1
|
Wu YC, Liu T, Liu CN, Kuo CY, Ting YH, Wu CA, Shen XL, Wang HC, Chen CJ, Renta PP, Chen YL, Hung MC, Chen YM. Transcriptional, post-transcriptional, and post-translational regulation of polyunsaturated fatty acid synthase genes in Aurantiochytrium limacinum strain BL10: Responses to nitrogen starvation. Int J Biol Macromol 2024; 274:133177. [PMID: 38885855 DOI: 10.1016/j.ijbiomac.2024.133177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Under nitrogen deficient conditions, the Aurantiochytrium limacinum strain BL10 greatly increases the production of docosahexaenoic acid (DHA) and n-6 docosapentaenoic acid. Researchers have yet to elucidate the mechanism by which BL10 promotes the activity of polyunsaturated fatty acid synthase (Pfa), which plays a key role in the synthesis of polyunsaturated fatty acid (PUFA). Analysis in the current study revealed that in nitrogen-depleted environments, BL10 boosts the transcription and synthesis of proteins by facilitating the expression of pfa genes via transcriptional regulation. It was also determined that BL10 adjusts the lengths of the 5'- and 3'-untranslated regions (suggesting post-transcriptional regulation) and modifies the ratio of two Pfa1 isoforms to favor PUFA production via post-translational regulation (ubiquitination). These findings clarify the exceptional DHA production of BL10 and provide additional insights into the regulatory mechanisms of PUFA biosynthesis in Aurantiochytrium.
Collapse
Affiliation(s)
- Yueh-Ching Wu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Ning Liu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yu Kuo
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Hua Ting
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Che-An Wu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Xiao-Ling Shen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; International Center for Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Jung Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan; Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Person Pesona Renta
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Ling Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Chun Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Min Chen
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
2
|
Ip CH, Higuchi H, Wu CY, Okuda T, Katsuya S, Ogawa J, Ando A. Production of docosahexaenoic acid by a novel isolated Aurantiochytrium sp. 6-2 using fermented defatted soybean as a nitrogen source for sustainable fish feed development. Biosci Biotechnol Biochem 2024; 88:696-704. [PMID: 38520162 DOI: 10.1093/bbb/zbae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
We focused on the production of docosahexaenoic acid (DHA)-containing microbial lipids by Aurantiochytrium sp. using of defatted soybean (DS) as a nitrogen source. Defatted soybean is a plant biomass that could provide a sustainable supply at a low cost. Results showed that Aurantiochytrium sp. could not directly assimilate the DS as a nitrogen source but could grow well in a medium containing DS fermented with rice malt. When cultivated in a fermented DS (FDS) medium, Aurantiochytrium sp. showed vigorous growth with the addition of sufficient sulfate and chloride ions as inorganic nutrients without seawater salt. A novel isolated Aurantiochytrium sp. 6-2 showed 15.8 ± 3.4 g/L DHA productivity (in 54.8 ± 12.1 g/L total fatty acid production) in 1 L of the FDS medium. Therefore, DHA produced by Aurantiochytrium sp. using FDS enables a stable and sustainable DHA supply and could be an alternative source of natural DHA derived from fish oil.
