1
|
Derippe G, Philip L, Lemechko P, Eyheraguibel B, Meistertzheim AL, Pujo-Pay M, Conan P, Barbe V, Bruzaud S, Ghiglione JF. Marine biodegradation of tailor-made polyhydroxyalkanoates (PHA) influenced by the chemical structure and associated bacterial communities. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132782. [PMID: 37856958 DOI: 10.1016/j.jhazmat.2023.132782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Over recent years, biodegradable polymers have been proposed to reduce environmental impacts of plastics for specific applications. The production of polyhydroxyalkanoates (PHA) by using diverse carbon sources provides further benefits for the sustainable development of biodegradable plastics. Here, we present the first study evaluating the impact of physical, chemical and biological factors driving the biodegradability of various tailor-made PHAs in the marine environment. Our multidisciplinary approach demonstrated that the chemical structure of the polymer (i.e. the side chain size for short- vs. medium-chain PHA) which was intrinsically correlated to the physico-chemical properties, together with the specificity of the biofilm growing on plastic films (i.e., the associated 'plastisphere') were the main drivers of the PHA biodegradation in the marine environment.
Collapse
Affiliation(s)
- Gabrielle Derippe
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), 1 Avenue Fabre, F-66650 Banyuls sur mer, France; Université Bretagne Sud, Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, 56321 Lorient, France
| | - Léna Philip
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), 1 Avenue Fabre, F-66650 Banyuls sur mer, France; SAS Plastic@Sea, Observatoire Océanologique de Banyuls, France
| | - Pierre Lemechko
- Institut Régional des Matériaux Avancés (IRMA), 2 all. Copernic, 56270 Ploemeur, France
| | - Boris Eyheraguibel
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie (ICCF), Clermont- Ferrand, France
| | | | - Mireille Pujo-Pay
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), 1 Avenue Fabre, F-66650 Banyuls sur mer, France
| | - Pascal Conan
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), 1 Avenue Fabre, F-66650 Banyuls sur mer, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Stéphane Bruzaud
- Université Bretagne Sud, Institut de Recherche Dupuy de Lôme (IRDL), UMR CNRS 6027, 56321 Lorient, France
| | - Jean-François Ghiglione
- CNRS, Sorbonne Université, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), 1 Avenue Fabre, F-66650 Banyuls sur mer, France.
| |
Collapse
|
2
|
Wang H, Wang C, Guo F, Yu J, Zhang Y, Harder M, Ntaikou I, Antonopoulou G, Lyberatos G, Yan Q. Enhancement of biosynthesis of polyhydroxyalkanoates (PHA) from Taihu blue algae by adding by-product acetic acid. J Biotechnol 2023; 363:32-39. [PMID: 36610479 DOI: 10.1016/j.jbiotec.2023.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
As an easily obtained organic waste, by-product acetic acid could be an appropriate co-substrate with blue algae wastes (increase C/N ratio of substrates) for co-fermentation of PHA production. However, there are still acrylic acid and other chemicals in by-product acetic acid, which could cause severe inhibition for fermenting microorganisms during PHA production process. The current study represented that alkali pretreatment (pH level of 12) is a more favorable method compared with thermal pretreatment (80 ℃ for 30 min) for breaking cell walls of blue algae. It seemed that there was no synergistic effect of the combination of thermal and alkali pretreatment methods (temperature of 80 ℃ and pH level of 12). Optimal parameters during electro-fenton process for removal of inhibitors in by-product acetic acid were under current of 0.5 A, pH level of 3 and reaction time of 120 min. Both the highest dry weight of PHA and PHA concentration were achieved by applying blue algae and by-product acetic acid (after pretreatment) as co-substrates (mixed ratio of 3:1, stirring speed of 200 r/min, 24 h), indicating that using by-product acetic acid (after pretreatment) as co-substrate could increase C/N ratio and promote PHA production successfully. The current study could offer new insights for improving PHA production by co-fermentation.
