1
|
Dai L, Lou N, Huang L, Li L, Tang L, Shi Y, Han X. Spatial transcriptomics reveals prognostically LYZ + fibroblasts and colocalization with FN1 + macrophages in diffuse large B-cell lymphoma. Cancer Immunol Immunother 2025; 74:123. [PMID: 39998673 PMCID: PMC11861843 DOI: 10.1007/s00262-025-03968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/02/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a clinically heterogeneous malignancy with diverse patient outcomes, largely influenced by the tumor microenvironment (TME). Understanding the roles of fibroblasts and macrophages within the TME is essential for developing personalized therapeutic strategies in DLBCL. METHODS This study is a multi-omics approach, integrating spatial transcriptomics (n = 11), bulk transcriptomics (n = 2,499), immunohistochemistry (IHC, n = 37), multiplex immunofluorescence (mIF, n = 56), and plasma samples (n = 240) to identify and characterize fibroblast and tumor-associated macrophage subtypes in the TME. Hub genes for LYZ+ fibroblasts and FN1+ macrophages were selected through univariate Cox regression and random forest analyses. Their prognostic significance was validated using IHC, mIF, and autoantibody assays in DLBCL patients treated with R-CHOP and in non-small cell lung cancer (NSCLC) patients receiving immune checkpoint inhibitors (ICIs). RESULTS Fibroblasts and macrophages were classified into two distinct subtypes. Patients with higher LYZ+ fibroblasts infiltration demonstrated superior prognosis, which was associated with increased infiltration of FN1+ macrophages. Key hub genes identified for LYZ+ fibroblasts included LYZ, ANPEP, CSF3R, C15orf48, LILRB4, CLEC7A, and COL7A1, while hub FN1+ macrophages genes included COL1A1, FN1, APOE, DCN, MMP2, SPP1, COL3A1, and COL1A2. Independent prognostic markers in DLBCL treated with R-CHOP and NSCLC treated with ICIs were identified, including LYZ and LILRB4 at both protein and mRNA levels, and COL1A2 autoantibodies (p < 0.05). In DLBCL patients treated with R-CHOP, FN1 mRNA and autoantibody levels were also prognostic markers (p < 0.05). In NSCLC treated with ICIs, COL3A1 autoantibody was prognostic marker (p < 0.05). CONCLUSIONS This study identified a prognostically relevant LYZ+ fibroblasts and FN1+ macrophages in DLBCL. The hub genes associated with these subtypes represent potential biomarkers, providing insights into improving patient outcomes in DLBCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Prognosis
- Tumor Microenvironment/immunology
- Macrophages/metabolism
- Macrophages/immunology
- Fibroblasts/metabolism
- Transcriptome
- Fibronectins/metabolism
- Fibronectins/genetics
- Female
- Male
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Rituximab/therapeutic use
- Rituximab/pharmacology
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Doxorubicin/therapeutic use
- Doxorubicin/pharmacology
- Cyclophosphamide/therapeutic use
- Cyclophosphamide/pharmacology
- Vincristine/therapeutic use
- Vincristine/pharmacology
- Middle Aged
- Gene Expression Profiling
- Prednisone/therapeutic use
- Tumor-Associated Macrophages/immunology
- Tumor-Associated Macrophages/metabolism
Collapse
Affiliation(s)
- Liyuan Dai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Ning Lou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Liling Huang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1, Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
2
|
Koumpis E, Papoudou-Bai A, Papathanasiou K, Kolettas E, Kanavaros P, Hatzimichael E. Unraveling the Immune Microenvironment in Diffuse Large B-Cell Lymphoma: Prognostic and Potential Therapeutic Implications. Curr Issues Mol Biol 2024; 46:7048-7064. [PMID: 39057061 PMCID: PMC11276293 DOI: 10.3390/cimb46070420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a multifaceted condition characterized by significant diversity in its molecular and pathological subtypes and clinical manifestation. Despite the progress made in the treatment of DLBCL through the development of novel drugs, an estimated one-third of patients encounter relapse or acquire refractory disease. The tumor microenvironment (TME) of DLBCL, a complex network consisting of cellular and noncellular components that engage in interactions with the tumor, is a parameter that is gaining increasing attention. The TME comprises both the immune and nonimmune microenvironments. The immune microenvironment comprises natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), neutrophils, myeloid-derived suppressor cells (MDSCs), and T and B lymphocytes. The nonimmune microenvironment consists of the extracellular matrix (ECM), cancer-associated fibroblasts (CAFs), mesenchymal stromal cells, and other molecules that are secreted. Despite ongoing research, the exact impact of these components and their interaction on the progression of the disease remains elusive. A comprehensive review of significant discoveries concerning the cellular and noncellular constituents, molecular characteristics, and treatment response and prognosis of the TME in DLBCL, as well as the potential targeting of the TME with novel therapeutic approaches, is provided in this article.
