1
|
Huang Z, Huang DX, Wang YY, Jiang LJ, Wang YH, Dai J, Kang X, Wen Y, He SY. Features of thromboelastogram in populations exposed to or transferring from high altitude. Heliyon 2024; 10:e25223. [PMID: 38322976 PMCID: PMC10845907 DOI: 10.1016/j.heliyon.2024.e25223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Background Thromboelastogram (TEG) is an effective indicator that monitors the dynamic changes of blood coagulation in real-time. It still remains controversial about the performance and influence of coagulation at high altitude. The present study intends to describe comprehensively the clinical features of TEG in populations exposed to or transferring from high altitude. Methods Two groups were recruited in the present study. Group A included young males who worked at high-altitude (4888 m or 5418 m) areas for some time, while Group B included young males who had recently returned from high-altitude (4888 m or 5418 m) areas. Medical examinations were performed using portable devices. Spearman's test was used to evaluate the correlations between thromboelastogram (TEG) variables and other variables. Logistic regression analysis was used to analyze the factors affecting various abnormal TEG variables. Results A total of 51 adult males were included in the two groups. Significantly increased reaction time (R) and decreased maximum amplitude (MA) were found in group B (P < 0.05). No significant differences were observed in the comparisons of K and angle between the two groups. Various TEG variables were identified to be correlated with different coagulation and biochemical variables. Logistic regression analysis demonstrated that abnormal R was independently associated with direct bilirubin, and abnormal K was independently associated with the platelet count in Group A (P < 0.05). However, none of the factors were independently associated with abnormal TEG variables in Group B. Conclusion Populations exposed to or transferring from high altitudes are characterized by different TEG characteristics. Our findings give a comprehensive description of the complex interaction between TEG indexes, coagulation dynamics, and hematological parameters, which can help guide the development of appropriate medical approaches tailored to the unique needs of these populations.
Collapse
Affiliation(s)
- Zhu Huang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610000, China
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Dong-xin Huang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610000, China
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, 610000, China
- College of Medicine, Southwest Jiaotong University, Chengdu, 610000, China
| | - Yan-yan Wang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610000, China
- Department of Clinical Laboratory, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Li-juan Jiang
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Yong-hua Wang
- Department of Nursing, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Jing Dai
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Xia Kang
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Yi Wen
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610000, China
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, 610000, China
| | - Si-yi He
- Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, 610000, China
- Department of Cardiac Surgery, The General Hospital of Western Theater Command, Chengdu, 610000, China
| |
Collapse
|
2
|
Duo D, Duan Y, Zhu J, Bai X, Yang J, Liu G, Wang Q, Li X. New strategy for rational use of antihypertensive drugs in clinical practice in high-altitude hypoxic environments. Drug Metab Rev 2023; 55:388-404. [PMID: 37606301 DOI: 10.1080/03602532.2023.2250930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
High-altitude hypoxic environments have critical implications on cardiovascular system function as well as blood pressure regulation. Such environments place patients with hypertension at risk by activating the sympathetic nervous system, which leads to an increase in blood pressure. In addition, the high-altitude hypoxic environment alters the in vivo metabolism and antihypertensive effects of antihypertensive drugs, which changes the activity and expression of drug-metabolizing enzymes and drug transporters. The present study reviewed the pharmacodynamics and pharmacokinetics of antihypertensive drugs and its effects on patients with hypertension in a high-altitude hypoxic environment. It also proposes a new strategy for the rational use of antihypertensive drugs in clinical practice in high-altitude hypoxic environments. The increase in blood pressure on exposure to a high-altitude hypoxic environment was mainly dependent on increased sympathetic nervous system activity. Blood pressure also increased proportionally to altitude, whilst ambulatory blood pressure increased more than conventional blood pressure, especially at night. High-altitude hypoxia can reduce the activities and expression of drug-metabolizing enzymes, such as CYP1A1, CYP1A2, CYP3A1, and CYP2E1, while increasing those of CYP2D1, CYP2D6, and CYP3A6. Drug transporter changes were related to tissue type, hypoxic degree, and hypoxic exposure time. Furthermore, the effects of high-altitude hypoxia on drug-metabolism enzymes and transporters altered drug pharmacokinetics, causing changes in pharmacodynamic responses. These findings suggest that high-altitude hypoxic environments affect the blood pressure, pharmacokinetics, and pharmacodynamics of antihypertensive drugs. The optimal hypertension treatment plan and safe and effective medication strategy should be formulated considering high-altitude hypoxic environments.