Collapse
Affiliation(s)
- Han Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Chaoyun Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fang Guo
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Yu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Zhang
- Department of Environmental Science and Engineering, Fudan University, 2105 Songhu Road, Yangpu District, Shanghai, China
| | - Marie Harder
- Department of Environmental Science and Engineering, Fudan University, 2105 Songhu Road, Yangpu District, Shanghai, China; Cockcroft Building, University of Brighton, Lewes Road, BN2 4GJ, United Kingdom
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences, Platani, Patras, GR 26504, Greece
| | | | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences, Platani, Patras, GR 26504, Greece; School of Chemical Engineering, National Technical University of Athens, Athens, GR 15780, Greece
| | - Qun Yan
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| |
Collapse
|
3
|
Review of the Developments of Bacterial Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHAs). Bioengineering (Basel) 2022; 9:bioengineering9050225. [PMID: 35621503 PMCID: PMC9137849 DOI: 10.3390/bioengineering9050225] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022] Open
Abstract
Synthetic plastics derived from fossil fuels—such as polyethylene, polypropylene, polyvinyl chloride, and polystyrene—are non-degradable. A large amount of plastic waste enters landfills and pollutes the environment. Hence, there is an urgent need to produce biodegradable plastics such as polyhydroxyalkanoates (PHAs). PHAs have garnered increasing interest as replaceable materials to conventional plastics due to their broad applicability in various purposes such as food packaging, agriculture, tissue-engineering scaffolds, and drug delivery. Based on the chain length of 3-hydroxyalkanoate repeat units, there are three types PHAs, i.e., short-chain-length (scl-PHAs, 4 to 5 carbon atoms), medium-chain-length (mcl-PHAs, 6 to 14 carbon atoms), and long-chain-length (lcl-PHAs, more than 14 carbon atoms). Previous reviews discussed the recent developments in scl-PHAs, but there are limited reviews specifically focused on the developments of mcl-PHAs. Hence, this review focused on the mcl-PHA production, using various carbon (organic/inorganic) sources and at different operation modes (continuous, batch, fed-batch, and high-cell density). This review also focused on recent developments on extraction methods of mcl-PHAs (solvent, non-solvent, enzymatic, ultrasound); physical/thermal properties (Mw, Mn, PDI, Tm, Tg, and crystallinity); applications in various fields; and their production at pilot and industrial scales in Asia, Europe, North America, and South America.
Collapse
|
4
|
Miu DM, Eremia MC, Moscovici M. Polyhydroxyalkanoates (PHAs) as Biomaterials in Tissue Engineering: Production, Isolation, Characterization. MATERIALS 2022; 15:ma15041410. [PMID: 35207952 PMCID: PMC8875380 DOI: 10.3390/ma15041410] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible biopolymers. These biomaterials have grown in importance in the fields of tissue engineering and tissue reconstruction for structural applications where tissue morphology is critical, such as bone, cartilage, blood vessels, and skin, among others. Furthermore, they can be used to accelerate the regeneration in combination with drugs, as drug delivery systems, thus reducing microbial infections. When cells are cultured under stress conditions, a wide variety of microorganisms produce them as a store of intracellular energy in the form of homo- and copolymers of [R]—hydroxyalkanoic acids, depending on the carbon source used for microorganism growth. This paper gives an overview of PHAs, their biosynthetic pathways, producing microorganisms, cultivation bioprocess, isolation, purification and characterization to obtain biomaterials with medical applications such as tissue engineering.