Collapse
Affiliation(s)
- Chi-Hei Ip
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Kyoto, Japan
| | - Hibiki Higuchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Kyoto, Japan
| | - Chang-Yu Wu
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Kyoto, Japan
| | - Tomoyo Okuda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Kyoto, Japan
| | - Shohei Katsuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Kyoto, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Kyoto, Japan
- Research Unit for Physiological Chemistry, Kyoto University , Kyoto, Japan
| | - Akinori Ando
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Kyoto, Japan
- Research Unit for Physiological Chemistry, Kyoto University , Kyoto, Japan
| |
Collapse
|
3
|
Fracchia-Durán AG, Ramos-Zambrano E, Márquez-Rocha FJ, Martínez-Ayala AL. Bioprocess conditions and regulation factors to optimize squalene production in thraustochytrids. World J Microbiol Biotechnol 2023; 39:251. [PMID: 37442840 DOI: 10.1007/s11274-023-03689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
Squalene is a widely distributed natural triterpene, as it is a key precursor in the biosynthesis of all sterols. It is a compound of high commercial value worldwide because it has nutritional, medicinal, pharmaceutical, and cosmetic applications, due to its different biological properties. The main source of extraction has been shark liver oil, which is currently unviable on a larger scale due to the impacts of overexploitation. Secondary sources are mainly vegetable oils, although a limited one, as they allow low productive yields. Due to the diversity of applications that squalene presents and its growing demand, there is an increasing interest in identifying sustainable sources of extraction. Wild species of thraustochytrids, which are heterotrophic protists, have been identified to have the highest squalene content compared to bacteria, yeasts, microalgae, and vegetable sources. Several studies have been carried out to identify the bioprocess conditions and regulation factors, such as the use of eustressors that promote an increase in the production of this triterpene; however, studies focused on optimizing their productive yields are still in its infancy. This review includes the current trends that also comprises the advances in genetic regulations in these microorganisms, with a view to identify the culture conditions that have been favorable in increasing the production of squalene, and the influences that both bioprocess conditions and applied regulation factors partake at a metabolic level.
Collapse
Affiliation(s)
- Ana Guadalupe Fracchia-Durán
- Department of Biotechnology, Instituto Politécnico Nacional, CEPROBI-IPN, Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi 8, Col. San Isidro, Yautepec, 62731, Morelos, Mexico
| | - Emilia Ramos-Zambrano
- Department of Biotechnology, Instituto Politécnico Nacional, CEPROBI-IPN, Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi 8, Col. San Isidro, Yautepec, 62731, Morelos, Mexico
| | - Facundo Joaquín Márquez-Rocha
- Instituto Politécnico Nacional, Centro Mexicano para la Producción más Limpia, Unidad Tabasco, 86691, Cunduacán, Tabasco, Mexico
| | - Alma Leticia Martínez-Ayala
- Department of Biotechnology, Instituto Politécnico Nacional, CEPROBI-IPN, Carretera Yautepec-Jojutla, Km 6, Calle Ceprobi 8, Col. San Isidro, Yautepec, 62731, Morelos, Mexico.
| |
Collapse
|
4
|
Yen SW, Nagarajan D, Chen WH, Lee DJ, Chang JS. Fermentative production of astaxanthin from sorghum distillery residue by an indigenous Aurantiochytrium sp. CJ6 strain using a continuous-feeding fed-batch process. BIORESOURCE TECHNOLOGY 2023; 376:128817. [PMID: 36868426 DOI: 10.1016/j.biortech.2023.128817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
In this study, Aurantiochytrium sp. CJ6 was cultivated heterotrophically on a waste resource, sorghum distillery residue (SDR) hydrolysate without adding any nitrogen sources. Mild sulfuric acid treatment released sugars that supported the growth of CJ6. Optimal operating parameters (salinity, 2.5%; pH, 7.5; with light exposure) determined using batch cultivation attained biomass concentration and astaxanthin content of 3.72 g/L and 69.32 µg/g dry cell weight (DCW), respectively. Using continuous-feeding fed-batch (CF-FB) fermentation, the biomass concentration of CJ6 increased to 6.3 g/L with biomass productivity and sugar utilization rate of 0.286 mg/L/d and 1.26 g/L/d, respectively. Meanwhile, CJ6 obtained maximum astaxanthin content (93.9 µg/g DCW) and astaxanthin concentration (0.565 mg/L) after 20-day cultivation. Thus, the CF-FB fermentation strategy seems to have a high potential for the cultivation of thraustochytrids to produce the high-value product (astaxanthin) using SDR as the feedstock to achieve circular economy.
