemyśl, Przemyśl, Poland
- Department of Medical Science, New Medical Techniques Specjalist Hospital of St. Family in Rudna Mała, Rzeszów, Poland
| | - Beniamin Oskar Grabarek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
| |
Collapse
|
3
|
Zhang BB, Ling XY, Shen QY, Zhang YX, Li QX, Xie ST, Li HZ, Zhang QP, Yung WH, Wang JJ, Ke Y, Zhang XY, Zhu JN. Suppression of excitatory synaptic transmission in the centrolateral amygdala via presynaptic histamine H3 heteroreceptors. J Physiol 2024. [PMID: 38953534 DOI: 10.1113/jp286392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
The central histaminergic system has a pivotal role in emotional regulation and psychiatric disorders, including anxiety, depression and schizophrenia. However, the effect of histamine on neuronal activity of the centrolateral amygdala (CeL), an essential node for fear and anxiety processing, remains unknown. Here, using immunostaining and whole-cell patch clamp recording combined with optogenetic manipulation of histaminergic terminals in CeL slices prepared from histidine decarboxylase (HDC)-Cre rats, we show that histamine selectively suppresses excitatory synaptic transmissions, including glutamatergic transmission from the basolateral amygdala, on both PKC-δ- and SOM-positive CeL neurons. The histamine-induced effect is mediated by H3 receptors expressed on VGLUT1-/VGLUT2-positive presynaptic terminals in CeL. Furthermore, optoactivation of histaminergic afferent terminals from the hypothalamic tuberomammillary nucleus (TMN) also significantly suppresses glutamatergic transmissions in CeL via H3 receptors. Histamine neither modulates inhibitory synaptic transmission by presynaptic H3 receptors nor directly excites CeL neurons by postsynaptic H1, H2 or H4 receptors. These results suggest that histaminergic afferent inputs and presynaptic H3 heteroreceptors may hold a critical position in balancing excitatory and inhibitory synaptic transmissions in CeL by selective modulation of glutamatergic drive, which may not only account for the pathophysiology of psychiatric disorders but also provide potential psychotherapeutic targets. KEY POINTS: Histamine selectively suppresses the excitatory, rather than inhibitory, synaptic transmissions on both PKC-δ- and SOM-positive neurons in the centrolateral amygdala (CeL). H3 receptors expressed on VGLUT1- or VGLUT2-positive afferent terminals mediate the suppression of histamine on glutamatergic synaptic transmission in CeL. Optogenetic activation of hypothalamic tuberomammillary nucleus (TMN)-CeL histaminergic projections inhibits glutamatergic transmission in CeL via H3 receptors.
Collapse
Affiliation(s)
- Bei-Bei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin-Yu Ling
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qing-Yi Shen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian-Xiao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Wing-Ho Yung
- Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
5
|
Anbarian F, Tamaddonfard E, Erfanparast A, Soltanalinejad-Taghiabad F. Cerebellar fastigial nucleus histamine and its H 2 but not H 1 receptors might inhibit acetic acid-induced visceral nociception and improve motor coordination in rats: role of opioid system. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 14:549-557. [PMID: 37901348 PMCID: PMC10612395 DOI: 10.30466/vrf.2023.1988302.3762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/20/2023] [Indexed: 10/31/2023]
Abstract
The cerebellum and its deep nuclei contribute to the regulation of important functions including motor coordination and pain. Histamine modulates some functions of the fastigial nucleus (FN) such as motor coordination. In this study, by application of histamine and activation of its H1 and H2 receptors, the FN processing of visceral pain, general locomotor activity and motor coordination were targeted. The possible mechanism of action was followed by the inhibition of opioid receptors. The right and left sides of the FN were surgically implanted with guide cannulas. Immediately after an intraperitoneal injection of acetic acid (1.00 mL, 1.00%), the first writhing onset latency and the writhing number over 60 min were recorded. Open-field and rotarod tests were applied for general locomotor and motor coordination assessment, respectively. Histamine and dimaprit (H2 receptor agonist) increased first writhing onset latency, decreased the writhing number and increased falling time from the rod. These effects were prevented by ranitidine (H2 receptor antagonist) pre-treatment. Significant alterations were not observed by histamine H1 receptor agonist (2-pyridylethylamine) and antagonist (mepyramine). Naloxone, with no effect on falling time from the rod, inhibited the antinociceptive effects of histamine and dimaprit. Beam break number was not affected by the above-mentioned treatments. Based on the results, it can be suggested that histamine H2, but not H1 receptors at the FN might have had an inhibitory role on acetic acid-induced visceral pain and improved motor coordination. The antinociception, but not motor coordination might be mediated by FN opioid receptors.