Collapse
Affiliation(s)
- Delong Duo
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- Qinghai Provincial People's Hospital, Xining, China
| | - Yabin Duan
- Qinghai University Affiliated Hospital, Xining, China
| | - Junbo Zhu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Qian Wang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
3
|
Yan Y, Mao Z, Jia Q, Zhao XJ, Yang SH. Changes in blood pressure, oxygen saturation, hemoglobin concentration, and heart rate among low-altitude migrants living at high altitude (5380 m) for 360 days. Am J Hum Biol 2023; 35:e23913. [PMID: 37200487 DOI: 10.1002/ajhb.23913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND This article aimed to study the adjustment and adaptation of resting systolic blood pressure (SBP), diastolic blood pressure (DPB), oxygen saturation (SpO2 ), hemoglobin concentration ([Hb]), and heart rate (HR) in low-altitude migrants during a 1-year stay at high altitude. MATERIALS AND METHODS Our study enrolled 35 young migrants who were exposed to a hypoxia environment at 5380 m altitude on the Qinghai Tibetan Plateau between June 21, 2017, and June 16, 2018. We set 14-time points (the 1st-10th, 20th, 30th, 180th, and 360th day after arriving at 5380 m) for obtaining the measurements of resting SBP, DBP, HR, SpO2, and [Hb] and compared them with the control values recorded prior to migration. Variables with continuous data were summarized as means (SD). One-way repeated measures ANOVA without assuming sphericity was carried out to test whether the mean values (SBP, DBP, HR, SpO2 , and [Hb]) on different days were different significantly. Furthermore, Dunnett's multiple comparisons test was carried out to determine the time points whose values were significantly different from the control values. RESULTS SBP and DBP were continually increasing within d1-3 and peaked on the 3rd day, then steadily declined from d3 to d30. SBP fell back to the control values on d10 (p > 0.05), and DBP fell back to the control values on d20 (p > 0.05). A significant decline occurred on d180 (p < 0.05). Both SBP and DBP were lower than the control values on d180 (p < 0.05), and this trend was maintained to d360. There were similar characteristics of HR and BP in the time course at HA. HR on d1-3 was increasing (p < 0.05) compared to the control values, after which it fell back to the control values on d180 (p > 0.05), and this trend was maintained to d360. SpO2 was the lowest on d1 and lower than the control value throughout the study at HA (p < 0.05). [Hb] increased after long-term exposure (180 and 360 days) to HA (p < 0.05). CONCLUSIONS Our study continuously monitored lowlanders at 5380 m in Tibet, and is perhaps the only longitudinal study of migrants conducted at an altitude above 5000 m during a 1-year period. Our study provides new information on the adjustment and adaptation of [Hb], SpO2 , SBP, DBP, and HR in high-altitude plateau migrants during a 360-day stay at an altitude of 5380 m.
Collapse
Affiliation(s)
- Yan Yan
- Translational Medicine Research Center, Medical Innovation Research Division, The Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhong Mao
- Respiratory Cardiology and Nephrology, The 957th Chinese PLA Hospital, Xizang, People's Republic of China
| | - Qian Jia
- Translational Medicine Research Center, Medical Innovation Research Division, The Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiao-Jing Zhao
- Translational Medicine Research Center, Medical Innovation Research Division, The Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Sheng-Hong Yang
- The 949th Chinese PLA Hospital, Xinjiang, People's Republic of China
| |
Collapse
|
4
|
Ye X, Sun M, Yu S, Yang J, Liu Z, Lv H, Wu B, He J, Wang X, Huang L. Smartwatch-Based Maximum Oxygen Consumption Measurement for Predicting Acute Mountain Sickness: Diagnostic Accuracy Evaluation Study. JMIR Mhealth Uhealth 2023; 11:e43340. [PMID: 37410528 PMCID: PMC10360014 DOI: 10.2196/43340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/11/2022] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Cardiorespiratory fitness plays an important role in coping with hypoxic stress at high altitudes. However, the association of cardiorespiratory fitness with the development of acute mountain sickness (AMS) has not yet been evaluated. Wearable technology devices provide a feasible assessment of cardiorespiratory fitness, which is quantifiable as maximum oxygen consumption (VO2max) and may contribute to AMS prediction. OBJECTIVE We aimed to determine the validity of VO2max estimated by the smartwatch test (SWT), which can be self-administered, in order to overcome the limitations of clinical VO2max measurements. We also aimed to evaluate the performance of a VO2max-SWT-based model in predicting susceptibility to AMS. METHODS Both SWT and cardiopulmonary exercise test (CPET) were performed for VO2max measurements in 46 healthy participants at low altitude (300 m) and in 41 of them at high