1
|
Laanoja J, Sihtmäe M, Vihodceva S, Iesalnieks M, Otsus M, Kurvet I, Kahru A, Kasemets K. Synthesis and synergistic antibacterial efficiency of chitosan-copper oxide nanocomposites. Heliyon 2024; 10:e35588. [PMID: 39170383 PMCID: PMC11337737 DOI: 10.1016/j.heliyon.2024.e35588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Copper and chitosan are used for biomedical applications due to their antimicrobial properties. In this study, a facile method for the synthesis of chitosan-copper oxide nanocomposites (nCuO-CSs) was modified, yielding stable colloidal nCuO-CSs suspensions. Using this method, nCuO-CSs with different copper-to-chitosan (50-190 kDa) weight ratios (1:0.3, 1:1, 1:3) were synthesized, their physicochemical properties characterized, and antibacterial efficacy assessed against Gram-negative Escherichia coli and Pseudomonas aeruginosa, and Gram-positive Staphylococcus aureus. The nCuO-CSs with a primary size of ∼10 nm and a ζ-potential of >+40 mV proved efficient antibacterials, acting at concentrations around 1 mg Cu/L. Notably, against Gram-negative bacteria, this inhibitory effect was already evident after a 1-h exposure and surpassed that of copper ions, implying to a synergistic effect of chitosan and nano-CuO. Indeed, using flow cytometry and confocal laser scanning microscopy, we showed that chitosan promoted interaction between the nCuO-CSs and bacterial cells, facilitating the shedding of copper ions in the close vicinity of the cell surface. The synergy between copper and chitosan makes these nanomaterials promising for biomedical applications (e.g., wound dressings).
Collapse
Affiliation(s)
- Jüri Laanoja
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Mariliis Sihtmäe
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Svetlana Vihodceva
- Institute of Materials and Surface Engineering, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia
| | - Mairis Iesalnieks
- Institute of Materials and Surface Engineering, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia
| | - Maarja Otsus
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Imbi Kurvet
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Anne Kahru
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
2
|
Zhang M, An H, Gu Z, Zhang YC, Wan T, Jiang HR, Zhang FS, Jiang BG, Han N, Wen YQ, Zhang PX. Multifunctional wet-adhesive chitosan/acrylic conduit for sutureless repair of peripheral nerve injuries. Int J Biol Macromol 2023; 253:126793. [PMID: 37709238 DOI: 10.1016/j.ijbiomac.2023.126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
The incidence of peripheral nerve injury (PNI) is high worldwide, and a poor prognosis is common. Surgical closure and repair of the affected area are crucial to ensure the effective treatment of peripheral nerve injuries. Despite being the standard treatment approach, reliance on sutures to seal the severed nerve ends introduces several limitations and restrictions. This technique is intricate and time-consuming, and the application of threading and punctate sutures may lead to tissue damage and heightened tension concentrations, thus increasing the risk of fixation failure and local inflammation. This study aimed to develop easily implantable chitosan-based peripheral nerve repair conduits that combine acrylic acid and cleavable N-hydroxysuccinimide to reduce nerve damage during repair. In ex vivo tissue adhesion tests, the conduit achieved maximal interfacial toughness of 705 J m-2 ± 30 J m-2, allowing continuous bridging of the severed nerve ends. Adhesive repair significantly reduces local inflammation caused by conventional sutures, and the positive charge of chitosan disrupts the bacterial cell wall and reduces implant-related infections. This promises to open new avenues for sutureless nerve repair and reliable medical implants.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Yi-Chong Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Bao-Guo Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Yong-Qiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| |