Collapse
Affiliation(s)
- Dana-Maria Miu
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Mihaela Carmen Eremia
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
- Correspondence:
| | - Misu Moscovici
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
| |
Collapse
|
5
|
Ene N, Vladu MG, Lupescu I, Ionescu AD, Vamanu E. The Production and Analysis of Biodegradable Polymers of Type of Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHA) by Pseudomonas putida Strain for the Biomedical Engineering. Curr Pharm Biotechnol 2021; 23:1109-1117. [PMID: 34375190 DOI: 10.2174/1389201022666210810114117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Polyhydroxyalkanoates (PHAs) are bacteria-synthetized biopolymers under unbalanced growth conditions. These biopolymers are considered potential biomaterials for future applications for their biocompatibility and biodegradable features and potential biomaterials for future applications for their biocompatibility and biodegradable characteristics and their ability to be quickly produced and functionalize with strong mechanical resistance. This article is intended to perform microbial fermentation using Pseudomonas putida strain to show the amount of biopolymers of the type polyhydroxyalkanoates with medium-chain-length (mcl-PHA) obtained depending on the type and quantity of added precursors (glucose and fatty acids). METHODS It is important to understand the microbial interaction and mechanism involved in PHA biosynthetis.For these, several methods were used, such as: obtaining microbial biomass by using a Pseudomonas putida strain able of PHA-producing, analysis of biopolymer production by acetone extraction following the Soxhlet method, purification of biopolymer by methanol-ethanol treatment, followed by the estimation of biomass by spectrophotometric analysis and the measurement of the dry weight of cells and the quantification of the amount of biopolymer produced following the gas chromatographic method (GC). RESULTS The highest PHA yield was obtained using octanoic (17 mL in 2000 mL medium) and hexanoic acids (14 mL in 2000 mL medium) as precursors. Consequently, octanoic acid - octanoic acid, heptanoic acid - nonanoic acid, and octanoic acid - hexanoic acid were the mix of precursors that supported the amount of PHA obtained. CONCLUSION Of the 4 types of structurally related substrate, the strain Pseudomonas putida ICCF 319 prefers the C8 sublayer for an elastomeric PHA's biosynthesis with a composition in which the C8 monomer predominates over C6 and C10.
Collapse
Affiliation(s)
- Nicoleta Ene
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine, Mărăs,ti Blv. 59, 011464 Bucharest, Romania
| | - Mariana-Gratiela Vladu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine, Mărăs,ti Blv. 59, 011464 Bucharest, Romania
| | - Irina Lupescu
- National Institute for Chemical Pharmaceutical Research and Development-ICCF, Vitan Avenue 112, 031299 Bucharest, Romania
| | - Ana-Despina Ionescu
- National Institute for Chemical Pharmaceutical Research and Development-ICCF, Vitan Avenue 112, 031299 Bucharest, Romania
| | - Emanuel Vamanu
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine, Mărăs,ti Blv. 59, 011464 Bucharest, Romania
| |
Collapse
|
6
|
Bedade DK, Edson CB, Gross RA. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules 2021; 26:3463. [PMID: 34200447 PMCID: PMC8201374 DOI: 10.3390/molecules26113463] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Petroleum-derived plastics dominate currently used plastic materials. These plastics are derived from finite fossil carbon sources and were not designed for recycling or biodegradation. With the ever-increasing quantities of plastic wastes entering landfills and polluting our environment, there is an urgent need for fundamental change. One component to that change is developing cost-effective plastics derived from readily renewable resources that offer chemical or biological recycling and can be designed to have properties that not only allow the replacement of current plastics but also offer new application opportunities. Polyhydroxyalkanoates (PHAs) remain a promising candidate for commodity bioplastic production, despite the many decades of efforts by academicians and industrial scientists that have not yet achieved that goal. This article focuses on defining obstacles and solutions to overcome cost-performance metrics that are not sufficiently competitive with current commodity thermoplastics. To that end, this review describes various process innovations that build on fed-batch and semi-continuous modes of operation as well as methods that lead to high cell density cultivations. Also, we discuss work to move from costly to lower cost substrates such as lignocellulose-derived hydrolysates, metabolic engineering of organisms that provide higher substrate conversion rates, the potential of halophiles to provide low-cost platforms in non-sterile environments for PHA formation, and work that uses mixed culture strategies to overcome obstacles of using waste substrates. We also describe historical problems and potential solutions to downstream processing for PHA isolation that, along with feedstock costs, have been an Achilles heel towards the realization of cost-efficient processes. Finally, future directions for efficient PHA production and relevant structural variations are discussed.