altitude (3900 m). The characteristics of the red blood cells and hemoglobin levels in all the participants were analyzed by routine blood examination before the exercise tests. The Bland-Altman method was used for bias and precision assessment. Multivariate logistic regression was performed to analyze the correlation between AMS and the candidate variables. A receiver operating characteristic curve was used to evaluate the efficacy of VO2max in predicting AMS. RESULTS VO2max decreased after acute high altitude exposure, as measured by CPET (25.20 [SD 6.46] vs 30.17 [SD 5.01] at low altitude; P<.001) and SWT (26.17 [SD 6.71] vs 31.28 [SD 5.17] at low altitude; P<.001). Both at low and high altitudes, VO2max was slightly overestimated by SWT but had considerable accuracy as the mean absolute percentage error (<7%) and mean absolute error (<2 mL·kg-1·min-1), with a relatively small bias compared with VO2max-CPET. Twenty of the 46 participants developed AMS at 3900 m, and their VO2max was significantly lower than that of those without AMS (CPET: 27.80 [SD 4.55] vs 32.00 [SD 4.64], respectively; P=.004; SWT: 28.00 [IQR 25.25-32.00] vs 32.00 [IQR 30.00-37.00], respectively; P=.001). VO2max-CPET, VO2max-SWT, and red blood cell distribution width-coefficient of variation (RDW-CV) were found to be independent predictors of AMS. To increase the prediction accuracy, we used combination models. The combination of VO2max-SWT and RDW-CV showed the largest area under the curve for all parameters and models, which increased the area under the curve from 0.785 for VO2max-SWT alone to 0.839. CONCLUSIONS Our study demonstrates that the smartwatch device can be a feasible approach for estimating VO2max. In both low and high altitudes, VO2max-SWT showed a systematic bias toward a calibration point, slightly overestimating the proper VO2max when investigated in healthy participants. The SWT-based VO2max at low altitude is an effective indicator of AMS and helps to better identify susceptible individuals following acute high-altitude exposure, particularly by combining the RDW-CV at low altitude. TRIAL REGISTRATION Chinese Clinical Trial Registry ChiCTR2200059900; https://www.chictr.org.cn/showproj.html?proj=170253.
Collapse
Affiliation(s)
- Xiaowei Ye
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjia Sun
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shiyong Yu
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jie Yang
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhen Liu
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hailin Lv
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Boji Wu
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingyu He
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xuhong Wang
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of People's Liberation Army, The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
5
|
Zhao CC, Chen LY, Chen CJ, Wang QR, Li QH, Kang PD. Does living at high altitude increase the risk of bleeding events after total knee arthroplasty? A retrospective cohort study. INTERNATIONAL ORTHOPAEDICS 2023; 47:67-74. [PMID: 36318309 DOI: 10.1007/s00264-022-05614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Post-operative bleeding after total knee arthroplasty (TKA) is a frequent cause of post-operative complications. This study compared blood loss and indicators of coagulation and fibrinolysis between TKA patients living at low or high altitudes. METHODS We retrospectively analyzed 120 patients at our institution who underwent primary TKA from May 2019 to March 2020, and we divided them into those living in areas about 500 m or > 3000 m above sea level. We compared the primary outcome of total blood loss between them. We also compared them in terms of several secondary outcomes: coagulation and fibrinolysis parameters, platelet count, reduction in hemoglobin, hidden blood loss, intra-operative blood loss, transfusion rate, and incidence of thromboembolic events and other complications. RESULTS Total blood loss was significantly higher in the high-altitude group than in the low-altitude group (mean, 748.2 mL [95% CI, 658.5-837.9] vs 556.6 mL [95% CI, 496.0-617.1]; p = 0.001). The high-altitude group also showed significantly longer activated partial thromboplastin time, prothrombin time, and thrombin time before surgery and on post-operative day one, as well as increased levels of fibrinogen/fibrin degradation product on post-operative days one and three. Ecchymosis was significantly more frequent in the high-altitude group (41.7 vs 21.7%; relative risk (RR) = 1.923 [95% CI, 1.091-3.389]; p = 0.019). The two groups showed similar transfusion rates, and none of the patients experienced venous thromboembolism, pulmonary embolism, or infection. CONCLUSION High altitude may alter coagulation and fibrinolysis parameters in a way that increases risk of blood loss after TKA. Such patients may benefit from special management to avoid bleeding events.