Collapse
Affiliation(s)
- Shih-Wei Yen
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Hsin Chen
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan.
| |
Collapse
|
5
|
Rau EM, Aasen IM, Bartosova Z, Bruheim P, Ertesvåg H. Utilizing lipidomics and fatty acid synthase inhibitors to explore lipid accumulation in two thraustochytrid species. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Effect of cell disruption on apparent digestibility of macronutrients from Aurantiochytrium acetophilum in Salmo salar pre-smolts. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Effects of fatty acid synthase-inhibitors on polyunsaturated fatty acid production in marine diatom Fistulifera solaris JPCC DA0580. J Biosci Bioeng 2022; 133:340-346. [DOI: 10.1016/j.jbiosc.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 11/20/2022]
|
8
|
Chen X, Sen B, Zhang S, Bai M, He Y, Wang G. Chemical and Physical Culture Conditions Significantly Influence the Cell Mass and Docosahexaenoic Acid Content of Aurantiochytrium limacinum Strain PKU#SW8. Mar Drugs 2021; 19:671. [PMID: 34940670 PMCID: PMC8708202 DOI: 10.3390/md19120671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022] Open
Abstract
Thraustochytrids are well-known unicellular heterotrophic marine protists because of their promising ability to accumulate docosahexaenoic acid (DHA). However, the implications of their unique genomic and metabolic features on DHA production remain poorly understood. Here, the effects of chemical and physical culture conditions on the cell mass and DHA production were investigated for a unique thraustochytrid strain, PKU#SW8, isolated from the seawater of Pearl River Estuary. All the tested fermentation parameters showed a significant influence on the cell mass and concentration and yield of DHA. The addition of monosaccharides (fructose, mannose, glucose, or galactose) or glycerol to the culture medium yielded much higher cell mass and DHA concentrations than that of disaccharides and starch. Similarly, organic nitrogen sources (peptone, yeast extract, tryptone, and sodium glutamate) proved to be beneficial in achieving a higher cell mass and DHA concentration. PKU#SW8 was found to grow and accumulate a considerable amount of DHA over wide ranges of KH2PO4 (0.125-1.0 g/L), salinity (0-140% seawater), pH (3-9), temperature (16-36 °C), and agitation (140-230 rpm). With the optimal culture conditions (glycerol, 20 g/L; peptone, 2.5 g/L; 80% seawater; pH 4.0; 28 °C; and 200 rpm) determined based on the shake-flask experiments, the cell mass and concentration and yield of DHA were improved up to 7.5 ± 0.05 g/L, 2.14 ± 0.03 g/L, and 282.9 ± 3.0 mg/g, respectively, on a 5-L scale fermentation. This study provides valuable information about the fermentation conditions of the PKU#SW8 strain and its unique physiological features, which could be beneficial for strain development and large-scale DHA production.
Collapse
Affiliation(s)
- Xiaohong Chen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
| | - Biswarup Sen
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
| | - Sai Zhang
- Polar Research Institute of China, Shanghai 200136, China;
| | - Mohan Bai
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Yaodong He
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
| | - Guangyi Wang
- Center of Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; (X.C.); (B.S.); (Y.H.)
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Production of Omega-3 Oil by Aurantiochytrium mangrovei Using Spent Osmotic Solution from Candied Fruit Industry as Sole Organic Carbon Source. Processes (Basel) 2021. [DOI: 10.3390/pr9101834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Osmotic dehydration is an important phase in the production of dried products, including most fruits and vegetables, in the food industry. The drying process for candied fruit produces a liquid waste called “spent osmotic solution”, which is characterized by a high content of organic compounds, mostly dissolved sugars. The sugar content of this food by-product could be valorized through the growth of biomass with a high added value. In this study, the spent osmotic solution from the candied fruit industry was used as an organic carbon source for the growth and production of docosahexaenoic acid (DHA) in the cultivation of Aurantiochytrium mangrovei RCC893. The carbon content of the standard media was completely replaced by the sugars present in this food by-product. After that, the growth condition of this strain was optimized through response surface methodologies using a central composite design (CCD), and the optimal combination of the spent osmotic solution and nitrogen was established. Moreover, a scale-up trial was performed using the optimal conditions obtained after CCD to evaluate the scalability of the process.