Collapse
Affiliation(s)
- Epameinondas Koumpis
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| | - Alexandra Papoudou-Bai
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece;
| | - Konstantina Papathanasiou
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| | - Evangelos Kolettas
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 110 Ioannina, Greece;
- Biomedical Research Institute, Foundation for Research and Technology, 45 110 Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 110 Ioannina, Greece;
| | - Eleftheria Hatzimichael
- Department of Hematology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45 500 Ioannina, Greece; (E.K.); (K.P.)
| |
Collapse
|
3
|
Miyawaki K, Sugio T. Lymphoma Microenvironment in DLBCL and PTCL-NOS: the key to uncovering heterogeneity and the potential for stratification. J Clin Exp Hematop 2022; 62:127-135. [PMID: 36171096 DOI: 10.3960/jslrt.22027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) and peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) are the most common subtypes of mature B cell neoplasm and T/NK cell lymphoma, respectively. They share a commonality in that they are, by definition, highly heterogeneous populations. Recent studies are revealing more about the heterogeneity of these diseases, and at the same time, there is an active debate on how to stratify these heterogeneous diseases and make them useful in clinical practice. The various immune cells and non-cellular components surrounding lymphoma cells, i.e., the lymphoma microenvironment, have been the subject of intense research since the late 2000s, and much knowledge has been accumulated over the past decade. As a result, it has become clear that the lymphoma microenvironment, despite its paucity in tissues, significantly impacts the lymphoma pathogenesis and clinical behavior, such as its prognosis and response to therapy. In this article, we review the role of the lymphoma microenvironment in DLBCL and PTCL-NOS, with particular attention given to its impact on the prognosis and stratification.
Collapse
Affiliation(s)
- Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takeshi Sugio
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
4
|
Nian Q, Li J, Han Z, Liang Q, Liu M, Yang C, Rodrigues-Lima F, Jiang T, Zhao L, Zeng J, Liu C, Shi J. SPARC in hematologic malignancies and novel technique for hematological disease with its abnormal expression. Biomed Pharmacother 2022; 153:113519. [DOI: 10.1016/j.biopha.2022.113519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022] Open
|
5
|
Molecular Diagnostic Review of Diffuse Large B-Cell Lymphoma and Its Tumor Microenvironment. Diagnostics (Basel) 2022; 12:diagnostics12051087. [PMID: 35626243 PMCID: PMC9139291 DOI: 10.3390/diagnostics12051087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. It is a clinically and morphologically heterogeneous entity that has continued to resist complete subtyping. Molecular subtyping efforts emerged in earnest with the advent of gene expression profiling (GEP). This molecular subtyping approach has continued to evolve simultaneously with others including immunohistochemistry and more modern genomic approaches. Recently, the veritable explosion of genomic data availability and evolving computational methodologies have provided additional avenues, by which further understanding and subclassification of DBLCLs is possible. The goal of this review is to provide a historical overview of the major classification timepoints in the molecular subtyping of DLBCL, from gene expression profiling to present day understanding.