Collapse
Affiliation(s)
- Cheng-Cheng Zhao
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, People's Republic of China
| | - Li-Yile Chen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, People's Republic of China
| | - Chang-Jun Chen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, People's Republic of China
| | - Qiu-Ru Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, People's Republic of China
| | - Qian-Hao Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, People's Republic of China
| | - Peng-de Kang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, People's Republic of China.
| |
Collapse
|
6
|
Chen R, Ye X, Sun M, Yang J, Zhang J, Gao X, Liu C, Ke J, He C, Yuan F, Lv H, Yang Y, Cheng R, Tan H, Huang L. Blood Pressure Load: An Effective Indicator of Systemic Circulation Status in Individuals With Acute Altitude Sickness. Front Cardiovasc Med 2022; 8:765422. [PMID: 35047574 PMCID: PMC8761955 DOI: 10.3389/fcvm.2021.765422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Acute high altitude (HA) exposure results in blood pressure (BP) variations in most subjects. Previous studies have demonstrated that higher BP is potentially correlated with acute mountain sickness (AMS). The BP load may be of clinical significance regarding systemic circulation status. Objectives: This study aimed to examine HA-induced BP changes in patients with AMS compared to those in healthy subjects. Further, we provided clinical information about the relationship between variations in 24-h ambulatory parameters (BP level, BP variability, and BP load) and AMS. Methods: Sixty-nine subjects were enrolled and all participants ascended Litang (4,100 m above sea level). They were monitored using a 24-h ambulatory blood pressure device and underwent echocardiography within 24 h of altitude exposure. The 2018 Lake Louise questionnaire was used to evaluate AMS. Results: The AMS group comprised more women than men [15 (65.2%) vs. 13 (28.3%), P < 0.001] and fewer smokers [4 (17.4%) vs. 23 (50.0%), P = 0.009]. The AMS group exhibited significant increases in 24-h BP compared to the non-AMS group (24-h SBP variation: 10.52 ± 6.48 vs. 6.03 ± 9.27 mmHg, P = 0.041; 24-h DBP variation: 8.70 ± 4.57 vs. 5.03 ± 4.98 mmHg, P = 0.004). The variation of mean 24-h cBPL (cumulative BP load) (mean 24-h cSBPL: 10.58 ± 10.99 vs. 4.02 ± 10.58, P = 0.016; 24-h mean cDBPL: 6.03 ± 5.87 vs. 2.89 ± 4.99, P = 0.034) was also obviously higher in AMS subjects than in non-AMS subjects after HA exposure. 24-h mean cSBPL variation (OR = 1.07, P = 0.024) and 24-h mean cDBPL variation (OR = 1.14, P = 0.034) were independent risk factors of AMS. Moreover, variation of 24-h mean cSBPL showed a good correlation with AMS score (R = 0.504, P < 0.001). Conclusions: Our study demonstrated that patients with AMS had higher BP and BP load changes after altitude exposure than healthy subjects. Excessive BP load variations were associated with AMS. Thus, BP load could be an effective indicator regarding systemic circulation status of AMS.
Collapse
Affiliation(s)
- Renzheng Chen
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaowei Ye
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mengjia Sun
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Yang
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jihang Zhang
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xubin Gao
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chuan Liu
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingbin Ke
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyan He
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fangzhengyuan Yuan
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hailin Lv
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuanqi Yang
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ran Cheng
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hu Tan
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of Chinese People's Liberation Army (PLA), The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Lan Huang
| |
Collapse
|
7
|
Hypoxic Exercise Exacerbates Hypoxemia and Acute Mountain Sickness in Obesity: A Case Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18179078. [PMID: 34501667 PMCID: PMC8430682 DOI: 10.3390/ijerph18179078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 12/21/2022]
Abstract
Acute mountain sickness (AMS) is a common syndrome characterized by headache, dizziness, loss of appetite, weakness, and nausea. As a major public health issue, obesity has increased in high altitude urban residents and intermittent commuters to high altitudes. The present study investigated acute hypoxic exposure and hypoxic exercise on hypoxemia severity and AMS symptoms in a physically active obese man. In this case analysis, peripheral oxygen saturation (SpO2) was used to evaluate hypoxemia, heart rate (HR) and blood pressure (BP) were used to reflect the function of autonomic nervous system (ANS), and Lake Louise scoring (LLS) was used to assess AMS. The results showed that acute hypoxic exposure led to severe hypoxemia (SpO2 = 72%) and tachycardia (HRrest = 97 bpm), and acute hypoxic exercise exacerbated severe hypoxemia (SpO2 = 59%) and ANS dysfunction (HRpeak = 167 bpm, SBP/DBP = 210/97 mmHg). At the end of the 6-h acute hypoxic exposure, the case developed severe AMS (LLS = 10) symptoms of headache, gastrointestinal distress, cyanosis, vomiting, poor appetite, and fatigue. The findings of the case study suggest that high physical activity level appears did not show a reliable protective effect against severe hypoxemia, ANS dysfunction, and severe AMS symptoms in acute hypoxia exposure and hypoxia exercise.