Collapse
Affiliation(s)
- Dattatray K. Bedade
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Cody B. Edson
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| |
Collapse
|
7
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
8
|
Scheel RA, Ho T, Kageyama Y, Masisak J, McKenney S, Lundgren BR, Nomura CT. Optimizing a Fed-Batch High-Density Fermentation Process for Medium Chain-Length Poly(3-Hydroxyalkanoates) in Escherichia coli. Front Bioeng Biotechnol 2021; 9:618259. [PMID: 33718339 PMCID: PMC7953831 DOI: 10.3389/fbioe.2021.618259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/08/2021] [Indexed: 11/15/2022] Open
Abstract
Production of medium chain-length poly(3-hydroxyalkanoates) [PHA] polymers with tightly defined compositions is an important area of research to expand the application and improve the properties of these promising biobased and biodegradable materials. PHA polymers with homopolymeric or defined compositions exhibit attractive material properties such as increased flexibility and elasticity relative to poly(3-hydroxybutyrate) [PHB]; however, these polymers are difficult to biosynthesize in native PHA-producing organisms, and there is a paucity of research toward developing high-density cultivation methods while retaining compositional control. In this study, we developed and optimized a fed-batch fermentation process in a stirred tank reactor, beginning with the biosynthesis of poly(3-hydroxydecanoate) [PHD] from decanoic acid by β-oxidation deficient recombinant Escherichia coli LSBJ using glucose as a co-substrate solely for growth. Bacteria were cultured in two stages, a biomass accumulation stage (37°C, pH 7.0) with glucose as the primary carbon source and a PHA biosynthesis stage (30°C, pH 8.0) with co-feeding of glucose and a fatty acid. Through iterative optimizations of semi-defined media composition and glucose feed rate, 6.0 g of decanoic acid was converted to PHD with an 87.5% molar yield (4.54 g L-1). Stepwise increases in the amount of decanoic acid fed during the fermentation correlated with an increase in PHD, resulting in a final decanoic acid feed of 25 g converted to PHD at a yield of 89.4% (20.1 g L-1, 0.42 g L-1 h-1), at which point foaming became uncontrollable. Hexanoic acid, octanoic acid, 10-undecenoic acid, and 10-bromodecanoic acid were all individually supplemented at 20 g each and successfully polymerized with yields ranging from 66.8 to 99.0% (9.24 to 18.2 g L-1). Using this bioreactor strategy, co-fatty acid feeds of octanoic acid/decanoic acid and octanoic acid/10-azidodecanoic acid (8:2 mol ratio each) resulted in the production of their respective copolymers at nearly the same ratio and at high yield, demonstrating that these methods can be used to control PHA copolymer composition.
Collapse
Affiliation(s)
- Ryan A. Scheel
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Truong Ho
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Yuki Kageyama
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
- Division of Applied Chemistry, Department of Engineering, Hokkaido University, Sapporo, Japan
| | - Jessica Masisak
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Seamus McKenney
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Benjamin R. Lundgren
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Christopher T. Nomura
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
- Department of Biological Sciences, College of Science, University of Idaho, Moscow, ID, United States
| |
Collapse
|
9
|
Moslehifard E, Robati Anaraki M, Shirkavand S. Effect of adding TiO 2 nanoparticles on the SEM morphology and mechanical properties of conventional heat-cured acrylic resin. J Dent Res Dent Clin Dent Prospects 2019; 13:234-240. [PMID: 31857871 PMCID: PMC6904916 DOI: 10.15171/joddd.2019.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Background. The current study evaluated the compressive, flexural and impact strengths of heat-cured acrylic resins reinforced by TiO2 nanoparticles (NPs). Methods. TiO2 NPs were provided and characterized using scanning electron microscopy (SEM) to determine their morphology and crystalline structure. For three mechanical tests, 12 acrylic resin groups (n=9), totaling 108 specimens, were prepared using a special mold for each test, with TiO2 nanoparticle contents of 0, 0.5, 1 or 2 wt% in different groups. After curing, the compressive, flexural and impact strengths of the specimens were examined according to ISO 1567. Results. In the SEM and XRD study of TiO2 NPs, anatase was identified as the major crystalline phase followed by rutile (average particle size: 20.4 nm). SEM images showed that the nanocomposite with 1 wt% NPs had a more homogenized blend. 1 wt% TiO2 nanocomposite exhibited a higher, but non-significant, impact strength compared to the controls. ANOVA showed significant differences in the impact and flexural strengths between nanocomposites with various contents of TiO2 NPs. Conclusion. The nanocomposite with 1 wt% TiO2 NPs exhibited fewer micro-pores and micro-cracks in the SEM crosssections. A non-significant increase was also observed in the impact strength with TiO2 NPs at 1 wt%. Further increase in TiO2 NPs decreased both the impact and flexural strengths. The compressive strength of the heat-cured acrylic resin was not affected by the incorporation of NPs.