Collapse
|
3
|
Murillo L, Rivero PJ, Sandúa X, Pérez G, Palacio JF, Rodríguez RJ. Antifungal Activity of Chitosan/Poly(Ethylene Oxide) Blend Electrospun Polymeric Fiber Mat Doped with Metallic Silver Nanoparticles. Polymers (Basel) 2023; 15:3700. [PMID: 37765554 PMCID: PMC10536667 DOI: 10.3390/polym15183700] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In this work, the implementation of advanced functional coatings based on the combination of two compatible nanofabrication techniques such as electrospinning and dip-coating technology have been successfully obtained for the design of antifungal surfaces. In a first step, uniform and beadless electrospun nanofibers of both polyethylene oxide (PEO) and polyethylene (PEO)/chitosan (CS) blend samples have been obtained. In a second step, the dip-coating process has been gradually performed in order to ensure an adequate distribution of silver nanoparticles (AgNPs) within the electrospun polymeric matrix (PEO/CS/AgNPs) by using a chemical reduction synthetic process, denoted as in situ synthesis (ISS). Scanning electron microscopy (SEM) has been used to evaluate the surface morphology of the samples, showing an evolution in average fiber diameter from 157 ± 43 nm (PEO), 124 ± 36 nm (PEO/CS) and 330 ± 106 nm (PEO/CS/AgNPs). Atomic force microscopy (AFM) has been used to evaluate the roughness profile of the samples, indicating that the ISS process induced a smooth roughness surface because a change in the average roughness Ra from 84.5 nm (PEO/CS) up to 38.9 nm (PEO/CS/AgNPs) was observed. The presence of AgNPs within the electrospun fiber mat has been corroborated by UV-Vis spectroscopy thanks to their characteristic optical properties (orange film coloration) associated to the Localized Surface Plasmon Resonance (LSPR) phenomenon by showing an intense absorption band in the visible region at 436 nm. Energy dispersive X-ray (EDX) profile also indicates the existence of a peak located at 3 keV associated to silver. In addition, after doping the electrospun nanofibers with AgNPs, an important change in the wettability with an intrinsic hydrophobic behavior was observed by showing an evolution in the water contact angle value from 23.4° ± 1.3 (PEO/CS) up to 97.7° ± 5.3 (PEO/CS/AgNPs). The evaluation of the antifungal activity of the nanofibrous mats against Pleurotus ostreatus clearly indicates that the presence of AgNPs in the outer surface of the nanofibers produced an important enhancement in the inhibition zone during mycelium growth as well as a better antifungal efficacy after a longer exposure time. Finally, these fabricated electrospun nanofibrous membranes can offer a wide range of potential uses in fields as diverse as biomedicine (antimicrobial against human or plant pathogen fungi) or even in the design of innovative packaging materials for food preservation.
Collapse
Affiliation(s)
- Leire Murillo
- Engineering Department, Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain; (L.M.); (X.S.); (R.J.R.)
| | - Pedro J. Rivero
- Engineering Department, Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain; (L.M.); (X.S.); (R.J.R.)
- Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain
| | - Xabier Sandúa
- Engineering Department, Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain; (L.M.); (X.S.); (R.J.R.)
- Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain
| | - Gumer Pérez
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain;
| | - José F. Palacio
- Centre of Advanced Surface Engineering, AIN, 31191 Cordovilla, Spain;
| | - Rafael J. Rodríguez
- Engineering Department, Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain; (L.M.); (X.S.); (R.J.R.)
- Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain
| |
Collapse
|
4
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
5
|
Sharma S, Kaur N, Kaur R, Kaur R. A review on valorization of chitinous waste. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02759-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Korniienko V, Husak Y, Yanovska A, Banasiuk R, Yusupova A, Savchenko A, Holubnycha V, Pogorielov M. Functional and biological characterization of chitosan electrospun nanofibrous membrane nucleated with silver nanoparticles. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01808-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Khan F, Bamunuarachchi NI, Tabassum N, Kim YM. Caffeic Acid and Its Derivatives: Antimicrobial Drugs toward Microbial Pathogens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2979-3004. [PMID: 33656341 DOI: 10.1021/acs.jafc.0c07579] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Caffeic acid is a plant-derived compound that is classified as hydroxycinnamic acid which contains both phenolic and acrylic functional groups. Caffeic acid has been greatly employed as an alternative strategy to combat microbial pathogenesis and chronic infection induced by microbes such as bacteria, fungi, and viruses. Similarly, several derivatives of caffeic acid such as sugar esters, organic esters, glycosides, and amides have been chemically synthesized or naturally isolated as potential antimicrobial agents. To overcome the issue of water insolubility and poor stability, caffeic acid and its derivative have been utilized either in conjugation with other bioactive molecules or in nanoformulation. Besides, caffeic acid and its derivatives have also been applied in combination with antibiotics or photoirradiation to achieve a synergistic mode of action. The present review describes the antimicrobial roles of caffeic acid and its derivatives exploited either in free form or in combination or in nanoformulation to kill a diverse range of microbial pathogens along with their mode of action. The chemistry employed for the synthesis of the caffeic acid derivatives has been discussed in detail as well.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan 48513, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
- Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle 82200, Sri Lanka
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan 48513, South Korea
| | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan 48513, South Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
8
|
Piegat A, Żywicka A, Niemczyk A, Goszczyńska A. Antibacterial Activity of N, O-Acylated Chitosan Derivative. Polymers (Basel) 2020; 13:polym13010107. [PMID: 33383839 PMCID: PMC7794783 DOI: 10.3390/polym13010107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/17/2023] Open
Abstract
The antibacterial activity of N,O-acylated chitosan derivative with linoleic acid (CH_LA) was tested by disc and well diffusion, agar impregnation and microdilution methods against Staphylococcus aureus, Escherichia coli and Helicobacter pylori strains. Hydrophobically modified chitosan (HMC) was expected to exhibit enhanced antibacterial activity and specific mucin interactions. Although diffusion tests have not indicated the antibacterial potential of chitosan (CH) or CH_LA, the results of the microdilution method demonstrated that tested polymers significantly reduced the amount of living bacteria cells in different concentrations depending on the microorganism. Additionally, CH_LA was characterized by enhanced antibacterial activity compared to CH, which may suggest a different mechanism of interaction with S. aureus and H. pylori. Furthermore, the UV-VIS analysis revealed that the amphiphilic character of derivative led to strong CH_LA–mucin interactions. The study proved the high potential of CH_LA in antibacterial applications, especially for the gastrointestinal tract.
Collapse
Affiliation(s)
- Agnieszka Piegat
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, 45 Piastow Ave, 70-311 Szczecin, Poland;
- Correspondence:
| | - Anna Żywicka
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, 45 Piastow Ave, 70-311 Szczecin, Poland;
| | - Agata Niemczyk
- Department of Materials Technology, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, 19 Piastow Ave, 70-310 Szczecin, Poland;
| | - Agata Goszczyńska
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, 45 Piastow Ave, 70-311 Szczecin, Poland;
| |
Collapse
|
9
|
Chitosan: Structural modification, biological activity and application. Int J Biol Macromol 2020; 164:4532-4546. [PMID: 32941908 DOI: 10.1016/j.ijbiomac.2020.09.042] [Citation(s) in RCA: 229] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Many by-products that are harmful to the environment and human health are generated during food processing. However, these wastes are often potential resources with high-added value. For example, crustacean waste contains large amounts of chitin. Chitin is one of the most abundant polysaccharides in natural macromolecules, and is a typical component of crustaceans, mollusks, insect exoskeleton and fungal cell walls. Chitosan is prepared by deacetylation of chitin and a copolymer of D-glucosamine and N-acetyl-D-glucosamine through β-(1 → 4)-glycosidic bonds. Chitosan has better solubility, biocompatibility and degradability compared with chitin. This review introduces the preparation, physicochemical properties, chemical and physical modification methods of chitosan, which could help us understand its biological activities and applications. According to the latest reports, the antibacterial activity, antioxidant, immune and antitumor activities of chitosan and its derivatives are summarized. Simultaneously, the various applications of chitosan and its derivatives are reviewed, including food, chemical, textile, medical and health, and functional materials. Finally, some insights into its future potential are provided, including novel modification methods, directional modification according to structure-activity relationship, activity and application development direction, etc.