Collapse
Affiliation(s)
- Fereshteh Anbarian
- PhD Candidate, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
| | - Esmaeal Tamaddonfard
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Amir Erfanparast
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | | |
Collapse
|
6
|
Kim M, Jun S, Park H, Tanaka-Yamamoto K, Yamamoto Y. Regulation of cerebellar network development by granule cells and their molecules. Front Mol Neurosci 2023; 16:1236015. [PMID: 37520428 PMCID: PMC10375027 DOI: 10.3389/fnmol.2023.1236015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
The well-organized cerebellar structures and neuronal networks are likely crucial for their functions in motor coordination, motor learning, cognition, and emotion. Such cerebellar structures and neuronal networks are formed during developmental periods through orchestrated mechanisms, which include not only cell-autonomous programs but also interactions between the same or different types of neurons. Cerebellar granule cells (GCs) are the most numerous neurons in the brain and are generated through intensive cell division of GC precursors (GCPs) during postnatal developmental periods. While GCs go through their own developmental processes of proliferation, differentiation, migration, and maturation, they also play a crucial role in cerebellar development. One of the best-characterized contributions is the enlargement and foliation of the cerebellum through massive proliferation of GCPs. In addition to this contribution, studies have shown that immature GCs and GCPs regulate multiple factors in the developing cerebellum, such as the development of other types of cerebellar neurons or the establishment of afferent innervations. These studies have often found impairments of cerebellar development in animals lacking expression of certain molecules in GCs, suggesting that the regulations are mediated by molecules that are secreted from or present in GCs. Given the growing recognition of GCs as regulators of cerebellar development, this review will summarize our current understanding of cerebellar development regulated by GCs and molecules in GCs, based on accumulated studies and recent findings, and will discuss their potential further contributions.
Collapse
Affiliation(s)
- Muwoong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
7
|
Benarroch E. What Is the Involvement of the Cerebellum During Sleep? Neurology 2023; 100:572-577. [PMID: 36941065 PMCID: PMC10033165 DOI: 10.1212/wnl.0000000000207161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 03/17/2023] Open
|
8
|
Noseda R. Cerebro-Cerebellar Networks in Migraine Symptoms and Headache. FRONTIERS IN PAIN RESEARCH 2022; 3:940923. [PMID: 35910262 PMCID: PMC9326053 DOI: 10.3389/fpain.2022.940923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellum is associated with the biology of migraine in a variety of ways. Clinically, symptoms such as fatigue, motor weakness, vertigo, dizziness, difficulty concentrating and finding words, nausea, and visual disturbances are common in different types of migraine. The neural basis of these symptoms is complex, not completely known, and likely involve activation of both specific and shared circuits throughout the brain. Posterior circulation stroke, or neurosurgical removal of posterior fossa tumors, as well as anatomical tract tracing in animals, provided the first insights to theorize about cerebellar functions. Nowadays, with the addition of functional imaging, much progress has been done on cerebellar structure and function in health and disease, and, as a consequence, the theories refined. Accordingly, the cerebellum may be useful but not necessary for the execution of motor, sensory or cognitive tasks, but, rather, would participate as an efficiency facilitator of neurologic functions by improving speed and skill in performance of tasks produced by the cerebral area to which it is reciprocally connected. At the subcortical level, critical regions in these processes are the basal ganglia and thalamic nuclei. Altogether, a modulatory role of the cerebellum over multiple brain regions appears compelling, mainly by considering the complexity of its reciprocal connections to common neural networks involved in motor, vestibular, cognitive, affective, sensory, and autonomic processing—all functions affected at different phases and degrees across the migraine spectrum. Despite the many associations between cerebellum and migraine, it is not known whether this structure contributes to migraine initiation, symptoms generation or headache. Specific cerebellar dysfunction via genetically driven excitatory/inhibitory imbalances, oligemia and/or increased risk to white matter lesions has been proposed as a critical contributor to migraine pathogenesis. Therefore, given that neural projections and functions of many brainstem, midbrain and forebrain areas are shared between the cerebellum and migraine trigeminovascular pathways, this review will provide a synopsis on cerebellar structure and function, its role in trigeminal pain, and an updated overview of relevant clinical and preclinical literature on the potential role of cerebellar networks in migraine pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Rodrigo Noseda
| |
Collapse
|
9
|
Canton-Josh JE, Qin J, Salvo J, Kozorovitskiy Y. Dopaminergic regulation of vestibulo-cerebellar circuits through unipolar brush cells. eLife 2022; 11:e76912. [PMID: 35476632 PMCID: PMC9106328 DOI: 10.7554/elife.76912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
While multiple monoamines modulate cerebellar output, the mechanistic details of dopaminergic signaling in the cerebellum remain poorly understood. We show that dopamine type 1 receptors (Drd1) are expressed in unipolar brush cells (UBCs) of the mouse cerebellar vermis. Drd1 activation increases UBC firing rate and post-synaptic NMDAR -mediated currents. Using anatomical tracing and in situ hybridization, we test three hypotheses about the source of cerebellar dopamine. We exclude midbrain dopaminergic nuclei and tyrosine hydroxylase-positive Purkinje (Pkj) cells as potential sources, supporting the possibility of dopaminergic co-release from locus coeruleus (LC) axons. Using an optical dopamine sensor GRABDA2h, electrical stimulation, and optogenetic activation of LC fibers in the acute slice, we find evidence for monoamine release onto Drd1-expressing UBCs. Altogether, we propose that the LC regulates cerebellar cortex activity by co-releasing dopamine onto UBCs to modulate their response to cerebellar inputs. Pkj cells directly inhibit these Drd1-positive UBCs, forming a dopamine-sensitive recurrent vestibulo-cerebellar circuit.