Collapse
Affiliation(s)
- Elnaz Moslehifard
- Department of Prosthodontics, Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmood Robati Anaraki
- Department of Prosthodontics, Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Shirkavand
- Department of Prosthodontics, Faculty of Dentistry, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
10
|
Blunt W, Gaugler M, Collet C, Sparling R, Gapes DJ, Levin DB, Cicek N. Rheological Behavior of High Cell Density Pseudomonas putida LS46 Cultures during Production of Medium Chain Length Polyhydroxyalkanoate (PHA) Polymers. Bioengineering (Basel) 2019; 6:E93. [PMID: 31600906 PMCID: PMC6956342 DOI: 10.3390/bioengineering6040093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022] Open
Abstract
The rheology of high-cell density (HCD) cultures is an important parameter for its impact on mixing and sparging, process scale-up, and downstream unit operations in bioprocess development. In this work, time-dependent rheological properties of HCD Pseudomonas putida LS46 cultures were monitored for microbial polyhydroxyalkanoate (PHA) production. As the cell density of the fed-batch cultivation increased (0 to 25 g·L-1 cell dry mass, CDM), the apparent viscosity increased nearly nine-fold throughout the fed-batch process. The medium behaved as a nearly Newtonian fluid at lower cell densities, and became increasingly shear-thinning as the cell density increased. However, shear-thickening behavior was observed at shearing rates of approximately 75 rad·s-1 or higher, and its onset increased with viscosity of the sample. The supernatant, which contained up to 9 g·L-1 soluble organic material, contributed more to the observed viscosity effect than did the presence of cells. Owing to this behavior, the oxygen transfer performance of the bioreactor, for otherwise constant operating conditions, was reduced by 50% over the cultivation time. This study has shown that the dynamic rheology of HCD cultures is an important engineering parameter that may impact the final outcome in PHA cultivations. Understanding and anticipating this behavior and its biochemical origins could be important for improving overall productivity, yield, process scalability, and the efficacy of downstream processing unit operations.
Collapse
Affiliation(s)
- Warren Blunt
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| | - Marc Gaugler
- Scion Research, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand.
| | - Christophe Collet
- Scion Research, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand.
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Daniel J Gapes
- Scion Research, Te Papa Tipu Innovation Park, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand.
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| | - Nazim Cicek
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| |
Collapse
|
11
|
Blunt W, Dartiailh C, Sparling R, Gapes DJ, Levin DB, Cicek N. Development of High Cell Density Cultivation Strategies for Improved Medium Chain Length Polyhydroxyalkanoate Productivity Using Pseudomonas putida LS46. Bioengineering (Basel) 2019; 6:bioengineering6040089. [PMID: 31561519 PMCID: PMC6956024 DOI: 10.3390/bioengineering6040089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 11/16/2022] Open
Abstract
High cell density (HCD) fed-batch cultures are widely perceived as a requisite for high-productivity polyhydroxyalkanoate (PHA) cultivation processes. In this work, a reactive pulse feed strategy (based on real-time CO2 or dissolved oxygen (DO) measurements as feedback variables) was used to control an oxygen-limited fed-batch process for improved productivity of medium chain length (mcl-) PHAs synthesized by Pseudomonas putida LS46. Despite the onset of oxygen limitation half-way through the process (14 h post inoculation), 28.8 ± 3.9 g L−1 total biomass (with PHA content up to 61 ± 8% cell dry mass) was reliably achieved within 27 h using octanoic acid as the carbon source in a bench-scale (7 L) bioreactor operated under atmospheric conditions. This resulted in a final volumetric productivity of 0.66 ± 0.14 g L−1 h−1. Delivering carbon to the bioreactor as a continuous drip feed process (a proactive feeding strategy compared to pulse feeding) made little difference on the final volumetric productivity of 0.60 ± 0.04 g L−1 h−1. However, the drip feed strategy favored production of non-PHA residual biomass during the growth phase, while pulse feeding favored a higher rate of mcl-PHA synthesis and yield during the storage phase. Overall, it was shown that the inherent O2-limitation brought about by HCD cultures can be used as a simple and effective control strategy for mcl-PHA synthesis from fatty acids. Furthermore, the pulse feed strategy appears to be a relatively easy and reliable method for rapid optimization of fed-batch processes, particularly when using toxic substrates like octanoic acid.