Collapse
|
8
|
Effect of Carbohydrate-Electrolyte Solution Including Bicarbonate Ion Ad Libitum Ingestion on Urine Bicarbonate Retention during Mountain Trekking: A Randomized, Controlled Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041441. [PMID: 33557035 PMCID: PMC7913653 DOI: 10.3390/ijerph18041441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
We investigated whether bicarbonate ion (HCO3−) in a carbohydrate-electrolyte solution (CE+HCO3) ingested during climbing to 3000 m on Mount Fuji could increase urine HCO3− retention. This study was a randomized, controlled pilot study. Sixteen healthy lowlander adults were divided into two groups (six males and two females for each): a tap water (TW) group (0 kcal with no energy) and a CE+HCO3 group. The allocation to TW or CE+HCO3 was double blind. The CE solution contains 10 kcal energy, including Na+ (115 mg), K+ (78 mg), HCO3− (51 mg) per 100 mL. After collecting baseline urine and measuring body weight, participants started climbing while energy expenditure (EE) and heart rate (HR) were recorded every min with a portable calorimeter. After reaching a hut at approximately 3000 m, we collected urine and measured body weight again. The HCO3− balance during climbing, measured by subtracting the amount of urine excreted from the amount of fluid ingested, was −0.37 ± 0.77 mmol in the CE+HCO3, which was significantly higher than in the TW (−2.23 ± 0.96 mmol, p < 0.001). These results indicate that CE containing HCO3− supplementation may increase the bicarbonate buffering system during mountain trekking up to ~3000 m, suggesting a useful solution, at least, in the population of the present study on Mount Fuji.
Collapse
|
9
|
Niebauer JH, Niebauer J, Wille M, Burtscher M. Systemic Blood Pressure Variation During a 12-Hour Exposure to Normobaric Hypoxia (4500 m). High Alt Med Biol 2020; 21:194-199. [PMID: 32186921 DOI: 10.1089/ham.2019.0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was aimed at evaluating a potential association between blood pressure variation and acute mountain sickness (AMS) during acute exposure to normobaric hypoxia. A total of 77 healthy subjects (43 males, 34 females) were exposed to a simulated altitude of 4500 m for 12 hours. Peripheral oxygen saturation, heart rate, systemic blood pressure, and Lake Louise AMS scores were recorded before and during (30 minutes, 3, 6, 9, and 12 hours) hypoxic exposure. Blood pressure dips were observed at 3-hour mark. However, systolic blood pressure fell more pronounced from baseline during the initial 30 minutes in normobaric hypoxia (-17.5 vs. -11.0 mmHg, p = 0.01) in subjects suffering from AMS (AMS+; n = 56) than in those remaining unaffected from AMS (AMS-; n = 21); values did not differ between groups over the subsequent time course. Our data may suggest a transient autonomic dysfunction resulting in a more pronounced blood pressure drop during initial hypoxic exposure in AMS+ compared with AMS- subjects.