Collapse
Affiliation(s)
| | - Joanna Qin
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | - Joseph Salvo
- Department of Neurobiology, Northwestern UniversityEvanstonUnited States
| | | |
Collapse
|
10
|
Role of the trace amine associated receptor 5 (TAAR5) in the sensorimotor functions. Sci Rep 2021; 11:23092. [PMID: 34845253 PMCID: PMC8630200 DOI: 10.1038/s41598-021-02289-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Classical monoamines are well-known modulators of sensorimotor neural networks. However, the role of trace amines and their receptors in sensorimotor function remains unexplored. Using trace amine-associated receptor 5 knockout (TAAR5-KO) mice, that express beta-galactosidase mapping its localization, we observed TAAR5 expression in the Purkinje cells of the cerebellum and the medial vestibular nucleus, suggesting that TAAR5 might be involved in the vestibular and motor control. Accordingly, in various behavioral tests, TAAR5-KO mice demonstrated lower endurance, but better coordination and balance compared to wild-type controls. Furthermore, we found specific changes in striatal local field potentials and motor cortex electrocorticogram, such as a decrease in delta and an increase in theta oscillations of power spectra, respectively. The obtained data indicate that TAAR5 plays a considerable role in regulation postural stability, muscle force, balance, and motor coordination during active movements, likely via modulation of monoaminergic systems at different levels of sensorimotor control involving critical brain areas such as the brainstem, cerebellum, and forebrain.
Collapse
|
11
|
Green CL, Mitchell SE, Derous D, García-Flores LA, Wang Y, Chen L, Han JDJ, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The Effects of Graded Levels of Calorie Restriction: XVI. Metabolomic Changes in the Cerebellum Indicate Activation of Hypothalamocerebellar Connections Driven by Hunger Responses. J Gerontol A Biol Sci Med Sci 2021; 76:601-610. [PMID: 33053185 DOI: 10.1093/gerona/glaa261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Calorie restriction (CR) remains the most robust intervention to extend life span and improve healthspan. Though the cerebellum is more commonly associated with motor control, it has strong links with the hypothalamus and is thought to be associated with nutritional regulation and adiposity. Using a global mass spectrometry-based metabolomics approach, we identified 756 metabolites that were significantly differentially expressed in the cerebellar region of the brain of C57BL/6J mice, fed graded levels of CR (10, 20, 30, and 40 CR) compared to mice fed ad libitum for 12 hours a day. Pathway enrichment indicated changes in the pathways of adenosine and guanine (which are precursors of DNA production), aromatic amino acids (tyrosine, phenylalanine, and tryptophan) and the sulfur-containing amino acid methionine. We also saw increases in the tricarboxylic acid cycle (TCA) cycle, electron donor, and dopamine and histamine pathways. In particular, changes in l-histidine and homocarnosine correlated positively with the level of CR and food anticipatory activity and negatively with insulin and body temperature. Several metabolic and pathway changes acted against changes seen in age-associated neurodegenerative disorders, including increases in the TCA cycle and reduced l-proline. Carnitine metabolites contributed to discrimination between CR groups, which corroborates previous work in the liver and plasma. These results indicate the conservation of certain aspects of metabolism across tissues with CR. Moreover, this is the first study to indicate CR alters the cerebellar metabolome, and does so in a graded fashion, after only a short period of restriction.
