1
|
Hanaoka K, Miyaji N, Yoneyama H, Ogawa M, Maeda T, Sakaguchi K, Iimori T, Tsushima H. [Radiological Technology for Targeted Radionuclide Therapy]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2020; 76:1237-1247. [PMID: 33342942 DOI: 10.6009/jjrt.2020_jsrt_76.12.1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Targeted radioisotope therapy (TRT) is a radiotherapy using radioisotope or drug incorporating it and has been used as a treatment for selectively irradiating cancer cells. In recent years, interest in TRT has increased due to improvements in radionuclide production technology, development of new drugs and imaging modalities, and improvements in radiation technology. In order to enhance the effect of TRT, measurement of individual radiation doses to tumor tissue and organs at risk is important using highly quantitative nuclear medicine images. In this paper, we present a review of literature on optimization of TRT, which is a new research area from the perspective of radiation technology.
Collapse
Affiliation(s)
- Kohei Hanaoka
- Institute of Advanced Clinical Medicine, Kindai University
| | - Noriaki Miyaji
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research
| | - Hiroto Yoneyama
- Department of Radiological Technology, Kanazawa University Hospital
| | | | - Takamasa Maeda
- Radiological Technology Section, QST Hospital, National Institutes for Quantum and Radiological Science and Technology
| | | | | | - Hiroyuki Tsushima
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences
| |
Collapse
|
2
|
Ikeda H, Hayashi Y, Takahashi N, Watabe T, Kanai Y, Shinohara A, Kato H, Watabe H, Shimosegawa E, Hatazawa J. Application of astatine-210: Evaluation of astatine distribution and effect of pre-injected iodide in whole body of normal rats. Appl Radiat Isot 2018; 139:251-255. [PMID: 29870920 DOI: 10.1016/j.apradiso.2018.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/23/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022]
Abstract
We proposed use of astatine-210 in preclinical study. Astatine-210 has higher yield of production and is easier to quantify than astatine-211. We produced astatine-210 with Bi target and 40 MeV alpha beam accelerated by cyclotron, free astatine-210 was separated and injected to normal rats. Three male rats (blocking group) were injected non-radioactive iodide before injection of astatine-210. Compared with the control group, the astatine-210 accumulations in the blocking group decreased to 24% in the thyroid.
Collapse
Affiliation(s)
- Hayato Ikeda
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiko Hayashi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Naruto Takahashi
- Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasukazu Kanai
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Shinohara
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Kato
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Watabe
- Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Eku Shimosegawa
- Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, 565-0871 Osaka, Japan.
| |
Collapse
|
3
|
Taborda A, Benabdallah N, Desbrée A. Dosimetry at the sub-cellular scale of Auger-electron emitter 99mTc in a mouse single thyroid follicle. Appl Radiat Isot 2015; 108:58-63. [PMID: 26704702 DOI: 10.1016/j.apradiso.2015.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/26/2015] [Accepted: 12/03/2015] [Indexed: 11/26/2022]
Abstract
The Auger-electrons emitted by (99m)Tc have been recently associated with the induction of thyroid stunning in in vivo experiments in mice, making the dosimetry at the sub-cellular level of (99m)Tc a pertinent and pressing subject. The S-values for (99m)Tc were calculated using MCNP6, which was first validated for studies at the sub-cellular scale and for low energies electrons. The calculation was then performed for (99m)Tc within different cellular compartments in a single mouse thyroid follicle model, considering the radiative and non-radiative transitions of the (99m)Tc radiation spectrum. It was shown that the contribution of the (99m)Tc Auger and low energy electrons to the absorbed dose to the follicular cells' nucleus is important, being at least of the same order of magnitude compared to the emitted photons' contribution and cannot be neglected. The results suggest that Auger-electrons emitted by (99m)Tc play a significant role in the occurrence of the thyroid stunning effect in mice.
Collapse
Affiliation(s)
- A Taborda
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 31, Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses, France.
| | - N Benabdallah
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 31, Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses, France
| | - A Desbrée
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SDI/LEDI, BP-17, 31, Avenue de la Division Leclerc, 92262 Fontenay-aux-Roses, France
| |
Collapse
|
4
|
Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration. PLoS One 2015; 10:e0131686. [PMID: 26177204 PMCID: PMC4503762 DOI: 10.1371/journal.pone.0131686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/04/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland. METHODS BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value <0.01 and fold change >1.5, and p-value <0.05, respectively. RESULTS In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy).