Collapse
|
10
|
Chitosan nanoparticles making their way to clinical practice: A feasibility study on their topical use for acne treatment. Int J Biol Macromol 2020; 156:262-270. [DOI: 10.1016/j.ijbiomac.2020.04.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/23/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
|
11
|
Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int J Mol Sci 2019; 20:E5889. [PMID: 31771245 PMCID: PMC6928789 DOI: 10.3390/ijms20235889] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Fighting bacterial resistance is one of the concerns in modern days, as antibiotics remain the main resource of bacterial control. Data shows that for every antibiotic developed, there is a microorganism that becomes resistant to it. Natural polymers, as the source of antibacterial agents, offer a new way to fight bacterial infection. The advantage over conventional synthetic antibiotics is that natural antimicrobial agents are biocompatible, non-toxic, and inexpensive. Chitosan is one of the natural polymers that represent a very promising source for the development of antimicrobial agents. In addition, chitosan is biodegradable, non-toxic, and most importantly, promotes wound healing, features that makes it suitable as a starting material for wound dressings. This paper reviews the antimicrobial properties of chitosan and describes the mechanisms of action toward microbial cells as well as the interactions with mammalian cells in terms of wound healing process. Finally, the applications of chitosan as a wound-dressing material are discussed along with the current status of chitosan-based wound dressings existing on the market.
Collapse
Affiliation(s)
- Mariana Adina Matica
- Advanced Environmental Research Laboratories, Department of Biology—Chemistry, West University of Timisoara, Oituz 4, 300086 Timisoara, Romania;
| | - Finn Lillelund Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Sciences, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway;
| | - Anne Tøndervik
- SINTEF Industry, Department of Biotechnology and Nanomedicine, Richard Birkelands veg 3 B, 7034 Trondheim, Norway; (A.T.); (H.S.)
| | - Håvard Sletta
- SINTEF Industry, Department of Biotechnology and Nanomedicine, Richard Birkelands veg 3 B, 7034 Trondheim, Norway; (A.T.); (H.S.)
| | - Vasile Ostafe
- Advanced Environmental Research Laboratories, Department of Biology—Chemistry, West University of Timisoara, Oituz 4, 300086 Timisoara, Romania;
| |
Collapse
|
12
|
Hoyo J, Ivanova K, Guaus E, Tzanov T. Multifunctional ZnO NPs-chitosan-gallic acid hybrid nanocoating to overcome contact lenses associated conditions and discomfort. J Colloid Interface Sci 2019; 543:114-121. [DOI: 10.1016/j.jcis.2019.02.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 01/11/2023]
|
13
|
Juliano C, Marchetti M, Pisu ML, Usai M. In Vitro Antimicrobial Activity of Essential Oils from Sardinian Flora against Cutibacterium (Formerly Propionibacterium) acnes and Its Enhancement by Chitosan. Sci Pharm 2018; 86:scipharm86030040. [PMID: 30217104 DOI: 10.3390/scipharm86030040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 02/06/2023] Open
Abstract
The in vitro antibacterial activity of some essential oils from Sardinian flora, both alone and in combination with chitosan, was investigated against a strain of Cutibacterium acnes, a bacterium involved in pathogenesis of acne. The composition of the essential oils was determined by gas chromatography and gas chromatography/mass spectrometry. The results of this investigation demonstrated that some of the oils examined, characterised by different chemical profiles, possessed some activity against C. acnes. Interestingly, this antibacterial effect was enhanced by sub-inhibitory concentrations of chitosan. These observations suggest the potential application of this synergy in the development of innovative topical formulations useful in the management of acne.
Collapse
Affiliation(s)
- Claudia Juliano
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Muroni 23/A, 07100 Sassari, Italy.
| | - Mauro Marchetti
- C.N.R.-Istituto di Chimica Biomolecolare, traversa La Crucca 3, 07040 Sassari, Italy.
| | - Maria Luisa Pisu
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Muroni 23/A, 07100 Sassari, Italy.
| | - Marianna Usai
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, via Muroni 23/A, 07100 Sassari, Italy.