Collapse
Affiliation(s)
- Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Libia A García-Flores
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, China
| | - Jing-Dong J Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | - Daniel E L Promislow
- Department of Pathology and Department of Biology, University of Washington at Seattle
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Tarazona S, Carmona H, Conesa A, Llansola M, Felipo V. A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats. Cell Biol Toxicol 2021; 37:129-149. [PMID: 33404927 DOI: 10.1007/s10565-020-09572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/12/2020] [Indexed: 12/01/2022]
Abstract
Patients with liver cirrhosis may develop covert or minimal hepatic encephalopathy (MHE). Hyperammonemia (HA) and peripheral inflammation play synergistic roles in inducing the cognitive and motor alterations in MHE. The cerebellum is one of the main cerebral regions affected in MHE. Rats with chronic HA show some motor and cognitive alterations reproducing neurological impairment in cirrhotic patients with MHE. Neuroinflammation and altered neurotransmission and signal transduction in the cerebellum from hyperammonemic (HA) rats are associated with motor and cognitive dysfunction, but underlying mechanisms are not completely known. The aim of this work was to use a multi-omic approach to study molecular alterations in the cerebellum from hyperammonemic rats to uncover new molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment. We analyzed metabolomic, transcriptomic, and proteomic data from the same cerebellums from control and HA rats and performed a multi-omic integrative analysis of signaling pathway enrichment with the PaintOmics tool. The histaminergic system, corticotropin-releasing hormone, cyclic GMP-protein kinase G pathway, and intercellular communication in the cerebellar immune system were some of the most relevant enriched pathways in HA rats. In summary, this is a good approach to find altered pathways, which helps to describe the molecular mechanisms involved in the alteration of brain function in rats with chronic HA and to propose possible therapeutic targets to improve MHE symptoms.
Collapse
Affiliation(s)
- Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Héctor Carmona
- Department of Microbiology and Ecology, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universidad de Valencia, Valencia, Spain
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Marta Llansola
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| |
Collapse
|
13
|
Yu Z. Neuromechanism of acupuncture regulating gastrointestinal motility. World J Gastroenterol 2020; 26:3182-3200. [PMID: 32684734 PMCID: PMC7336328 DOI: 10.3748/wjg.v26.i23.3182] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/29/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acupuncture has been used in China for thousands of years and has become more widely accepted by doctors and patients around the world. A large number of clinical studies and animal experiments have confirmed that acupuncture has a benign adjustment effect on gastrointestinal (GI) movement; however, the mechanism of this effect is unclear, especially in terms of neural mechanisms, and there are still many areas that require further exploration. This article reviews the recent data on the neural mechanism of acupuncture on GI movements. We summarize the neural mechanism of acupuncture on GI movement from four aspects: acupuncture signal transmission, the sympathetic and parasympathetic nervous system, the enteric nervous system, and the central nervous system.
Collapse
Affiliation(s)
- Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
14
|
The Dual-Active Histamine H 3 Receptor Antagonist and Acetylcholine Esterase Inhibitor E100 Alleviates Autistic-Like Behaviors and Oxidative Stress in Valproic Acid Induced Autism in Mice. Int J Mol Sci 2020; 21:ijms21113996. [PMID: 32503208 PMCID: PMC7312782 DOI: 10.3390/ijms21113996] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
The histamine H3 receptor (H3R) functions as auto- and hetero-receptors, regulating the release of brain histamine (HA) and acetylcholine (ACh), respectively. The enzyme acetylcholine esterase (AChE) is involved in the metabolism of brain ACh. Both brain HA and ACh are implicated in several cognitive disorders like Alzheimer’s disease, schizophrenia, anxiety, and narcolepsy, all of which are comorbid with autistic spectrum disorder (ASD). Therefore, the novel dual-active ligand E100 with high H3R antagonist affinity (hH3R: Ki = 203 nM) and balanced AChE inhibitory effect (EeAChE: IC50 = 2 µM and EqBuChE: IC50 = 2 µM) was investigated on autistic-like sociability, repetitive/compulsive behaviour, anxiety, and oxidative stress in male C57BL/6 mice model of ASD induced by prenatal exposure to valproic acid (VPA, 500 mg/kg, intraperitoneal (i.p.)). Subchronic systemic administration with E100 (5, 10, and 15 mg/kg, i.p.) significantly and dose-dependently attenuated sociability deficits of autistic (VPA) mice in three-chamber behaviour (TCB) test (all p < 0.05). Moreover, E100 significantly improved repetitive and compulsive behaviors by reducing the increased percentage of marbles buried in marble-burying behaviour (MBB) (all p < 0.05). Furthermore, pre-treatment with E100 (10 and 15 mg/kg, i.p.) corrected decreased anxiety levels (p < 0.05), however, failed to restore hyperactivity observed in elevated plus maze (EPM) test. In addition, E100 (10 mg/kg, i.p.) mitigated oxidative stress status by increasing the levels of decreased glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), and decreasing the elevated levels of malondialdehyde (MDA) in the cerebellar tissues (all p < 0.05). Additionally, E100 (10 mg/kg, i.p.) significantly reduced the elevated levels of AChE activity in VPA mice (p < 0.05). These results demonstrate the promising effects of E100 on in-vivo VPA-induced ASD-like features in mice, and provide evidence that a potent dual-active H3R antagonist and AChE inhibitor (AChEI) is a potential drug candidate for future therapeutic management of autistic-like behaviours.