Collapse
|
10
|
Laddha H, Pawar PR, Prakash G. Bioconversion of waste acid oil to docosahexaenoic acid by integration of "ex novo'' and "de novo'' fermentation in Aurantiochytrium limacinum. BIORESOURCE TECHNOLOGY 2021; 332:125062. [PMID: 33839510 DOI: 10.1016/j.biortech.2021.125062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Thraustochytrids have predominantly been grown on hydrophilic substrates i.e. by "de novo" fermentation. The fatty acid composition of thraustochytrids oil in "de novo" mode is enriched in saturated palmitic acid and polyunsaturated docosahexaenoic acid. The "ex novo" fermentation of a novel Aurantiochytrium limacinum ICTSG-17 with waste acid oil altered the fatty acid composition of produced oil. This led to increased total unsaturated fatty acids (TUFA) and concomitant decrease in the total saturated fatty acids (TSFA) resulting in higher TUFA/TSFA ratio. However, cell growth and DHA content in "ex novo" were lower than that of "de novo" fermentation. Integration of "de novo" and "ex novo" fermentation modes were devised to attain high biomass and lipids enriched in DHA. Sequential "de novo"-"ex novo" fermentation resulted in ~20 g/L biomass and ~40% DHA content and higher TUFA/TSFA ratio as compared to that of "de novo" mode.
Collapse
Affiliation(s)
- Hrishikesh Laddha
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Pratik R Pawar
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - Gunjan Prakash
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
11
|
Moon M, Park WK, Suh WI, Chang YK, Lee B. Biological Carbon Recovery from Sugar Refinery Washing Water into Microalgal DHA: Medium Optimization and Stress Induction. Sci Rep 2019; 9:19959. [PMID: 31882916 PMCID: PMC6934592 DOI: 10.1038/s41598-019-56406-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 12/11/2019] [Indexed: 11/09/2022] Open
Abstract
Sugar refinery washing water (SRWW) contains abundant levels of carbon sources and lower levels of contaminants than other types of wastewater, which makes it ideal for heterotrophic cultivation of microalgae. Here, carbon sources in SRWW were utilized for conversion into the form of value-added docosahexaenoic acid (DHA) using Aurantiochytrium sp. KRS101. Since SRWW is not a defined medium, serial optimizations were performed to maximize the biomass, lipid, and DHA yields by adjusting the nutrient (carbon, nitrogen, and phosphorus) concentrations as well as the application of salt stress. Optimum growth performance was achieved with 30% dilution of SRWW containing a total organic carbon of 95,488 mg L-1. Increasing the nutrient level in the medium by supplementation of 9 g L-1 KH2PO4 and 20 g L-1 yeast extract further improved the biomass yield by an additional 14%, albeit at the expense of a decrease in the lipid content. Maximum biomass, lipid, and DHA yields (22.9, 6.33, and 2.03 g L-1, respectively) were achieved when 35 g L-1 sea salt was applied on a stationary phase for osmotic stress. These results demonstrate the potential of carbon-rich sugar refinery washing water for DHA production using Aurantiochytrium sp. KRS101 and proper cultivation strategy.