Collapse
Affiliation(s)
| | - Josef Niebauer
- University Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Maria Wille
- Department of Sports Science, University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sports Science, University of Innsbruck, Innsbruck, Austria.,Austrian Society for Alpine- and High-Altitude Medicine, Innsbruck, Austria
| |
Collapse
|
10
|
Parati G, Agostoni P, Basnyat B, Bilo G, Brugger H, Coca A, Festi L, Giardini G, Lironcurti A, Luks AM, Maggiorini M, Modesti PA, Swenson ER, Williams B, Bärtsch P, Torlasco C. Clinical recommendations for high altitude exposure of individuals with pre-existing cardiovascular conditions: A joint statement by the European Society of Cardiology, the Council on Hypertension of the European Society of Cardiology, the European Society of Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension and the Italian Society of Mountain Medicine. Eur Heart J 2019; 39:1546-1554. [PMID: 29340578 PMCID: PMC5930248 DOI: 10.1093/eurheartj/ehx720] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 12/15/2017] [Indexed: 01/22/2023] Open
Abstract
Adapted from Bärtsch and Gibbs2 Physiological response to hypoxia. Life-sustaining oxygen delivery, in spite of a reduction in the partial pressure of inhaled oxygen between 25% and 60% (respectively at 2500 m and 8000 m), is ensured by an increase in pulmonary ventilation, an increase in cardiac output by increasing heart rate, changes in vascular tone, as well as an increase in haemoglobin concentration. BP, blood pressure; HR, heart rate; PaCO2, partial pressure of arterial carbon dioxide. ![]()
Collapse
Affiliation(s)
- Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, S. Luca Hospital, Piazzale Brescia, 20, 20149 Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy
| | - Piergiuseppe Agostoni
- Department of Cardiology, Heart Failure Unit, Centro Cardiologico Monzino, via Parea 4, 20138 Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, via Festa del Perdono 7, 20122 Milan, Italy
| | - Buddha Basnyat
- Nuffield Department of Clinical Medicine, Oxford University Clinical Research Unit-Nepal and Centre for Tropical Medicine and Global Health, University of Oxford, Old Road campus, Roosevelt Drive, Headington, Oxford OX3 7FZ, UK
| | - Grzegorz Bilo
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, S. Luca Hospital, Piazzale Brescia, 20, 20149 Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, 20126 Milan, Italy
| | - Hermann Brugger
- Institute of Mountain Emergency Medicine at the EURAC Research, viale Druso 1, 39100 Bolzano, Italy.,Medical University, Christoph-Probst-Platz 1, Innrain 52 A - 6020 Innsbruck, Austria
| | - Antonio Coca
- Hypertension and Vascular Risk Unit, Department of Internal Medicine, Hospital Clínic (IDIBAPS), University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Luigi Festi
- Surgery Department, Ospedale di Circolo Fondazione Macchi, viale Luigi Borri, 57, 21100 Varese, Italy.,University of Insubria, via Ravasi 2, 21100 Varese, Italy
| | - Guido Giardini
- Department of Neurology, Neurophysiopathology Unit, Valle d'Aosta Regional Hospital, via Ginevra, 3, 11100 Aosta, Italy
| | - Alessandra Lironcurti
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, S. Luca Hospital, Piazzale Brescia, 20, 20149 Milan, Italy
| | - Andrew M Luks
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, 98195 WA, USA
| | - Marco Maggiorini
- Medical Intensive Care Unit, University Hospital, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Pietro A Modesti
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3, 50134 Florence, Florence, Italy
| | - Erik R Swenson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, 98195 WA, USA.,Pulmonary, Critical Care and Sleep Medicine, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, 98108 WA, USA
| | - Bryan Williams
- University College London (UCL) and NIHR UCL Hospitals Biomedical Research Centre, NHS Foundation Trust, University College, Gower St, Bloomsbury, London WC1E 6BT, UK
| | - Peter Bärtsch
- Department of Internal Medicine, University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Camilla Torlasco
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, S. Luca Hospital, Piazzale Brescia, 20, 20149 Milan, Italy
| |
Collapse
|
11
|
Zhang R, Yu X, Shen Y, Yang C, Liu F, Ye S, Du X, Ma L, Cao H, Wang Z, Li C. Correlation between RBC changes and coagulation parameters in high altitude population. ACTA ACUST UNITED AC 2019; 24:325-330. [PMID: 30669960 DOI: 10.1080/16078454.2019.1568658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To explore the correlations between RBCs indexes and the basic coagulation parameters, and provide data for further studies on high altitude-induced thrombotic disease. METHODS A total of eligible 433 volunteers were divided into different groups according to HGB concentration and HCT, respectively. PT, APTT, TT and Fbg were measured by clotting assays. HGB content, HCT and PLT count were assessed by automated hematology analyzer. RESULTS APTT and PT were significantly higher in group 4 (high HGB or HCT groups) (p < 0.05 for all comparison) and PLT count was significantly lower in group 4 than in other groups (p < 0.01 for all comparison). APTT and PT showed negative correlations with HGB concentration (r = -0.168 and -0.165 resp.; both p < 0.01), whereas positive correlations were found between APTT and HCT, PT and HCT (r = 0.225 and 0.258, resp.; both p < 0.01). PLT, TT and Fbg showed no correlation with HGB and HCT. CONCLUSIONS HGB and HCT may not correlate with basic coagulation parameters in high altitude population, their predictive value for high altitude-induced thrombotic disease may relatively independent and this remain to be determined in further studies.