Collapse
Affiliation(s)
- Warren Blunt
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| | - Christopher Dartiailh
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Daniel J Gapes
- Scion Research, Te Papa Tipu Innovation Park, Sala Street, Private Bag 3020, Rotorua 3046, New Zealand.
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| | - Nazim Cicek
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| |
Collapse
|
12
|
Zheng Y, Chen JC, Ma YM, Chen GQ. Engineering biosynthesis of polyhydroxyalkanoates (PHA) for diversity and cost reduction. Metab Eng 2019; 58:82-93. [PMID: 31302223 DOI: 10.1016/j.ymben.2019.07.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/23/2019] [Accepted: 07/11/2019] [Indexed: 11/29/2022]
Abstract
PHA, a family of natural biopolymers aiming to replace non-degradable plastics for short-term usages, has been developed to include various structures such as short-chain-length (scl) and medium-chain-length (mcl) monomers as well as their copolymers. However, PHA market has been grown slowly since 1980s due to limited variety with good mechanical properties and the high production cost. Here, we review most updated strategies or approaches including metabolic engineering, synthetic biology and morphology engineering on expanding PHA diversity, reducing production cost and enhancing PHA production. The extremophilic Halomonas spp. are taken as examples to show the feasibility and challenges to develop next generation industrial biotechnology (NGIB) for producing PHA more competitively.
Collapse
Affiliation(s)
- Yang Zheng
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Chun Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi-Ming Ma
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; Center for Nano- and Micro-Mechanics, Tsinghua University, Beijing, 100084, China; Dept of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Blunt W, Levin DB, Cicek N. Bioreactor Operating Strategies for Improved Polyhydroxyalkanoate (PHA) Productivity. Polymers (Basel) 2018; 10:polym10111197. [PMID: 30961122 PMCID: PMC6290639 DOI: 10.3390/polym10111197] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 12/02/2022] Open
Abstract
Microbial polyhydroxyalkanoates (PHAs) are promising biodegradable polymers that may alleviate some of the environmental burden of petroleum-derived polymers. The requirements for carbon substrates and energy for bioreactor operations are major factors contributing to the high production costs and environmental impact of PHAs. Improving the process productivity is an important aspect of cost reduction, which has been attempted using a variety of fed-batch, continuous, and semi-continuous bioreactor systems, with variable results. The purpose of this review is to summarize the bioreactor operations targeting high PHA productivity using pure cultures. The highest volumetric PHA productivity was reported more than 20 years ago for poly(3-hydroxybutryate) (PHB) production from sucrose (5.1 g L−1 h−1). In the time since, similar results have not been achieved on a scale of more than 100 L. More recently, a number fed-batch and semi-continuous (cyclic) bioreactor operation strategies have reported reasonably high productivities (1 g L−1 h−1 to 2 g L−1 h−1) under more realistic conditions for pilot or industrial-scale production, including the utilization of lower-cost waste carbon substrates and atmospheric air as the aeration medium, as well as cultivation under non-sterile conditions. Little development has occurred in the area of fully continuously fed bioreactor systems over the last eight years.