Collapse
Affiliation(s)
- Myounghoon Moon
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), 25, Samso-ro 270beon-gil, Buk-gu, Gwangju, 61003, Republic of Korea
| | - Won-Kun Park
- Department of Chemistry & Energy Engineering, Sangmyung University, 20 Hongjimun 2-gil, Jongno-gu, Seoul, 03016, Republic of Korea
| | - William I Suh
- Advanced Biomass R&D Center, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yong Keun Chang
- Advanced Biomass R&D Center, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Bongsoo Lee
- Department of Microbial and Nano Materials, College of Science and Technology, Mokwon University, 88 Doanbuk-ro, Seo-Gu, Daejeon, 35349, Republic of Korea.
| |
Collapse
|
12
|
Lipid and DHA-production in Aurantiochytrium sp. - Responses to nitrogen starvation and oxygen limitation revealed by analyses of production kinetics and global transcriptomes. Sci Rep 2019; 9:19470. [PMID: 31857635 PMCID: PMC6923395 DOI: 10.1038/s41598-019-55902-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/04/2019] [Indexed: 01/30/2023] Open
Abstract
Thraustochytrids of the genera Schizochytrium and Aurantiochytrium accumulate oils rich in the essential, marine n3 fatty acid docosahexaenoic acid (DHA). DHA production in Aurantiochytrium sp T66 was studied with the aim to provide more knowledge about factors that affect the DHA-productivities and the contributions of the two enzyme systems used for fatty acid synthesis in thraustochytrids, fatty acid synthetase (FAS) and PUFA-synthase. Fermentations with nitrogen starvation, which is well-known to initiate lipid accumulation in oleaginous organisms, were compared to fermentations with nitrogen in excess, obtained by oxygen limitation. The specific productivities of fatty acids originating from FAS were considerably higher under nitrogen starvation than with nitrogen in excess, while the specific productivities of DHA were the same at both conditions. Global transcriptome analysis showed significant up-regulation of FAS under N-deficient conditions, while the PUFA-synthase genes were only marginally upregulated. Neither of them was upregulated under O2-limitation where nitrogen was in excess, suggesting that N-starvation mainly affects the FAS and may be less important for the PUFA-synthase. The transcriptome analysis also revealed responses likely to be related to the generation of reducing power (NADPH) for fatty acid synthesis.
Collapse
|
13
|
Morabito C, Bournaud C, Maës C, Schuler M, Aiese Cigliano R, Dellero Y, Maréchal E, Amato A, Rébeillé F. The lipid metabolism in thraustochytrids. Prog Lipid Res 2019; 76:101007. [PMID: 31499096 DOI: 10.1016/j.plipres.2019.101007] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Thraustochytrids are unicellular heterotrophic marine protists of the Stramenopile group, often considered as non-photosynthetic microalgae. They have been isolated from a wide range of habitats including deep sea, but are mostly present in waters rich in sediments and organic materials. They are abundant in mangrove forests where they are major colonizers, feeding on decaying leaves and initiating the mangrove food web. Discovered 80 years ago, they have recently attracted considerable attention due to their biotechnological potential. This interest arises from their fast growth, their specific lipid metabolism and the improvement of the genetic tools and transformation techniques. These organisms are particularly rich in ω3-docosahexaenoic acid (DHA), an 'essential' fatty acid poorly encountered in land plants and animals but required for human health. To produce their DHA, thraustochytrids use a sophisticated system different from the classical fatty acid synthase system. They are also a potential source of squalene and carotenoids. Here we review our current knowledge about the life cycle, ecophysiology, and metabolism of these organisms, with a particular focus on lipid dynamics. We describe the different pathways involved in lipid and fatty acid syntheses, emphasizing their specificity, and we report on the recent efforts aimed to engineer their lipid metabolism.
Collapse
Affiliation(s)
- Christian Morabito
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Caroline Bournaud
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Cécile Maës
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Martin Schuler
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Riccardo Aiese Cigliano
- Sequentia Biotech Campus UAB, Edifici Eureka Av. de Can Domènech s/n, 08193 Bellaterra, Cerdanyola del Vallès, Spain.