Collapse
|
5
|
Langen B, Rudqvist N, Parris TZ, Schüler E, Spetz J, Helou K, Forssell-Aronsson E. Transcriptional response in normal mouse tissues after i.v. (211)At administration - response related to absorbed dose, dose rate, and time. EJNMMI Res 2015; 5:1. [PMID: 25853007 PMCID: PMC4384707 DOI: 10.1186/s13550-014-0078-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/15/2014] [Indexed: 01/26/2023] Open
Abstract
Background In cancer radiotherapy, knowledge of normal tissue responses and toxicity risks is essential in order to deliver the highest possible absorbed dose to the tumor while maintaining normal tissue exposure at non-critical levels. However, few studies have investigated normal tissue responses in vivo after 211At administration. In order to identify molecular biomarkers of ionizing radiation exposure, we investigated genome-wide transcriptional responses to (very) low mean absorbed doses from 211At in normal mouse tissues. Methods Female BALB/c nude mice were intravenously injected with 1.7 kBq 211At and killed after 1 h, 6 h, or 7 days or injected with 105 or 7.5 kBq and killed after 1 and 6 h, respectively. Controls were mock-treated. Total RNA was extracted from tissue samples of kidney cortex and medulla, liver, lungs, and spleen and subjected to microarray analysis. Enriched biological processes were categorized after cellular function based on Gene Ontology terms. Results Responses were tissue-specific with regard to the number of significantly regulated transcripts and associated cellular function. Dose rate effects on transcript regulation were observed with both direct and inverse trends. In several tissues, Angptl4, Per1 and Per2, and Tsc22d3 showed consistent transcript regulation at all exposure conditions. Conclusions This study demonstrated tissue-specific transcriptional responses and distinct dose rate effects after 211At administration. Transcript regulation of individual genes, as well as cellular responses inferred from enriched transcript data, may serve as biomarkers in vivo. These findings expand the knowledge base on normal tissue responses and may help to evaluate and limit side effects of radionuclide therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13550-014-0078-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden ; Department of Applied Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Nils Rudqvist
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Emil Schüler
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Johan Spetz
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| |
Collapse
|
6
|
Josefsson A, Forssell-Aronsson E. Dosimetric analysis of (123)I, (125)I and (131)I in thyroid follicle models. EJNMMI Res 2014; 4:23. [PMID: 25006543 PMCID: PMC4078321 DOI: 10.1186/s13550-014-0023-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/15/2014] [Indexed: 11/13/2022] Open
Abstract
Background Radioiodine is routinely used or proposed for diagnostic and therapeutic purposes: 123I, 125I and 131I for diagnostics and 125I and 131I for therapy. When radioiodine-labelled pharmaceuticals are administered to the body, radioiodide might be released into the circulation and taken up by the thyroid gland, which may then be an organ at risk. The aim of this study was to compare dosimetric properties for 123I, 125I and 131I in previously developed thyroid models for man, rat and mouse. Methods Dosimetric calculations were performed using the Monte Carlo code MCNPX 2.6.0 and nuclear decay data from ICRP 107. Only the non-radiative transitions in the decays were considered. The S value was determined for the cell nuclei in species-specific thyroid follicle models for mouse, rat and man for different spatial distributions of radioiodine. Results For the species-specific single follicle models with radioiodine homogeneously within the follicle lumen, the highest S value came from 131I, with the largest contribution from the β particles. When radioiodine was homogeneously distributed within the follicle cells or the follicle cell nucleus, the highest contribution originated from 125I, about two times higher than 123I, with the largest contribution from the Auger electrons. The mean absorbed dose calculated for our human thyroid multiple follicle model, assuming homogenous distribution of for 123I, 125I, or 131I within the follicle lumens and follicle cells, was 9%, 18% and 4% higher, respectively, compared with the mean absorbed dose according to Medical Internal Radiation Dose (MIRD) formalism and nuclear decay data. When radioiodine was homogeneously distributed in the follicle lumens, our calculations gave up to 90% lower mean absorbed dose for 125I compared to MIRD (20% lower for 123I, and 2% lower for 131I). Conclusions This study clearly demonstrates the importance of using more detailed dosimetric methods and models than MIRD formalism for radioiodine, especially 123I and 125I, in the thyroid. For radioiodine homogeneously distributed in the follicle lumens our calculations for the human multiple follicle models gave up to 90% lower mean absorbed dose compared with MIRD formalism.