Collapse
Affiliation(s)
- Warren Blunt
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| | - Nazim Cicek
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
| |
Collapse
|
14
|
Gao J, Vo MT, Ramsay JA, Ramsay BA. Overproduction of MCL-PHA with high 3-hydroxydecanoate Content. Biotechnol Bioeng 2017; 115:390-400. [PMID: 29030961 DOI: 10.1002/bit.26474] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 11/12/2022]
Abstract
Methods of producing medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA) with high content of the dominant subunit, 3-hydroxydecanoate (HD), were examined with an emphasis on a high yield of polymer from decanoic acid. High HD content was achieved by using a β-oxidation knockout mutant of Pseudomonas putida KT2440 (designated as P. putida DBA-F1) or by inhibiting β-oxidation with addition of acrylic acid (Aa) to wild type P. putida KT2440 in carbon-limited, fed-batch fermentations. At a substrate feed ratio of decanoic acid and acetic acid to glucose (DAA:G) of 6:4 g/g, P. putida DBA-F1 accumulated significantly higher HD (97 mol%), but much lower biomass (8.5 g/L) and PHA (42% of dry biomass) than the wild type. Both biomass and PHA concentrations were improved by decreasing the ratio of DAA:G to 4:6. Moreover, when the substrate feed ratio was further decreased to 2:8, 18 g/L biomass containing 59% mcl-PHA consisting of 100 mol% HD was achieved. The yield of PHA from decanoic acid was 1.24 (g/g) indicating that de novo synthesis had contributed to production. Yeast extract and tryptone (YET) addition allowed the mutant strain to accumulate 74% mcl-PHA by weight with 97 mol% HD at a production rate of 0.41 g/L/hr, at least twice that of published data for any β-oxidation knock-out mutant. Higher biomass concentration was achieved with Aa inhibition of β-oxidation in the wild type but the HD content (84 mol%) was less than that of the mutant. A carbon balance showed a marked increase in supernantant organic carbon for the mutant indicating overflow metabolism. Increasing the dominant monomer content (HD) greatly increased melting point, crystallinity, and rate of crystallization.
Collapse
Affiliation(s)
- Jie Gao
- Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Minh T Vo
- Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Juliana A Ramsay
- Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| | - Bruce A Ramsay
- Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
15
|
Basnett P, Lukasiewicz B, Marcello E, Gura HK, Knowles JC, Roy I. Production of a novel medium chain length poly(3-hydroxyalkanoate) using unprocessed biodiesel waste and its evaluation as a tissue engineering scaffold. Microb Biotechnol 2017; 10:1384-1399. [PMID: 28905518 PMCID: PMC5658593 DOI: 10.1111/1751-7915.12782] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/18/2017] [Accepted: 06/24/2017] [Indexed: 01/10/2023] Open
Abstract
This study demonstrated the utilization of unprocessed biodiesel waste as a carbon feedstock for Pseudomonas mendocinaCH50, for the production of PHAs. A PHA yield of 39.5% CDM was obtained using 5% (v/v) biodiesel waste substrate. Chemical analysis confirmed that the polymer produced was poly(3‐hydroxyhexanoate‐co‐3‐hydroxyoctanoate‐co‐3‐hydroxydecanoate‐co‐3‐hydroxydodecanoate) or P(3HHx‐3HO‐3HD‐3HDD). P(3HHx‐3HO‐3HD‐3HDD) was further characterized and evaluated for its use as a tissue engineering scaffold (TES). This study demonstrated that P(3HHx‐3HO‐3HD‐3HDD) was biocompatible with the C2C12 (myoblast) cell line. In fact, the % cell proliferation of C2C12 on the P(3HHx‐3HO‐3HD‐3HDD) scaffold was 72% higher than the standard tissue culture plastic confirming that this novel PHA was indeed a promising new material for soft tissue engineering.
Collapse
Affiliation(s)
- Pooja Basnett
- Faculty of Science and Technology, University of Westminster, London, UK
| | | | - Elena Marcello
- Faculty of Science and Technology, University of Westminster, London, UK
| | | | - Jonathan C Knowles
- Eastman Dental Institute, University College London, London, UK.,Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Ipsita Roy
- Faculty of Science and Technology, University of Westminster, London, UK
| |
Collapse
|
16
|
Blunt W, Dartiailh C, Sparling R, Gapes D, Levin DB, Cicek N. Microaerophilic environments improve the productivity of medium chain length polyhydroxyalkanoate biosynthesis from fatty acids in Pseudomonas putida LS46. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.04.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Alkotaini B, Koo H, Kim BS. Production of polyhydroxyalkanoates by batch and fed-batch cultivations of Bacillus megaterium from acid-treated red algae. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-015-0293-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|