| | - Younès Dellero
- Institute of Genetic, Environment and Plant Protection, UMR 1349 IGEPP INRA/Agrocampus Ouest Rennes/Université Rennes 1, Domaine de la Motte, BP35327, 35653 Le Rheu cedex, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
14
|
Zhang A, Xie Y, He Y, Wang W, Sen B, Wang G. Bio-based squalene production by Aurantiochytrium sp. through optimization of culture conditions, and elucidation of the putative biosynthetic pathway genes. BIORESOURCE TECHNOLOGY 2019; 287:121415. [PMID: 31078814 DOI: 10.1016/j.biortech.2019.121415] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Newly-isolated thraustochytrid strains from coastal waters of China were characterized as bioresource of squalene and the culture condition for the top producer was systematically optimized. Phylogenetic analysis revealed that eight squalene-producing isolates were closely related to genus Aurantiochytrium and one to genus Labyrinthula. The top producer, Aurantiochytrium sp. TWZ-97, produced squalene up to 188.6 mg/L at 28 °C in a 5-L bioreactor containing optimal medium (glucose: 40 g/L, monosodium glutamate: 3 g/L, yeast extract: 25 g/L, and NaCl: 6 g/L), which was 6-fold higher than that under unoptimized condition. Transcriptome analysis revealed for the first time the presence of seven key genes of mevalonate pathway for squalene biosynthesis in strain TWZ-97. Medium optimization yielded a 2.23-fold higher expression of the squalene synthase gene under optimal condition compared to unoptimized. This study provides a potential thraustochytrid strain TWZ-97 as bioresource of squalene and uncovers novel information about its squalene biosynthesis pathway for future strain improvement.
Collapse
Affiliation(s)
- Aiqing Zhang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yunxuan Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Weijun Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
15
|
Wang Q, Ye H, Xie Y, He Y, Sen B, Wang G. Culturable Diversity and Lipid Production Profile of Labyrinthulomycete Protists Isolated from Coastal Mangrove Habitats of China. Mar Drugs 2019; 17:md17050268. [PMID: 31064054 PMCID: PMC6562557 DOI: 10.3390/md17050268] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 04/27/2019] [Accepted: 05/02/2019] [Indexed: 11/18/2022] Open
Abstract
Labyrinthulomycete protists have gained significant attention in the recent past for their biotechnological importance. Yet, their lipid profiles are poorly described because only a few large-scale isolation attempts have been made so far. Here, we isolated more than 200 strains from mangrove habitats of China and characterized the molecular phylogeny and lipid accumulation potential of 71 strains. These strains were the closest relatives of six genera namely Aurantiochytrium, Botryochytrium, Parietichytrium, Schizochytrium, Thraustochytrium, and Labyrinthula. Docosahexaenoic acid (DHA) production of the top 15 strains ranged from 0.23 g/L to 1.14 g/L. Two labyrinthulid strains, GXBH-107 and GXBH-215, exhibited unprecedented high DHA production potential with content >10% of biomass. Among all strains, ZJWZ-7, identified as an Aurantiochytrium strain, exhibited the highest DHA production. Further optimization of culture conditions for strain ZJWZ-7 showed improved lipid production (1.66 g/L DHA and 1.68 g/L saturated fatty acids (SFAs)) with glycerol-malic-acid, peptone-yeast-extract, initial pH 7, 28 °C, and rotation rate 150 rpm. Besides, nitrogen source, initial pH, temperature, and rotation rate had significant effects on the cell biomass, DHA, and SFAs production. This study provides the identification and characterization of nearly six dozen thraustochytrids and labyrinthulids with high potential for lipid accumulation.
Collapse
Affiliation(s)
- Qiuzhen Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
- Ocean College of Hebei Agricultural University, Qinhuangdao 066000, China.