| |
Collapse
|
14
|
Dasagrandhi C, Park S, Jung WK, Kim YM. Antibacterial and Biofilm Modulating Potential of Ferulic Acid-Grafted Chitosan against Human Pathogenic Bacteria. Int J Mol Sci 2018; 19:E2157. [PMID: 30042337 PMCID: PMC6121546 DOI: 10.3390/ijms19082157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 01/19/2023] Open
Abstract
The emergence of more virulent forms of human pathogenic bacteria with multi-drug resistance is a serious global issue and requires alternative control strategies. The current study focused on investigating the antibacterial and antibiofilm potential of ferulic acid-grafted chitosan (CFA) against Listeria monocytogenes (LM), Pseudomonas aeruginosa (PA), and Staphylococcus aureus (SA). The result showed that CFA at 64 µg/mL concentration exhibits bactericidal action against LM and SA (>4 log reduction) and bacteriostatic action against PA (<2 log colony forming units/mL reduction) within 24 h of incubation. Further studies based on propidium iodide uptake assay, measurement of material released from the cell, and electron microscopic analysis revealed that the bactericidal action of CFA was due to altered membrane integrity and permeability. CFA dose dependently inhibited biofilm formation (52⁻89% range), metabolic activity (30.8⁻75.1% range) and eradicated mature biofilms, and reduced viability (71⁻82% range) of the test bacteria. Also, the swarming motility of LM was differentially affected at sub-minimum inhibitory concentration (MIC) concentrations of CFA. In the present study, the ability of CFA to kill and alter the virulence production in human pathogenic bacteria will offer insights into a new scope for the application of these biomaterials in healthcare to effectively treat bacterial infections.
Collapse
Affiliation(s)
- Chakradhar Dasagrandhi
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
| | - Seulki Park
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea.
| | - Won-Kyo Jung
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea.
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
15
|
Cosmetics and Cosmeceutical Applications of Chitin, Chitosan and Their Derivatives. Polymers (Basel) 2018; 10:polym10020213. [PMID: 30966249 PMCID: PMC6414895 DOI: 10.3390/polym10020213] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/19/2022] Open
Abstract
Marine resources are well recognized for their biologically active substances with great potential applications in the cosmeceutical industry. Among the different compounds with a marine origin, chitin and its deacetylated derivative—chitosan—are of great interest to the cosmeceutical industry due to their unique biological and technological properties. In this review, we explore the different functional roles of chitosan as a skin care and hair care ingredient, as an oral hygiene agent and as a carrier for active compounds, among others. The importance of the physico-chemical properties of the polymer in its use in cosmetics are particularly highlighted. Moreover, we analyse the market perspectives of this polymer and the presence in the market of chitosan-based products.
Collapse
|
16
|
Morsy R, Ali SS, El-Shetehy M. Development of hydroxyapatite-chitosan gel sunscreen combating clinical multidrug-resistant bacteria. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.04.090] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Kim SH, Eom SH, Yu D, Lee MS, Kim YM. Oligochitosan as a potential anti-acne vulgaris agent: combined antibacterial effects against Propionibacterium acnes. Food Sci Biotechnol 2017; 26:1029-1036. [PMID: 30263633 DOI: 10.1007/s10068-017-0118-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/20/2017] [Accepted: 04/29/2017] [Indexed: 01/05/2023] Open
Abstract
To develop an antibacterial treatment for acne vulgaris using natural substance with few side effects, we investigated the antibacterial activities of oligochitosan against acne-related bacteria, particularly Propionibacterium acnes. Oligochitosan showed potent antibacterial effect on P. acnes. Especially, 10 kDa oligochitosan presented the highest antimicrobial effect with minimum inhibitory concentration values of 32-64 μg/mL on P. acnes. In addition, oligochitosan clearly reversed the antibacterial effect of tetracycline and erythromycin on P. acnes in the combination mode. The combination of tetracycline- or erythromycine-10 kDa oligochitosan resulted in a median ΣFIC range of 0.02-0.56, suggesting that the antibiotics-oligochitosan combination resulted in an antibacterial synergy against P. acnes. Thus, the results obtained in this research strongly supported that erythromycin and tetracycline will restore the antibacterial activity against P. acnes in the combination mode with 10 kDa oligochitosan.