Collapse
Affiliation(s)
- Anders Josefsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Centre, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 413 45, Sweden
| | - Eva Forssell-Aronsson
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Centre, Sahlgrenska Academy at the University of Gothenburg, Gothenburg 413 45, Sweden
| |
Collapse
|
7
|
Spetz J, Rudqvist N, Forssell-Aronsson E. Biodistribution and dosimetry of free 211At, 125I- and 131I- in rats. Cancer Biother Radiopharm 2013; 28:657-64. [PMID: 23789969 DOI: 10.1089/cbr.2013.1483] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
131I is widely used for therapy in the clinic and 125I and 131I, and increasingly 211At, are often used in experimental studies. It is important to know the biodistribution and dosimetry for these radionuclides to determine potential risk organs when using radiopharmaceuticals containing these radionuclides. The purpose of this study was to investigate the biodistribution of 125I-, 131I-, and free 211At in rats and to determine absorbed doses to various organs and tissues. Male Sprague Dawley rats were injected simultaneously with 0.1-0.3 MBq 125I- and 0.1-0.3 MBq 131I-, or 0.05-0.2 MBq 211At and sacrificed 1 hour to 7 days after injection. The activities and activity concentrations in organs and tissues were determined and mean absorbed doses were calculated. The biodistribution of 125I- was similar to that of 131I- but the biodistribution of free 211At was different compared to 125I- and 131I-. The activity concentration of radioiodine was higher compared with 211At in the thyroid and lower in all extrathyroidal tissues. The mean absorbed dose per unit injected activity was highest to the thyroid. 131I gave the highest absorbed dose to the thyroid, and 211At gave the highest absorbed dose to all other tissues studied.
Collapse
Affiliation(s)
- Johan Spetz
- Department of Radiation Physics, Sahlgrenska Academy at the University of Gothenburg , Gothenburg, Sweden
| | | | | |
Collapse
|
8
|
Langen B, Rudqvist N, Parris TZ, Schüler E, Helou K, Forssell-Aronsson E. Comparative analysis of transcriptional gene regulation indicates similar physiologic response in mouse tissues at low absorbed doses from intravenously administered 211At. J Nucl Med 2013; 54:990-8. [PMID: 23658216 DOI: 10.2967/jnumed.112.114462] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED (211)At is a promising therapeutic radionuclide because of the nearly optimal biological effectiveness of emitted α-particles. Unbound (211)At accumulates in the thyroid gland and in other vital normal tissues. However, few studies have been performed that assess the (211)At-induced normal-tissue damage in vivo. Knowledge about the extent and quality of resulting responses in various organs offers a new venue for reducing risks and side effects and increasing the overall well-being of the patient during and after therapy. METHODS Female BALB/c nude mice were injected intravenously with 0.064-42 kBq of (211)At or mock-treated, and the kidneys, liver, lungs, and spleen were excised 24 h after injection. A transcriptional gene expression analysis was performed in triplicate using RNA microarray technology. Biological processes associated with regulated transcripts were grouped into 8 main categories with 31 subcategories according to gene ontology terms for comparison of regulatory profiles. RESULTS A substantial decrease in the total number of regulated transcripts was observed between 0.64 and 1.8 kBq of (211)At for all investigated tissues. Few genes were differentially regulated in each tissue at all absorbed doses. In all tissues, most of these genes showed a nonmonotonous dependence on absorbed dose. However, the direction of regulation generally remained uniform for a given gene. Few known radiation-associated genes were regulated on the transcriptional level, and their expression profile generally appeared to be dose-independent and tissue-specific. The regulatory profiles of categorized biological processes were tissue-specific and reflected the shift in regulatory intensity between 0.64 and 1.8 kBq of (211)At. The profiles revealed strongly regulated and nonregulated subcategories. CONCLUSION The strong regulatory change observed between 0.64 and 1.8 kBq is hypothesized to result not only from low-dose effects in each tissue but also from physiologic responses to ionizing radiation-induced damage to, for example, the (211)At-accumulating thyroid gland. The presented results demonstrate the complexity of responses to radionuclides in vivo and highlight the need for further research to also consider physiology in ionizing radiation-induced responses.
Collapse
Affiliation(s)
- Britta Langen
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | | | | | | | | | | |
Collapse
|