| | - Huike Ye
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yunxuan Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
16
|
Bai M, Sen B, Wang Q, Xie Y, He Y, Wang G. Molecular Detection and Spatiotemporal Characterization of Labyrinthulomycete Protist Diversity in the Coastal Waters Along the Pearl River Delta. MICROBIAL ECOLOGY 2019; 77:394-405. [PMID: 30083828 DOI: 10.1007/s00248-018-1235-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
The heterotrophic labyrinthulomycete protists have long been known to play an important role in the nutrient cycling of coastal seawater. Yet, their spatiotemporal abundance and diversity in polluted coastal waters remain poorly discussed, due in part to the paucity of a rapid detection method. To this end, we developed a qPCR detection method based on a newly designed primer pair targeting their 18S rRNA gene. Using this method, we studied the population dynamics of labyrinthulomycete protists in nutrient-rich (Shenzhen Bay) and low-nutrient (Daya) coastal habitats along the Pearl River Delta. We found a significantly (P < 0.05) higher abundance of Labyrinthulomycetes in the Shenzhen bay (average 3455 gene copies mL-1) than that in Daya Bay (average 378 gene copies mL-1). Their abundance gradient positively correlated (P < 0.05) with the levels of inorganic nitrogen and phosphates. Further characterization of the molecular diversity of these protists in Shenzhen Bay using different primer sets revealed the presence of several genera besides a large number of unclassified OTUs. Regardless of the primer biases, our results show significant (P < 0.05) spatiotemporal changes in the molecular abundance and diversity of these heterotrophic protists. Overall, this study provides a rapid molecular detection tool for Labyrinthulomycetes and expands our current understanding of their dynamics controlled by physicochemical gradients in coastal waters.
Collapse
Affiliation(s)
- Mohan Bai
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Qiuzhen Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yunxuan Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
17
|
Dellero Y, Cagnac O, Rose S, Seddiki K, Cussac M, Morabito C, Lupette J, Aiese Cigliano R, Sanseverino W, Kuntz M, Jouhet J, Maréchal E, Rébeillé F, Amato A. Proposal of a new thraustochytrid genus Hondaea gen. nov. and comparison of its lipid dynamics with the closely related pseudo-cryptic genus Aurantiochytrium. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Liang Y, Liu Y, Tang J, Ma J, Cheng JJ, Daroch M. Transcriptomic Profiling and Gene Disruption Revealed that Two Genes Related to PUFAs/DHA Biosynthesis May be Essential for Cell Growth of Aurantiochytrium sp. Mar Drugs 2018; 16:md16090310. [PMID: 30200435 PMCID: PMC6164183 DOI: 10.3390/md16090310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 08/29/2018] [Indexed: 12/25/2022] Open
Abstract
Aurantiochytrium sp. PKU#SW7 is a thraustochytrid strain that was found to exhibit high potential for docosahexaenoic acid (DHA, C22:6n-3) production. In this work, the transcriptome of Aurantiochytrium sp. PKU#SW7 was analyzed for the study of genes involved in basic metabolic functions and especially in the mechanisms of DHA biosynthesis. Sequence annotation and functional analysis revealed that the strain contains components of fatty acid synthesis (FAS) and polyketide synthase (PKS) pathways. Fatty acid desaturases and elongases were identified as components of FAS pathway, whilst key components of PKS pathway were also found in the cDNA library. The relative contribution of the two pathways to the synthesis of DHA was unknown, as both pathways appeared to be lacking full complement of genes for standalone synthesis of DHA. Further analysis of two putative genes encoding the very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase and dehydrase/isomerase involved in FAS and PKS pathways, respectively, revealed that under various salinity conditions, their relative expression levels changed corresponding to the variation of DHA content in Aurantiochytrium sp. Independent knock outs of these genes in Aurantiochytrium sp. resulted in poor cell growth, probably due to little or no intracellular DHA accumulation. Hence, it can be speculated that both genes are engaged in DHA biosynthesis and DHA in Aurantiochytrium sp. could be produced by jointed actions of both FAS and PKS systems.