Collapse
Affiliation(s)
- Song-Hee Kim
- 1Department of Food Science and Technology, Pukyong National University, Busan, 48513 Korea
| | - Sung-Hwan Eom
- 2Korea Food Research Institute, Sungnam, Gyeonggi 13539 Korea
| | - Daeung Yu
- 3Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Canada
| | - Myung-Suk Lee
- 4Department of Microbiology, Pukyong National University, Busan, 48513 Korea
| | - Young-Mog Kim
- 1Department of Food Science and Technology, Pukyong National University, Busan, 48513 Korea.,5Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513 Korea
| |
Collapse
|
18
|
Synergistic Antibacterial Effects of Chitosan-Caffeic Acid Conjugate against Antibiotic-Resistant Acne-Related Bacteria. Mar Drugs 2017; 15:md15060167. [PMID: 28594356 PMCID: PMC5484117 DOI: 10.3390/md15060167] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 01/27/2023] Open
Abstract
The object of this study was to discover an alternative therapeutic agent with fewer side effects against acne vulgaris, one of the most common skin diseases. Acne vulgaris is often associated with acne-related bacteria such as Propionibacterium acnes, Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa. Some of these bacteria exhibit a resistance against commercial antibiotics that have been used in the treatment of acne vulgaris (tetracycline, erythromycin, and lincomycin). In the current study, we tested in vitro antibacterial effect of chitosan-phytochemical conjugates on acne-related bacteria. Three chitosan-phytochemical conjugates used in this study exhibited stronger antibacterial activity than that of chitosan (unmodified control). Chitosan-caffeic acid conjugate (CCA) showed the highest antibacterial effect on acne-related bacteria along with minimum inhibitory concentration (MIC; 8 to 256 μg/mL). Additionally, the MIC values of antibiotics against antibiotic-resistant P. acnes and P. aeruginosa strains were dramatically reduced in combination with CCA, suggesting that CCA would restore the antibacterial activity of the antibiotics. The analysis of fractional inhibitory concentration (FIC) indices clearly revealed a synergistic antibacterial effect of CCA with antibiotics. Thus, the median sum of FIC (∑FIC) values against the antibiotic-resistant bacterial strains ranged from 0.375 to 0.533 in the combination mode of CCA and antibiotics. The results of the present study suggested a potential possibility of chitosan-phytochemical conjugates in the control of infections related to acne vulgaris.
Collapse
|
19
|
Khan I, Tango CN, Oh DH. Development and evaluation of chitosan and its derivative for the shelf life extension of beef meat under refrigeration storage. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Imran Khan
- Department of Food Science and Biotechnology; School Agriculture and Life Sciences; Kangwon National University; Chuncheon Gangwon-do 200-701 Korea
| | - Charles Nkufi Tango
- Department of Food Science and Biotechnology; School Agriculture and Life Sciences; Kangwon National University; Chuncheon Gangwon-do 200-701 Korea
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology; School Agriculture and Life Sciences; Kangwon National University; Chuncheon Gangwon-do 200-701 Korea
| |
Collapse
|
20
|
Ivancic A. Recent Trends in Alginate, Chitosan and Alginate-Chitosan Antimicrobial Systems. CHEMISTRY JOURNAL OF MOLDOVA 2016. [DOI: 10.19261/cjm.2016.11(2).03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Raafat D, Leib N, Wilmes M, François P, Schrenzel J, Sahl HG. Development of in vitro resistance to chitosan is related to changes in cell envelope structure of Staphylococcus aureus. Carbohydr Polym 2016; 157:146-155. [PMID: 27987856 DOI: 10.1016/j.carbpol.2016.09.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 10/20/2022]
Abstract
The bacterial cell envelope is believed to be a principal target for initiating the staphylocidal pathway of chitosan. The present study was therefore designed to investigate possible changes in cell surface phenotypes related to the in vitro chitosan resistance development in the laboratory strain S. aureus SG511-Berlin. Following a serial passage experiment, a stable chitosan-resistant variant (CRV) was identified, exhibiting >50-fold reduction in its sensitivity towards chitosan. Our analyses of the CRV identified phenotypic and genotypic features that readily distinguished it from its chitosan-susceptible parental strain, including: (i) a lower overall negative cell surface charge; (ii) cross-resistance to a number of antimicrobial agents; (iii) major alterations in cell envelope structure, cellular bioenergetics and metabolism (based on transcriptional profiling); and (iv) a repaired sensor histidine kinase GraS. Our data therefore suggest a close nexus between changes in cell envelope properties with the in vitro chitosan-resistant phenotype in S. aureus SG511-Berlin.