Collapse
|
15
|
Rizzi A, Saccia M, Benagiano V. Is the Cerebellum Involved in the Nervous Control of the Immune System Function? Endocr Metab Immune Disord Drug Targets 2019; 20:546-557. [PMID: 31729296 DOI: 10.2174/1871530319666191115144105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND According to the views of psychoneuroendocrinoimmunology, many interactions exist between nervous, endocrine and immune system the purpose of which is to achieve adaptive measures restoring an internal equilibrium (homeostasis) following stress conditions. The center where these interactions converge is the hypothalamus. This is a center of the autonomic nervous system that controls the visceral systems, including the immune system, through both the nervous and neuroendocrine mechanisms. The nervous mechanisms are based on nervous circuits that bidirectionally connect hypothalamic neurons and neurons of the sympathetic and parasympathetic system; the neuroendocrine mechanisms are based on the release by neurosecretory hypothalamic neurons of hormones that target the endocrine cells and on the feedback effects of the hormones secreted by these endocrine cells on the same hypothalamic neurons. Moreover, the hypothalamus is an important subcortical center of the limbic system that controls through nervous and neuroendocrine mechanisms the areas of the cerebral cortex where the psychic functions controlling mood, emotions, anxiety and instinctive behaviors take place. Accordingly, various studies conducted in the last decades have indicated that hypothalamic diseases may be associated with immune and/or psychic disorders. OBJECTIVE Various researches have reported that the hypothalamus is controlled by the cerebellum through a feedback nervous circuit, namely the hypothalamocerebellar circuit, which bi-directionally connects regions of the hypothalamus, including the immunoregulatory ones, and related regions of the cerebellum. An objective of the present review was to analyze the anatomical bases of the nervous and neuroendocrine mechanisms for the control of the immune system and, in particular, of the interaction between hypothalamus and cerebellum to achieve the immunoregulatory function. CONCLUSION Since the hypothalamus represents the link through which the immune functions may influence the psychic functions and vice versa, the cerebellum, controlling several regions of the hypothalamus, could be considered as a primary player in the regulation of the multiple functional interactions postulated by psychoneuroendocrinoimmunology.
Collapse
Affiliation(s)
- Anna Rizzi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Matteo Saccia
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Vincenzo Benagiano
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| |
Collapse
|
16
|
The histamine H3R antagonist DL77 attenuates autistic behaviors in a prenatal valproic acid-induced mouse model of autism. Sci Rep 2018; 8:13077. [PMID: 30166610 PMCID: PMC6117350 DOI: 10.1038/s41598-018-31385-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/17/2018] [Indexed: 12/19/2022] Open
Abstract
Autistic spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in social communication and restricted/repetitive behavior patterns or interests. Antagonists targeting histamine H3 receptor (H3R) are considered potential therapeutic agents for the therapeutic management of different brain disorders, e.g., cognitive impairments. Therefore, the effects of subchronic treatment with the potent and selective H3R antagonist DL77 (5, 10, or 15 mg/kg, i.p.) on sociability, social novelty, anxiety, and aggressive/repetitive behavior in male Tuck-Ordinary (TO) mice with ASD-like behaviors induced by prenatal exposure to valproic acid (VPA, 500 mg/kg, i.p.) were evaluated using the three-chamber test (TCT), marble burying test (MBT), nestlet shredding test (NST), and elevated plus maze (EPM) test. The results showed that VPA-exposed mice exhibited significantly lower sociability and social novelty preference compared to VPA-exposed mice that were pretreated with DL77 (10 or 15 mg/kg, i.p.). VPA-exposed mice presented a significantly higher percentage of buried marbles in MBT and shredded nestlet significantly more in NST compared to the control groups. However, VPA-exposed animals pretreated with DL77 (10 or 15 mg/kg, i.p.) buried a reduced percentage of marbles in MBT and presented a significantly lower percentage of shredding behavior in NST. On the other hand, pretreatment with DL77 (5, 10, or 15 mg/kg, i.p.) failed to restore the disturbed anxiety levels and hyperactivity observed in VPA-exposed animals in EPM, whereas the reference drug donepezil (DOZ, 1 mg/kg, i.p.) significantly palliated the anxiety and reduced the hyperactivity measures of VPA-exposed mice. Furthermore, pretreatment with DL77 (10 or 15 mg/kg, i.p.) modulated oxidative stress status by increasing GSH and decreasing MDA, and it attenuated the proinflammatory cytokines IL-1β, IL-6 and TNF-α exacerbated by lipopolysaccharide (LPS) challenge, in VPA-exposed mouse brain tissue. Taken together, these results provide evidence that modulation of brain histaminergic neurotransmission, such as by subchronic administration of the H3R antagonist DL77, may serve as an effective pharmacological therapeutic target to rescue ASD-like behaviors in VPA-exposed animals, although further investigations are necessary to corroborate and expand these initial data.