Collapse
Affiliation(s)
- Yuanmei Liang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Ying Liu
- Guangdong Engineering Research Centre for Marine Algal Biotechnology, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Jie Tang
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu 610106, China.
| | - Jiong Ma
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jay J Cheng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
19
|
Wang K, Sun T, Cui J, Liu L, Bi Y, Pei G, Chen L, Zhang W. Screening of chemical modulators for lipid accumulation in Schizochytrium sp. S31. BIORESOURCE TECHNOLOGY 2018; 260:124-129. [PMID: 29625283 DOI: 10.1016/j.biortech.2018.03.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 05/26/2023]
Abstract
Schizochytrium sp. is a promising candidate for docosahexaenoic acid (DHA) production due to its high content of lipid and DHA proportions. To further enhance the lipid accumulation, seven chemical modulators were screened to evaluate their roles on lipid accumulation. Notably, among the seven tested chemical modulators, the addition of naphthoxyacetic acid (BNOA) or jasmonic acid (JA) was able to increase the lipid accumulation of Schizochytrium sp. S31. In addition, the effects of BNOA and JA were demonstrated dose-dependent and time-dependent, achieving a highest increase in lipid content by 11.16% and 12.71% when 2.0 mg/L of BNOA or 20 mg/L of JA was added into culture at 48 h after inoculation, respectively. In addition, the combination of 2 mg/L BNOA and 20 mg/L JA further increased lipid accumulation up to 16.79%. These results provided valuable strategy on promoting the lipid accumulation and DHA production by chemical modulators in Schizochytrium sp. S31.
Collapse
Affiliation(s)
- Kang Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Liangsen Liu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Yanqi Bi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Guangsheng Pei
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin, PR China
| |
Collapse
|
20
|
Jang SH, Jeong HJ, Kwon JE. High contents of eicosapentaenoic acid and docosahexaenoic acid in the mixotrophic dinoflagellate Paragymnodinium shiwhaense and identification of putative omega-3 biosynthetic genes. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Aasen IM, Ertesvåg H, Heggeset TMB, Liu B, Brautaset T, Vadstein O, Ellingsen TE. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol 2016; 100:4309-21. [DOI: 10.1007/s00253-016-7498-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 01/09/2023]
|
22
|
Taha AIBHM, Kimoto T, Kanada T, Okuyama H. Growth optimization of thraustochytrid strain 12B for the commercial production of docosahexaenoic acid. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0048-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
23
|
Tapia V E, Anschau A, Coradini ALV, T Franco T, Deckmann AC. Optimization of lipid production by the oleaginous yeast Lipomyces starkeyi by random mutagenesis coupled to cerulenin screening. AMB Express 2012; 2:64. [PMID: 23217098 PMCID: PMC3607992 DOI: 10.1186/2191-0855-2-64] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/20/2012] [Indexed: 11/10/2022] Open
Abstract
In this work we performed assays for the genetic improvement of the oleaginous yeast Lipomyces starkeyi DSM 70296 focusing on its utilization for lipid biosynthesis from renewable sources. The genetic optimization was carried out by random mutagenesis by ultraviolet irradiation and mutant selection by cerulenin, a compound displaying inhibitory effects on lipid biosynthesis. Mutants demonstrating normal growth in presence of cerulenin were considered as good candidates for further studies. Using this strategy, we selected 6 mutants for further studies, in which their productivities were evaluated by fermentation in shaken flasks and bioreactor. The evaluation of the fermentative performance of mutants was carried out using xylose as sole carbon source; the fermentation of wild-type strain was used as reference. Using this strategy it was possible to identify one mutant (termed A1) presenting a significant increase in the productivity rates of both biomass and lipid in comparison to wild-type strain. A1 mutant was further studied in bioreactor using the same fermentation parameters optimized for L. starkeyi lipid production from a mixed carbon source (xylose:glucose), as previously determined by other studies in our laboratory. A1 presented a productivity increase of 15.1% in biomass and 30.7% in lipid productivity when compared to the wild-type strain with a similar fatty acid composition, despite a slight increase (approx. 7%) on the unsaturated fraction. Our work demonstrates the feasibility of the random mutagenesis strategy coupled with mutant selection based on cerulenin screening for the genetic improvement of the oleaginous yeast L. starkeyi.
Collapse
|