Collapse
Affiliation(s)
- Rong Zhang
- a Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College , Chengdu , People's Republic of China
| | - Xiaochuan Yu
- b People's Hospital of Aba Tibetan and Qiang Autonomous Prefecture , Sichuan , People's Republic of China
| | - Yuanzhen Shen
- b People's Hospital of Aba Tibetan and Qiang Autonomous Prefecture , Sichuan , People's Republic of China
| | - Chunhui Yang
- a Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College , Chengdu , People's Republic of China
| | - Fengjuan Liu
- a Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College , Chengdu , People's Republic of China
| | - Shengliang Ye
- a Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College , Chengdu , People's Republic of China
| | - Xi Du
- a Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College , Chengdu , People's Republic of China
| | - Li Ma
- a Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College , Chengdu , People's Republic of China
| | - Haijun Cao
- a Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College , Chengdu , People's Republic of China
| | - Zongkui Wang
- a Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College , Chengdu , People's Republic of China
| | - Changqing Li
- a Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College , Chengdu , People's Republic of China
| |
Collapse
|
12
|
Impact of Carbohydrate-Electrolyte Beverage Ingestion on Heart Rate Response While Climbing Mountain Fuji at ~3000 m. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3919826. [PMID: 28770221 PMCID: PMC5523545 DOI: 10.1155/2017/3919826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 11/20/2022]
Abstract
We sought to investigate whether carbohydrate-electrolyte beverage ingestion reduced heart rate (HR) in twenty-three healthy young adults while climbing Mount Fuji at a given exercise intensity. Twenty-three healthy adults were randomly divided into two groups: the tap water (11 males [M] and 1 female [F]) and the carbohydrate-electrolyte group (10 M and 1 F). HR and activity energy expenditure (AEE) were recorded every min. The HRs for the first 30 minutes of climbing were not significantly different between the groups [121 ± 2 beats per min (bpm) in the tap water and 116 ± 3 bpm in the carbohydrate-electrolyte]; however, HR significantly increased with climbing in the tap water group (129 ± 2 bpm) but showed no significant increase in the carbohydrate-electrolyte group (121 ± 3 bpm). In addition, body weight changes throughout two days ascending and descending on Mount Fuji were inversely related to changes in resting HR. Further, individual variation of body weight changes was suppressed by carbohydrate-electrolyte drink. Collectively, carbohydrate-electrolyte beverage intake may attenuate an increase in HR at a given AEE while mountaineering at ~3000 m compared with tap water intake.
Collapse
|
13
|
Wang Z, Liu H, Dou M, Du X, Hu J, Su N, Wang Y, Zhang R, Li C. The quality changes in fresh frozen plasma of the blood donors at high altitude. PLoS One 2017; 12:e0176390. [PMID: 28430802 PMCID: PMC5400266 DOI: 10.1371/journal.pone.0176390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/10/2017] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE According to the international guidelines, fresh frozen plasma (FFP) is unanimously used to treat coagulation disorders. The quality of FFP is critical for the clinical transfusion. Till now, few studies have integratedly evaluated the differences of FFP from blood donors at between high altitude (HA) and low altitude (LA). Besides, there were no special quality standards for HA FFP in China. MATERIALS AND METHODS Up to 41 HA (Lhasa, 3700 m) and 46 LA (Chengdu, 500 m) blood donors were included in our study to estimate the differences of FFP from HA and LA blood donors. The concentration of total plasma proteins, prothrombin time (PT), activated partial thromboplastin time (aPTT), thrombin time (TT), fibrinogen (Fbg), factor (F) II, FV, FVII, FVIII, FIX, FX, FXI, FXII, D-dimer, protein C (PC), protein S (PS), antithrombin III (ATIII) and von Willebrand factor antigen (vWF:Ag) were determined, respectively. RESULTS As compared with FFP of LA blood donors, the total protein content of HA blood donors showed a significant decrease (65.2±8.9 vs.57.2±6.3 g/L; p<0.001); PT, aPTT, TT were significantly increased (p<0.001); the levels of FII, FV, FVII, FVIII, FIX, FX, FXI, FXII and vWF:Ag were notably decreased (all p<0.05), whereas Fbg and D-dimer were dramaticly increased (p = 0.038). Additionly, in HA blood donors, vWF: Ag and FVIII:C of O-group was significantly lower (p<0.05) than that of non-O-group. It should be noted that FVIII:C of HA blood donors (0.64±0.10 IU/mL) was lower than the current Chinese quality requirements for FFP (≥ 0.7 IU/ml). No significant differences were observed in PC, PS and ATIII. CONCLUSION In general, our findings showed that the quality of FFP was significantly different between HA and LA blood donors, and the current Chinese quality requirements of FFP are not suitable for HA FFP. Therefore, setting up a special quality requirement for HA is quite necessary and meaningful.