Collapse
|
17
|
Ji MJ, Zhang XY, Peng XC, Zhang YX, Chen Z, Yu L, Wang JJ, Zhu JN. Histamine Excites Rat GABAergic Ventral Pallidum Neurons via Co-activation of H1 and H2 Receptors. Neurosci Bull 2018; 34:1029-1036. [PMID: 30143981 DOI: 10.1007/s12264-018-0277-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022] Open
Abstract
The ventral pallidum (VP) is a crucial component of the limbic loop of the basal ganglia and participates in the regulation of reward, motivation, and emotion. Although the VP receives afferent inputs from the central histaminergic system, little is known about the effect of histamine on the VP and the underlying receptor mechanism. Here, we showed that histamine, a hypothalamic-derived neuromodulator, directly depolarized and excited the GABAergic VP neurons which comprise a major cell type in the VP and are responsible for encoding cues of incentive salience and reward hedonics. Both postsynaptic histamine H1 and H2 receptors were found to be expressed in the GABAergic VP neurons and co-mediate the excitatory effect of histamine. These results suggested that the central histaminergic system may actively participate in VP-mediated motivational and emotional behaviors via direct modulation of the GABAergic VP neurons. Our findings also have implications for the role of histamine and the central histaminergic system in psychiatric disorders.
Collapse
Affiliation(s)
- Miao-Jin Ji
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiao-Chun Peng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zi Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
18
|
Benagiano V, Rizzi A, Lorusso L, Flace P, Saccia M, Cagiano R, Ribatti D, Roncali L, Ambrosi G. The functional anatomy of the cerebrocerebellar circuit: A review and new concepts. J Comp Neurol 2017; 526:769-789. [PMID: 29238972 DOI: 10.1002/cne.24361] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
The cerebrocerebellar circuit is a feedback circuit that bidirectionally connects the neocortex and the cerebellum. According to the classic view, the cerebrocerebellar circuit is specifically involved in the functional regulation of the motor areas of the neocortex. In recent years, studies carried out in experimental animals by morphological and physiological methods, and in humans by magnetic resonance imaging, have indicated that the cerebrocerebellar circuit is also involved in the functional regulation of the nonmotor areas of the neocortex, including the prefrontal, associative, sensory and limbic areas. Moreover, a second type of cerebrocerebellar circuit, bidirectionally connecting the hypothalamus and the cerebellum, has been detected, being specifically involved in the regulation of the hypothalamic functions. This review analyzes the morphological features of the centers and pathways of the cerebrocerebellar circuits, paying particular attention to their organization in different channels, which separately connect the cerebellum with the motor areas and nonmotor areas of the neocortex, and with the hypothalamus. Actually, a considerable amount of new data have led, and are leading, to profound changes on the views on the anatomy, physiology, and pathophysiology of the cerebrocerebellar circuits, so much they may be now considered to be essential for the functional regulation of many neocortex areas, perhaps all, as well as of the hypothalamus and of the limbic system. Accordingly, clinical studies have pointed out an involvement of the cerebrocerebellar circuits in the pathophysiology of an increasing number of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Vincenzo Benagiano
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | - Anna Rizzi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | - Loredana Lorusso
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | - Paolo Flace
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | - Matteo Saccia
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | - Raffaele Cagiano
- Department of Biomedical Sciences and Human Oncology, University of Bari, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy.,National Cancer Institute 'Giovanni Paolo II', Bari, Italy
| | - Luisa Roncali
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| | - Glauco Ambrosi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Bari, Italy
| |
Collapse
|
19
|
Li B, Zhang XY, Yang AH, Peng XC, Chen ZP, Zhou JY, Chan YS, Wang JJ, Zhu JN. Histamine Increases Neuronal Excitability and Sensitivity of the Lateral Vestibular Nucleus and Promotes Motor Behaviors via HCN Channel Coupled to H2 Receptor. Front Cell Neurosci 2017; 10:300. [PMID: 28119568 PMCID: PMC5222857 DOI: 10.3389/fncel.2016.00300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/19/2016] [Indexed: 12/19/2022] Open
Abstract