Collapse
|
6
|
Xu-Monette ZY, Wei L, Fang X, Au Q, Nunns H, Nagy M, Tzankov A, Zhu F, Visco C, Bhagat G, Dybkaer K, Chiu A, Tam W, Zu Y, Hsi ED, Hagemeister FB, Sun X, Han X, Go H, Ponzoni M, Ferreri AJM, Møller MB, Parsons BM, van Krieken JH, Piris MA, Winter JN, Li Y, Xu B, Albitar M, You H, Young KH. Genetic Subtyping and Phenotypic Characterization of the Immune Microenvironment and MYC/BCL2 Double Expression Reveal Heterogeneity in Diffuse Large B-cell Lymphoma. Clin Cancer Res 2022; 28:972-983. [PMID: 34980601 DOI: 10.1158/1078-0432.ccr-21-2949] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/25/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Diffuse large B-cell lymphoma (DLBCL) is molecularly and clinically heterogeneous, and can be subtyped according to genetic alterations, cell-of-origin, or microenvironmental signatures using high-throughput genomic data at the DNA or RNA level. Although high-throughput proteomic profiling has not been available for DLBCL subtyping, MYC/BCL2 protein double expression (DE) is an established prognostic biomarker in DLBCL. The purpose of this study is to reveal the relative prognostic roles of DLBCL genetic, phenotypic, and microenvironmental biomarkers. EXPERIMENTAL DESIGN We performed targeted next-generation sequencing; IHC for MYC, BCL2, and FN1; and fluorescent multiplex IHC for microenvironmental markers in a large cohort of DLBCL. We performed correlative and prognostic analyses within and across DLBCL genetic subtypes and MYC/BCL2 double expressors. RESULTS We found that MYC/BCL2 double-high-expression (DhE) had significant adverse prognostic impact within the EZB genetic subtype and LymphGen-unclassified DLBCL cases but not within MCD and ST2 genetic subtypes. Conversely, KMT2D mutations significantly stratified DhE but not non-DhE DLBCL. T-cell infiltration showed favorable prognostic effects within BN2, MCD, and DhE but unfavorable effects within ST2 and LymphGen-unclassified cases. FN1 and PD-1-high expression had significant adverse prognostic effects within multiple DLBCL genetic/phenotypic subgroups. The prognostic effects of DhE and immune biomarkers within DLBCL genetic subtypes were independent although DhE and high Ki-67 were significantly associated with lower T-cell infiltration in LymphGen-unclassified cases. CONCLUSIONS Together, these results demonstrated independent and additive prognostic effects of phenotypic MYC/BCL2 and microenvironment biomarkers and genetic subtyping in DLBCL prognostication, important for improving DLBCL classification and identifying prognostic determinants and therapeutic targets.
Collapse
Affiliation(s)
- Zijun Y Xu-Monette
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, North Carolina.
| | - Li Wei
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingyan Au
- NeoGenomics Laboratories, Aliso Viejo, California
| | - Harry Nunns
- NeoGenomics Laboratories, Aliso Viejo, California
| | - Máté Nagy
- NeoGenomics Laboratories, Aliso Viejo, California
| | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Feng Zhu
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | | | - Govind Bhagat
- Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, New York
| | | | | | - Wayne Tam
- Weill Medical College of Cornell University, New York, New York
| | - Youli Zu
- The Methodist Hospital, Houston, Texas
| | | | - Fredrick B Hagemeister
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaoping Sun
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xin Han
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heounjeong Go
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Republic of South Korea
| | | | | | | | | | - J Han van Krieken
- Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Miguel A Piris
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Jane N Winter
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Bing Xu
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Maher Albitar
- Genomic Testing Cooperative, LCA, Irvine, California
| | - Hua You
- Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Ken H Young
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, North Carolina. .,Duke Cancer Institute, Durham, North Carolina
| |
Collapse
|
7
|