Collapse
Affiliation(s)
- Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Science, Chengdu, China
| | - Hua Liu
- Tibet Autonomous Region Blood Center, Lhasa, Tibet
| | - Miaomiao Dou
- Institute of Blood Transfusion, Chinese Academy of Medical Science, Chengdu, China
| | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Science, Chengdu, China
| | - Jijun Hu
- Guizhou Taibang Biological Products Co., Ltd, Guiyang, Guizhou
| | - Na Su
- Institute of Blood Transfusion, Chinese Academy of Medical Science, Chengdu, China
| | - Ya Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Science, Chengdu, China
| | - Rong Zhang
- Institute of Blood Transfusion, Chinese Academy of Medical Science, Chengdu, China
- * E-mail: (RZ); (CL)
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Science, Chengdu, China
- * E-mail: (RZ); (CL)
| |
Collapse
|
14
|
Horiuchi M, Oda S, Uno T, Endo J, Handa Y, Fukuoka Y. Effects of Short-Term Acclimatization at the Summit of Mt. Fuji (3776 m) on Sleep Efficacy, Cardiovascular Responses, and Ventilatory Responses. High Alt Med Biol 2017; 18:171-178. [PMID: 28375664 DOI: 10.1089/ham.2016.0162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Horiuchi, Masahiro, Shiro Oda, Tadashi Uno, Junko Endo, Yoko Handa, and Yoshiyuki Fukuoka. Effects of short-term acclimatization at the summit of Mt. Fuji (3776 m) on sleep efficacy, cardiovascular responses, and ventilatory responses. High Alt Med Biol. 18:171-178, 2017.-We investigated the effects of a short period of acclimatization, at 3776 m on Mt. Fuji, on sleep parameters and related physiological responses. Physiological responses were assessed in seven healthy lowlander men during both daytime and sleep while at sea level (SL), as well as for three consecutive nights at high altitude (HA; 3776 m, day 1 [D1], D2, D3, and morning only of D4). Blood pressure variables, heart rate (HR), pulmonary ventilation (VE), and breathing frequency (Bf) progressively increased each day, with significant differences between SL and HA (p < 0.05, respectively). In contrast, end-tidal PCO2 (PETCO2) progressively decreased each day with statistical differences between SL and D3 at HA (p < 0.05). During sleep at HA, mean arterial pressure (MAP) was stable, whereas it decreased during sleep at SL. Sleep efficacy, which was assessed by actigraphy, was linearly impaired with statistical differences between SL and D3 (p < 0.05). These impairments in sleep efficacy at HA were associated with higher MAP and HR, as well as lower Bf and PETCO2 during the daytime (pooled data, p < 0.05, respectively). These results suggest that hypoxia-induced cardiovascular and ventilatory responses may be crucial contributors to changes in sleep efficacy at HA.
Collapse
Affiliation(s)
- Masahiro Horiuchi
- 1 Division of Human Environmental Science, Mt. Fuji Research Institute , Yamanashi, Japan
| | - Shiro Oda
- 2 Department of Health and Welfare, School of Life Long Sport, Hokusho University , Hokkaido, Japan
| | - Tadashi Uno
- 1 Division of Human Environmental Science, Mt. Fuji Research Institute , Yamanashi, Japan
| | - Junko Endo
- 1 Division of Human Environmental Science, Mt. Fuji Research Institute , Yamanashi, Japan
| | - Yoko Handa
- 1 Division of Human Environmental Science, Mt. Fuji Research Institute , Yamanashi, Japan
| | - Yoshiyuki Fukuoka
- 3 Faculty of Health and Sports Science, Doshisha University , Kyoto, Japan
| |
Collapse
|
15
|
Sightings, edited by Erik Swenson and Peter Bärtsch. High Alt Med Biol 2015. [DOI: 10.1089/ham.2015.29004.stg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|