Histamine and histamine receptors in the central nervous system actively participate in the modulation of motor control. In clinic, histamine-related agents have traditionally been used to treat vestibular disorders. Immunohistochemical studies have revealed a distribution of histaminergic afferents in the brainstem vestibular nuclei, including the lateral vestibular nucleus (LVN), which is critical for adjustment of muscle tone and vestibular reflexes. However, the mechanisms underlying the effect of histamine on LVN neurons and the role of histamine and histaminergic afferents in the LVN in motor control are still largely unknown. Here, we show that histamine, in cellular and molecular levels, elicits the LVN neurons of rats an excitatory response, which is co-mediated by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and K+ channels linked to H2 receptors. Blockage of HCN channels coupled to H2 receptors decreases LVN neuronal sensitivity and changes their dynamic properties. Furthermore, in behavioral level, microinjection of histamine into bilateral LVNs significantly promotes motor performances of rats on both accelerating rota-rod and balance beam. This promotion is mimicked by selective H2 receptor agonist dimaprit, and blocked by selective H2 receptor antagonist ranitidine. More importantly, blockage of HCN channels to suppress endogenous histaminergic inputs in the LVN considerably attenuates motor balance and coordination, indicating a promotion role of hypothalamo-vestibular histaminergic circuit in motor control. All these results demonstrate that histamine H2 receptors and their coupled HCN channels mediate the histamine-induced increase in excitability and sensitivity of LVN neurons and contribute to the histaminergic improvement of the LVN-related motor behaviors. The findings suggest that histamine and the histaminergic afferents may directly modulate LVN neurons and play a critical role in the central vestibular-mediated motor reflexes and behaviors.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Ai-Hong Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing UniversityNanjing, China; Department of Medicine, Huaibei Vocational and Technical CollegeHuaibei, China
| | - Xiao-Chun Peng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Zhang-Peng Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Jia-Yuan Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Ying-Shing Chan
- Department of Physiology, LKS Faculty of Medicine, The University of Hong Kong Hong Kong, Hong Kong
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University Nanjing, China
| |
Collapse
|
20
|
Zhang XY, Wang JJ, Zhu JN. Cerebellar fastigial nucleus: from anatomic construction to physiological functions. CEREBELLUM & ATAXIAS 2016; 3:9. [PMID: 27144010 PMCID: PMC4853849 DOI: 10.1186/s40673-016-0047-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/31/2016] [Indexed: 12/16/2022]
Abstract
Fastigial nucleus (FN) is the phylogenetically oldest nucleus in the cerebellum, a classical subcortical motor coordinator. As one of the ultimate integration stations and outputs of the spinocerebellum, the FN holds a key position in the axial, proximal and ocular motor control by projecting to the medial descending systems and eye movement related nuclei. Furthermore, through topographic connections with extensive nonmotor systems, including visceral related nuclei in the brainstem, hypothalamus, as well as the limbic system, FN has also been implicated in regulation of various nonsomatic functions, such as feeding, cardiovascular and respiratory, defecation and micturition, immune, as well as emotional activities. In clinic, FN lesion or dysfunction results in motor deficits including spinocerebellar ataxias, and nonmotor symptoms. In this review, we summarize the cytoarchitecture, anatomic afferent and efferent connections, as well as the motor and nonmotor functions of the FN and the related diseases and disorders. We suggest that by bridging the motor and nonmotor systems, the cerebellar FN may help to integrate somatic motor and nonsomatic functions and consequently contribute to generate a coordinated response to internal and external environments.
Collapse
Affiliation(s)
- Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| |
Collapse
|
21
|
Yu L, Zhang XY, Cao SL, Peng SY, Ji DY, Zhu JN, Wang JJ. Na(+) -Ca(2+) Exchanger, Leak K(+) Channel and Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Comediate the Histamine-Induced Excitation on Rat Inferior Vestibular Nucleus Neurons. CNS Neurosci Ther 2015; 22:184-93. [PMID: 26387685 DOI: 10.1111/cns.12451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 12/11/2022] Open
Abstract
AIMS Antihistaminergic drugs have traditionally been used to treat vestibular disorders in the clinic. As a potential central target for antihistaminergic drugs, the inferior vestibular nucleus (IVN) is the largest subnucleus of the central vestibular nuclear complex and is considered responsible for vestibular-autonomic responses and integration of vestibular, cerebellar, and multisensory signals. However, the role of histamine on the IVN, particularly the underlying mechanisms, is still not clear. METHODS Using whole-cell patch-clamp recordings on rat brain slices, histamine-induced effect on IVN neurons and the underlying receptor and ionic mechanisms were investigated. RESULTS We found that histamine remarkably depolarized both spontaneous firing neurons and silent neurons in IVN via both histamine H1 and histamine H2 receptors. Furthermore, Na(+) -Ca(2+) exchangers (NCXs) and background leak K(+) channels linked to H1 receptors and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to H2 receptors comediate the histamine-induced depolarization on IVN neurons. CONCLUSION These results demonstrate the multiple ionic mechanisms underlying the excitatory modulation of histamine/central histaminergic system on IVN neurons and the related vestibular reflexes and functions. The findings also suggest potential targets for the treatment of vestibular disorders in the clinic, at the level of ionic channels in central vestibular nuclei.