Jaradeh M, Baig N, Bontekoe E, Mitrovic M, Antic D, Hoppensteadt D, Kantarcioglu B, Fareed J. The Relationship Between Thrombo-Inflammatory Biomarkers and Cellular Indices of Inflammation in Lymphoma Patients. Clin Appl Thromb Hemost 2021; 27:10760296211050358. [PMID: 34713728 PMCID: PMC8558596 DOI: 10.1177/10760296211050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction Thrombo-inflammatory biomarkers play an important role in the pathogenesis of lymphoma. We aimed to characterize the interrelationship of thrombo-inflammatory biomarkers and blood cellular indices in lymphoma patients. Materials and Methods Ninety-eight lymphoma patient samples were collected from Lymphoma Center of Clinic of Hematology, University of Belgrade, Serbia. Normal controls (n = 50) represented plasma from healthy individuals. Plasminogen activator inhibitor (PAI-1), D-Dimer, factor XIII, C-reactive protein (CRP), microparticles (Mp), Von Willebrand factor (vWF), total protein S, urokinase-type plasminogen activator (uPA), tumor necrosis factor (TNFα), β2-glycoprotein I (β2GPI), and fibronectin levels were measured utilizing commercially-available ELISA methods. Thrombin generation profile (TGA) was measured using a fluorometric kinetic assay. Platelets, leukocytes, lymphocytes, and neutrophils were measured in conjunction with the complete blood profile. Results Statistically significant differences were noted in levels of PAI-1, D-Dimer, factor XIII, CRP, microparticles, vWF, uPA, TNFα, β2GPI, fibronectin, and TGA when compared to normal (all P values < .001). Platelet to leukocyte ratio (PLA) correlated to TNFα and fibronectin (R = −0.31 and −0.53, respectively) and the platelet to neutrophil ratio (PNR) correlated to factor XIII and β2GPI (R = 0.40 and 0.40, respectively). Conclusion Plasma samples from lymphoma patients demonstrated a significantly altered thrombo-inflammatory biomarker profile that has notable correlations to blood cellular indices.
Collapse
Affiliation(s)
- Mark Jaradeh
- 25815Loyola University Medical Center, Maywood, IL, USA
| | - Nausheen Baig
- 25815Loyola University Medical Center, Maywood, IL, USA
| | | | | | - Darko Antic
- 54801University of Belgrade, Belgrade, Serbia
| | | | | | - Jawed Fareed
- 25815Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
8
|
Piris MA. SPARC macrophages in lymphoma. Ann Oncol 2021; 32:1314-1315. [PMID: 34492312 DOI: 10.1016/j.annonc.2021.08.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022] Open
Affiliation(s)
- M A Piris
- Pathology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
9
|
Croci GA, Au-Yeung RKH, Reinke S, Staiger AM, Koch K, Oschlies I, Richter J, Poeschel V, Held G, Loeffler M, Trümper L, Rosenwald A, Ott G, Spang R, Altmann B, Ziepert M, Klapper W. SPARC-positive macrophages are the superior prognostic factor in the microenvironment of diffuse large B-cell lymphoma and independent of MYC rearrangement and double-/triple-hit status. Ann Oncol 2021; 32:1400-1409. [PMID: 34438040 DOI: 10.1016/j.annonc.2021.08.1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease with respect to outcome. Features of the tumor microenvironment (TME) are associated with prognosis when assessed by gene expression profiling. However, it is uncertain whether assessment of the microenvironment can add prognostic information to the most relevant and clinically well-established molecular subgroups when analyzed by immunohistochemistry (IHC). PATIENTS AND METHODS We carried out a histopathologic analysis of biomarkers related to TME in a very large cohort (n = 455) of DLBCL treated in prospective trials and correlated with clinicopathologic and molecular data, including chromosomal rearrangements and gene expression profiles for cell-of-origin and TME. RESULTS The content of PD1+, FoxP3+ and CD8+, as well as vessel density, was not associated with outcome. However, we found a low content of CD68+ macrophages to be associated with inferior progression-free survival (PFS) and overall survival (OS; P = 0.023 and 0.040, respectively) at both univariable and multivariable analyses, adjusted for the factors of the International Prognostic Index (IPI), MYC break and BCL2/MYC and BCL6/MYC double-hit status. The subgroup of PDL1+ macrophages was not associated with survival. Instead, secreted protein acidic and cysteine rich (SPARC)-positive macrophages were identified as the subtype of macrophages most associated with survival. SPARC-positive macrophages and stromal cells directly correlated with favorable PFS and OS (both, P[log rank] <0.001, P[trend] < 0.001). The association of SPARC with prognosis was independent of the factors of the IPI, MYC double-/triple-hit status, Bcl2/c-myc double expression, cell-of-origin subtype and a recently published gene expression signature [lymphoma-associated macrophage interaction signature (LAMIS)]. CONCLUSIONS SPARC expression in the TME detected by a single IHC staining with fair-to-good interobserver reproducibility is a powerful prognostic parameter. Thus SPARC expression is a strong candidate for risk assessment in DLBCL in daily practice.