Collapse
Affiliation(s)
- Dina Raafat
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit, University of Bonn, D-53115 Bonn, Germany.
| | - Nicole Leib
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit, University of Bonn, D-53115 Bonn, Germany.
| | - Miriam Wilmes
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit, University of Bonn, D-53115 Bonn, Germany.
| | - Patrice François
- Genomic Research Laboratory, Division of Infectious Diseases, University of Geneva Hospitals, CH-1211 Geneva, Switzerland.
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, University of Geneva Hospitals, CH-1211 Geneva, Switzerland.
| | - Hans-Georg Sahl
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit, University of Bonn, D-53115 Bonn, Germany.
| |
Collapse
|
22
|
Antibacterial and Antibiofilm Effect of Low Viscosity Chitosan against Staphylococcus epidermidis. Int J Microbiol 2016; 2016:9159761. [PMID: 27635144 PMCID: PMC5007360 DOI: 10.1155/2016/9159761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/20/2016] [Indexed: 11/23/2022] Open
Abstract
Aim. The aim of this study was to investigate the antibacterial and antibiofilm properties of low viscosity chitosan on S. epidermidis growth and biofilm formation. Methods and Results. The antibacterial and antibiofilm properties were investigated, during both planktonic growth and biofilm formation. This was performed using different concentrations in media and by coating on polystyrene surfaces. In addition, the bactericidal effect was investigated using a modified direct contact test. The results showed that low viscosity chitosan in media had both a bacteriostatic and bactericidal effect on planktonic growth and biofilm formation of S. epidermidis in a concentration dependent manner. Polystyrene discs coated with chitosan reduced both early biofilm formation (6 h) and late biofilm formation (18 h), as confirmed by scanning electron microscopy. The modified direct contact test showed a bactericidal effect. Conclusion. This study demonstrated that low viscosity chitosan has a bacteriostatic and bactericidal activity against S. epidermidis and that the activity is dependent on the amount of chitosan added. In addition, low viscosity chitosan reduced biofilm formation both when added to media and when coated on polystyrene surfaces. Significance and Impact of Study. Low viscosity chitosan could be a contribution to new treatment approaches of biofilm-related infections of S. epidermidis.
Collapse
|
23
|
Landriscina A, Rosen J, Friedman AJ. Biodegradable chitosan nanoparticles in drug delivery for infectious disease. Nanomedicine (Lond) 2016; 10:1609-19. [PMID: 26008195 DOI: 10.2217/nnm.15.7] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Increasing rates of antimicrobial resistance have left a significant gap in the standard antimicrobial armament. Nanotechnology holds promise as a new approach to combating resistant microbes. Chitosan, a form of deacetylated chitin, has been used extensively in medicine, agriculture and industry due to its ease of production, biocompatibility and antimicrobial activity. Chitosan has been studied extensively as a main structural component and additive for nanomaterials. Specifically, numerous studies have demonstrated its potent microbicidal activity and its efficacy as an adjuvant to vaccines, including mucosally administered vaccines. In this review, we present fundamental information about chitosan and chitosan nanoparticles as well as the most recent data about their antimicrobial mechanism and efficacy as a nanotechnology-based drug delivery system.