Collapse
Affiliation(s)
- Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Liang Cao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shi-Yu Peng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Deng-Yu Ji
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Zhang J, Zhuang QX, Li B, Wu GY, Yung WH, Zhu JN, Wang JJ. Selective Modulation of Histaminergic Inputs on Projection Neurons of Cerebellum Rapidly Promotes Motor Coordination via HCN Channels. Mol Neurobiol 2015; 53:1386-1401. [PMID: 25633097 DOI: 10.1007/s12035-015-9096-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/12/2015] [Indexed: 12/24/2022]
Abstract
Insights into function of central histaminergic system, a general modulator originating from the hypothalamus for whole brain activity, in motor control are critical for understanding the mechanism underlying somatic-nonsomatic integration. Here, we show a novel selective role of histamine in the cerebellar nuclei, the final integrative center and output of the cerebellum. Histamine depolarizes projection neurons but not interneurons in the cerebellar nuclei via the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to histamine H2 receptors, which are exclusively expressed on glutamatergic and glycinergic projection neurons. Furthermore, blockage of HCN channels to block endogenous histaminergic afferent inputs in the cerebellar nuclei significantly attenuates motor balance and coordination. Therefore, through directly and quickly modulation on projection neurons but not interneurons in the cerebellar nuclei, central histaminergic system may act as a critical biasing force to not only promptly regulate ongoing movement but also realize a rapid integration of somatic and nonsomatic response.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China.,Department of Physiology, Third Military Medical University, Chongqing, 400038, China
| | - Qian-Xing Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China
| | - Bin Li
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China
| | - Guan-Yi Wu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China.
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Mailbox 426, 22 Hankou Road, Nanjing, 210093, China.
| |
Collapse
|
23
|
Nishijo M, Tai PT, Anh NTN, Nghi TN, Nakagawa H, Van Luong H, Anh TH, Morikawa Y, Waseda T, Kido T, Nishijo H. Urinary amino acid alterations in 3-year-old children with neurodevelopmental effects due to perinatal dioxin exposure in Vietnam: a nested case-control study for neurobiomarker discovery. PLoS One 2015; 10:e0116778. [PMID: 25584822 PMCID: PMC4293140 DOI: 10.1371/journal.pone.0116778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
In our previous study of 3-year-old children in a dioxin contamination hot spot in Vietnam, the high total dioxin toxic equivalent (TEQ-PCDDs/Fs)-exposed group during the perinatal period displayed lower Bayley III neurodevelopmental scores, whereas the high 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-exposed group displayed increased autistic traits. In autistic children, urinary amino acid profiles have revealed metabolic alterations in the amino acids that serve as neurotransmitters in the developing brain. Therefore, our present study aimed to investigate the use of alterations in urinary amino acid excretion as biomarkers of dioxin exposure-induced neurodevelopmental deficits in highly exposed 3-year-old children in Vietnam. A nested case-control study of urinary analyses was performed for 26 children who were selected from 111 3-year-old children whose perinatal dioxin exposure levels and neurodevelopmental status were examined in follow-up surveys conducted in a dioxin contaminated hot spot. We compared urinary amino acid levels between the following 4 groups: (1) a high TEQ-PCDDs/Fs and high TCDD-exposed group; (2) a high TEQ-PCDDs/Fs but low TCDD-exposed group; (3) a low TEQ-PCDDs/Fs exposed and poorly developed group; and (4) a low TEQ-PCDDs/Fs exposed and well-developed group. Urinary levels of histidine and tryptophan were significantly decreased in the high TEQ-PCDDs/Fs and high TCDD group, as well as in the high TEQ-PCDDs/Fs but low TCDD group, compared with the low TEQ-PCDDs/Fs and well-developed group. However, the ratio of histidine to glycine was significantly lower only in the high TEQ-PCDDs/Fs and high TCDD group. Furthermore, urinary histidine levels and the ratio of histidine to glycine were significantly correlated with neurodevelopmental scores, particularly for language and fine motor skills. These results indicate that urinary histidine is specifically associated with dioxin exposure-induced neurodevelopmental deficits, suggesting that urinary histidine may be a useful marker of dioxin-induced neurodevelopmental deficits and that histaminergic neurotransmission may be an important pathological contributor to dioxin-mediated neurotoxicity.
Collapse
Affiliation(s)
- Muneko Nishijo
- Department of Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
- * E-mail:
| | - Pham The Tai
- Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Nguyen Thi Nguyet Anh
- Department of Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Tran Ngoc Nghi
- Department of Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Hideaki Nakagawa
- Department of Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Hoang Van Luong
- Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Tran Hai Anh
- Biomedical and Pharmaceutical Research Center, Vietnam Military Medical University, Ha Noi, Vietnam
| | - Yuko Morikawa
- School of Nursing, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Tomoo Waseda
- Department of Obstetrics and Gynecology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan
| | - Teruhiko Kido
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-0942, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|