Collapse
Affiliation(s)
- G A Croci
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - R K H Au-Yeung
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Hong Kong
| | - S Reinke
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - A M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany; Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tübingen, Germany
| | - K Koch
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - I Oschlies
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - J Richter
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - V Poeschel
- Department of Internal Medicine 1 (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical School, Homburg/Saar, Germany
| | - G Held
- DSHNHL Studiensekretariat, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - M Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - L Trümper
- Department of Hematology and Oncology, Georg-August Universität, Göttingen, Germany
| | - A Rosenwald
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Center Mainfranken (CCCMF), Würzburg, Germany
| | - G Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany; Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tuebingen, Tübingen, Germany
| | - R Spang
- Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - B Altmann
- DSHNHL Studiensekretariat, Universitätsklinikum des Saarlandes, Homburg, Germany
| | - M Ziepert
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - W Klapper
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
10
|
Gao HX, Wang MB, Li SJ, Niu J, Xue J, Li J, Li XX. Identification of Hub Genes and Key Pathways Associated with Peripheral T-cell Lymphoma. Curr Med Sci 2020; 40:885-899. [PMID: 32980897 DOI: 10.1007/s11596-020-2250-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/01/2020] [Indexed: 12/20/2022]
Abstract
Peripheral T-cell lymphoma (PTCL) is a very aggressive and heterogeneous hematological malignancy and has no effective targeted therapy. The molecular pathogenesis of PTCL remains unknown. In this study, we chose the gene expression profile of GSE6338 from the Gene Expression Omnibus (GEO) database to identify hub genes and key pathways and explore possible molecular pathogenesis of PTCL by bioinformatic analysis. Differentially expressed genes (DEGs) between PTCL and normal T cells were selected using GEO2R tool. Gene ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis were performed using Database for Annotation, Visualization and Integrated Discovery (DAVID). Moreover, the Search Tool for the Retrieval of Interacting Genes (STRING) and Molecular Complex Detection (MCODE) were utilized to construct protein-protein interaction (PPI) network and perform module analysis of these DEGs. A total of 518 DEGs were identified, including 413 down-regulated and 105 up-regulated genes. The down-regulated genes were enriched in osteoclast differentiation, Chagas disease and mitogen-activated protein kinase (MAPK) signaling pathway. The up-regulated genes were mainly associated with extracellular matrix (ECM)-receptor interaction, focal adhesion and pertussis. Four important modules were detected from the PPI network by using MCODE software. Fifteen hub genes with a high degree of connectivity were selected. Our study identified DEGs, hub genes and pathways associated with PTCL by bioinformatic analysis. Results provide a basis for further study on the pathogenesis of PTCL.
Collapse
Affiliation(s)
- Hai-Xia Gao
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.,Xinjiang Medical University, Urumqi, 830011, China.,Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Meng-Bo Wang
- Department of Ultrasound, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Si-Jing Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.,Xinjiang Medical University, Urumqi, 830011, China
| | - Jing Niu
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.,Xinjiang Medical University, Urumqi, 830011, China
| | - Jing Xue
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.,Xinjiang Medical University, Urumqi, 830011, China
| | - Jun Li
- Department of Ultrasound, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, 832002, China
| | - Xin-Xia Li
- Department of Pathology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
11
|
Opinto G, Vegliante MC, Negri A, Skrypets T, Loseto G, Pileri SA, Guarini A, Ciavarella S. The Tumor Microenvironment of DLBCL in the Computational Era. Front Oncol 2020; 10:351. [PMID: 32296632 PMCID: PMC7136462 DOI: 10.3389/fonc.2020.00351] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Among classical exemplifications of tumor microenvironment (TME) in lymphoma pathogenesis, the “effacement model” resembled by diffuse large B cell lymphoma (DLBCL) implies strong cell autonomous survival and paucity of non-malignant elements. Nonetheless, the magnitude of TME exploration is increasing as novel technologies allow the high-resolution discrimination of cellular and extra-cellular determinants at the functional, more than morphological, level. Results from genomic-scale studies and recent clinical trials revitalized the interest in this field, prompting the use of new tools to dissect DLBCL composition and reveal novel prognostic association. Here we revisited major controversies related to TME in DLBCL, focusing on the use of bioinformatics to mine transcriptomic data and provide new insights to be translated into the clinical setting.