Collapse
Affiliation(s)
- Angelo Landriscina
- 1Department of Medicine (Division of Dermatology), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Jamie Rosen
- 1Department of Medicine (Division of Dermatology), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Adam J Friedman
- 1Department of Medicine (Division of Dermatology), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
24
|
Pathak L, Kanwal A, Agrawal Y. Curcumin loaded self assembled lipid-biopolymer nanoparticles for functional food applications. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:6143-56. [PMID: 26396362 PMCID: PMC4573133 DOI: 10.1007/s13197-015-1742-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/18/2014] [Accepted: 01/19/2015] [Indexed: 12/17/2022]
Abstract
The supramolecular nano-assemblies formed by electrostatic interactions of two oppositely charged lipid and polymer have been made and used as nanocarriers for curcumin to address its bioavailability and solubility issues. These curcumin encapsulated nano-supramolecular assemblies were characterized with respect to their size (dynamic light scattering), morphology (TEM, SEM), zeta potential (Laser Doppler Velocimetry), encapsulation efficiency (EE), curcumin loading (CL) etc. Stability of the nano-assemblies was assessed at different storage times as a function of varying pH and temperature. The physicochemical characterization of nano-assemblies was performed using Fourier Transform Infra Red Spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC). The in-vitro antioxidant lipid peroxidation (TBARS), radical scavenging (DPPH, NO, H2O2, reducing power) activity assays of powdered curcumin and nano-encapsulated curcumin were performed. It was found that nano-encapsulated curcumin were roughly spherical in shape, presented high positive zeta potential (>30 mV), monodisperse (polydispersity index <0.3), amorphous in nature, stable in the pH range of 2-6 and have enhanced antioxidant potency in comparison to crystalline curcumin in aqueous media. In conclusion, the curcumin encapsulated nanocarriers system has great potential as functional food ingredient of natural origin.
Collapse
Affiliation(s)
- Lokesh Pathak
- />Institute of Research and Development, Gujarat Forensics Sciences University, Gandhinagar, Gujarat 382 007 India
| | - Abhinav Kanwal
- />Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology, Habsiguda, Hyderabad, 500 037 India
| | - Yadvendra Agrawal
- />Institute of Research and Development, Gujarat Forensics Sciences University, Gandhinagar, Gujarat 382 007 India
| |
Collapse
|
25
|
Ojeda-Martínez ML, Yáñez-Sánchez I, Velásquez-Ordoñez C, Martínez-Palomar MM, Álvarez-Rodríguez A, Garcia-Sánchez MA, Rojas-González F, Gálvez-Gastélum FJ. Skin wound healing with chitosan thin films containing supported silver nanospheres. J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515590495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dermal wound healing involves complex histo-molecular events aimed to repair the discontinuity of the epithelium. Employing nanometric silver particles provides an efficient antimicrobial effect for several dermal infections. The aim is to elucidate imminent advantages of silver nanoparticles, such as the possibility of modulating the epithelial cell repair process. Through the nanostructural implementation of chitosan thin films supporting silver nanoparticles, it was feasible to evaluate in vivo the efficacy and evolution of dermal recuperation after surgical damage. The characterization of chitosan silver nanoparticle films was performed by UV–visible spectra and Fourier transform infrared spectroscopy, X-ray diffraction, and high-resolution electron microscopy. An important dermal healing was accomplished in animals that were treated with chitosan films supporting silver nanoparticles, as confirmed by a histopathological analysis of the skin after 12 days of treatment. The developed chitosan thin film supporting an optimized amount of silver nanoparticles could be employed to treat diseases related to wound healing.
Collapse
Affiliation(s)
- Maria L Ojeda-Martínez
- Centro de Investigación en Nanociencia y Nanotecnología, Centro Universitario de los Valles, Universidad de Guadalajara, Ameca, México
| | - Irinea Yáñez-Sánchez
- Centro de Investigación en Nanociencia y Nanotecnología, Centro Universitario de los Valles, Universidad de Guadalajara, Ameca, México
| | - Celso Velásquez-Ordoñez
- Centro de Investigación en Nanociencia y Nanotecnología, Centro Universitario de los Valles, Universidad de Guadalajara, Ameca, México
| | - Maria M Martínez-Palomar
- Laboratorio de Patología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Adriana Álvarez-Rodríguez
- Laboratorio de Patología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | | | | | - Francisco J Gálvez-Gastélum
- Laboratorio de Patología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
26
|
Latif U, Al-Rubeaan K, Saeb ATM. A Review on Antimicrobial Chitosan-Silver Nanocomposites: A Roadmap Toward Pathogen Targeted Synthesis. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2014.958834] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|