Collapse
Affiliation(s)
- Giuseppina Opinto
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| | - Maria Carmela Vegliante
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| | - Antonio Negri
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| | - Tetiana Skrypets
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy.,CHIMOMO Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Loseto
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| | - Stefano Aldo Pileri
- Division of Haematopathology, European Institute of Oncology-IRCCS, Milan, Italy
| | - Attilio Guarini
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| | - Sabino Ciavarella
- Unit of Hematology and Cell Therapy, Laboratory of Hematological Diagnostics and Cell Characterization, Istituto Tumori "Giovanni Paolo II"-IRCCS, Bari, Italy
| |
Collapse
|
12
|
Izzi V, Koivunen J, Rappu P, Heino J, Pihlajaniemi T. Integration of Matrisome Omics: Towards System Biology of the Tumor Matrisome. EXTRACELLULAR MATRIX OMICS 2020. [DOI: 10.1007/978-3-030-58330-9_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Tumor Microenvironment in Diffuse Large B-Cell Lymphoma: Role and Prognosis. Anal Cell Pathol (Amst) 2019; 2019:8586354. [PMID: 31934533 PMCID: PMC6942707 DOI: 10.1155/2019/8586354] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/06/2019] [Indexed: 12/23/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) represents 30-40% of all non-Hodgkin lymphomas (NHL) and is a disease with an aggressive behavior. Because about one-third of DLBCL patients will be refractory or resistant to standard therapy, several studies focused on identification of new individual prognostic and risk stratification biomarkers and new potential therapeutic targets. In contrast to other types of cancers like carcinomas, where tumor microenvironment was widely investigated, its role in DLBCL pathogenesis and patient survival is still poorly understood, although few studies had promising results. The composition of TME and its interaction with neoplastic cells may explain the role of several genes (beta2-microglobulin gene, CD58 gene), receptor-like programmed cell death-1 (PD-1) and its ligand (PD-L1), or other cell components (Treg) in tumor evasion of immune surveillance, resulting in tumor progression. Also, it was found that “gene expression profile” of the microenvironmental cells, the phenotype of tumor-associated macrophages (TAM), the expression of matricellular proteins like SPARC and fibronectin, the overexpression of several types of matrix metalloproteinases (MMPs) like MMP-2 and MMP-9, or the tissue inhibitors of matrix metalloproteinases (TIMPs) may lead to a favorable or adverse outcome. With this review, we try to highlight the influence of microenvironment components over lymphoid clone progression and their prognostic impact in DLBCL patients.
Collapse
|
14
|
He M, Chen K, Li S, Zhang S, Zheng J, Hu X, Gao L, Chen J, Song X, Zhang W, Wang J, Yang J. Clinical Significance of "Double-hit" and "Double-protein" expression in Primary Gastric B-cell Lymphomas. J Cancer 2016; 7:1215-25. [PMID: 27390596 PMCID: PMC4934029 DOI: 10.7150/jca.15395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND AIMS: Primary gastric B-cell lymphoma is the second most common malignancy of the stomach. There are many controversial issues about its diagnosis, treatment and clinical management. “Double-hit” and “double-protein” involving gene rearrangement and protein expression of c-Myc and bcl2/bcl6 are the most used terms to describe DLBCL poor prognostic factors in recent years. However, very little is known about the role of these prognostic factors in primary gastric B-cell lymphomas. This study aims to obtain a molecular pathology prognostic model of gastric B-cell lymphoma for clinical stratified management by evaluating how the “double-hit” and “double-protein” in tumor cells as well as microenvironmental reaction of tumor stromal tissue affect clinical outcome in primary gastric B-cell lymphomas. METHODS: Data and tissues of 188 cases diagnosed with gastric B-cell lymphomas were used in this study. Tumor tissue microarray (TMA) of formalin fixed and paraffin embedded (FFPE) tissues was constructed for fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) analysis with a serial of biomarkers containing MYC, BCL2, BCL6, CD31, SPARC, CD10, MUM1 and Ki-67. Modeled period analysis was used to estimate 3-year and 5-year overall survival (OS) and disease-free survival (DFS) distributions. RESULTS: There was no definite “double-hit” case though the gene rearrangement of c-Myc (5.9%), bcl2 (0.1%) and bcl6 (7.4%) was found in gastric B-cell lymphomas. The gene amplification or copy gains of c-Myc (10.1%), bcl-2 (17.0%) and bcl-6 (0.9%) were present in these lymphomas. There were 12 cases of the lymphomas with the “double-protein” expression of MYC and BCL2/BCL6. All patients with “double-protein” gastric B-cell lymphomas had poor outcome compared with those without. More importantly, “MYC-BCL2-BCL6” negative group of gastric B-cell lymphoma patients had favorable clinical outcome regardless clinical stage, pathological types and therapeutic modalities. And the similar better prognosis was found in the cases with low microvessel density (MVD) in tumor tissue and high expression of SPARC (SPARC≥5%) in stromal cells. CONCLUSIONS: “Double-hit” lymphoma was rare among primary gastric lymphoma, while patients with multiple gene amplification and/or copy gains of c-Myc, bcl2 and bcl6, and “double-protein” gastric B-cell lymphomas had a poor clinical outcome. In addition, patients with MYC, BCL2 and BCL6 expression negative or low MVD in tumor tissue with high expression of SPARC in stromal cells could have better prognosis than other gastric B-cell lymphomas regardless of their clinical stage and pathological types. These results would be of very importance for clinical stratified management and precision medicine of gastric B-cell lymphomas.
Collapse
Affiliation(s)
- Miaoxia He
- 1. Department of Pathology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, CHINA; 2. Molecular Pathology, Cellular & Molecular Pathology Branch, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Keting Chen
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| | - Suhong Li
- 4. Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, CHINA
| | - Shimin Zhang
- 5. Division of Molecular Pathology, Joint Pathology Center, Washington, DC 20817, USA
| | - Jianming Zheng
- 1. Department of Pathology, Changhai Hospital, The Second Military Medical University, Shanghai 200433, CHINA
| | - Xiaoxia Hu
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| | - Lei Gao
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| | - Jie Chen
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| | - Xianmin Song
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| | - Weiping Zhang
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| | - Jianmin Wang
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| | - Jianmin Yang
- 3. Department of Hematology, Changhai Hospital, The Second Military Medical University, University, Shanghai 200433, CHINA
| |
Collapse
|
15
|
Abstract
Abstract
The diffuse aggressive large B-cell lymphomas are a heterogeneous group of B-cell malignancies. Although many are readily recognized due to characteristic clinical and pathologic features, several problematic areas still exist in diagnosis of these lymphomas due to a variety of reasons that include imprecise or difficult-to-apply diagnostic criteria, gaps in our understanding of lymphoma biology, and limitations in technologies available in the clinical laboratory compared to the research laboratory. This may result in some degree of confusion in the pathology report, particularly if the issues are not clearly explained, leading to frustration or misinterpretation on the part of the reader. In this review, I will discuss the pathologic features of a subset of the WHO 2008 classification diffuse aggressive large B-cell lymphomas, focusing on areas in which difficulties exist in diagnosis and/or biomarker marker assessment. A deeper understanding of the issues and areas of uncertainty due to limitations in our knowledge about the biology of these diseases should lead to better communication between pathologists and clinicians.
Collapse
|