1
|
Ramos-Figueroa JS, Tse TJ, Shen J, Purdy SK, Kim JK, Kim YJ, Han BK, Hong JY, Shim YY, Reaney MJT. Foaming with Starch: Exploring Faba Bean Aquafaba as a Green Alternative. Foods 2023; 12:3391. [PMID: 37761100 PMCID: PMC10527718 DOI: 10.3390/foods12183391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The demand for sustainable and functional plant-based products is on the rise. Plant proteins and polysaccharides often provide emulsification and stabilization properties to food and food ingredients. Recently, chickpea cooking water, also known as aquafaba, has gained popularity as a substitute for egg whites in sauces, food foams, and baked goods due to its foaming and emulsifying capacities. This study presents a modified eco-friendly process to obtain process water from faba beans and isolate and characterize the foam-inducing components. The isolated material exhibits similar functional properties, such as foaming capacity, to aquafaba obtained by cooking pulses. To isolate the foam-inducing component, the faba bean process water was mixed with anhydrous ethanol, and a precipitated fraction was obtained. The precipitate was easily dissolved, and solutions prepared with the alcohol precipitate retained the foaming capacity of the original extract. Enzymatic treatment with α-amylase or protease resulted in reduced foaming capacity, indicating that both protein and carbohydrates contribute to the foaming capacity. The dried precipitate was found to be 23% protein (consisting of vicilin, α-legumin, and β-legumin) and 77% carbohydrate (amylose). Future investigations into the chemical structure of this foam-inducing agent can inform the development of foaming agents through synthetic or enzymatic routes. Overall, this study provides a potential alternative to aquafaba and highlights the importance of exploring plant-based sources for functional ingredients in the food industry.
Collapse
Affiliation(s)
- Josseline S. Ramos-Figueroa
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada (M.J.T.R.)
| | - Timothy J. Tse
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada (M.J.T.R.)
| | - Jianheng Shen
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada (M.J.T.R.)
| | - Sarah K. Purdy
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada (M.J.T.R.)
| | - Jae Kyeom Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea; (J.K.K.); (Y.J.K.); (B.K.H.); (J.Y.H.)
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea; (J.K.K.); (Y.J.K.); (B.K.H.); (J.Y.H.)
| | - Bok Kyung Han
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea; (J.K.K.); (Y.J.K.); (B.K.H.); (J.Y.H.)
| | - Ji Youn Hong
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea; (J.K.K.); (Y.J.K.); (B.K.H.); (J.Y.H.)
| | - Youn Young Shim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada (M.J.T.R.)
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea; (J.K.K.); (Y.J.K.); (B.K.H.); (J.Y.H.)
| | - Martin J. T. Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada (M.J.T.R.)
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea; (J.K.K.); (Y.J.K.); (B.K.H.); (J.Y.H.)
| |
Collapse
|
2
|
Yumoto E, Yanagihara N, Asahina M. The simple and rapid quantification method for L-3,4-dihydroxyphenylalanine (L-DOPA) from plant sprout using liquid chromatography-mass spectrometry. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:199-204. [PMID: 35937524 PMCID: PMC9300427 DOI: 10.5511/plantbiotechnology.21.1126a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/26/2021] [Indexed: 05/09/2023]
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA) is one of the important secondary metabolites of plants and has been used for various purposes, such as in clinical treatment for Parkinson's disease and dopamine-responsive dystonia. In plants, L-DOPA is a precursor of many alkaloids, catecholamines, and melanin; the L-DOPA synthesis pathway is similar to that in mammals. L-DOPA acts as an allelochemical, has an important role in several biological processes, such as stress response and metabolism, in plants. L-DOPA is widely used in the clinical treatment as well as a dietary supplement or psychotropic drug, understanding of biosynthesis of L-DOPA in plant could lead to a stable supply of L-DOPA. This paper describes an improved method for simple and rapid quantification of L-DOPA content using liquid chromatography-tandem mass spectrometry. The standard quantitative methods for L-DOPA require multiple purification steps or relatively large amounts of plant material. In our improved method, quantification of L-DOPA was possible with extract of one-two pieces of cotyledon without any partitioning or column for purification. The endogenous L-DOPA (approximately 4,000 µg g-1 FW (fresh weight)) could be detected from the one pieces of cotyledon of the faba bean sprout using this method. This method was also effective for samples with low endogenous amounts of L-DOPA such as broccoli, Japanese white radish, pea, and red cabbage sprouts. Therefore, this improved method will allow to measurement of L-DOPA content easily and accurately from a small amount of plant tissue and contribute to understanding biosynthesis, catabolism, and transport of L-DOPA.
Collapse
Affiliation(s)
- Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Naohisa Yanagihara
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Masashi Asahina
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
- E-mail: Tel: +81-28-627-7182 Fax: +81-28-627-7187
| |
Collapse
|
3
|
Naha A, Jha SK, Singh HR, Sampath MK. Kinetic modeling and statistical optimization of submerged production of anti-Parkinson's prodrug L-DOPA by Pseudomonas fluorescens. Prep Biochem Biotechnol 2021; 52:331-343. [PMID: 34283005 DOI: 10.1080/10826068.2021.1945624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
L-DOPA, a precursor of dopamine, is the drug of choice for Parkinson's disease, which persists due to decreased levels of dopamine in the brain. Present study emphasis the microbial production of L-DOPA rather than the biotransformation of L-DOPA by L-tyrosine. The production of L-DOPA by bacterial isolates had gained more acceptance due to its more straightforward extraction and downstream processes. Pseudomonas fluorescens was used to produce the L-DOPA in a bioreactor system under submerged condition. The design of experiment-based Taguchi orthogonal array method was adopted for the optimization of production. L-9 orthogonal array using the analysis of mean approach was used to study the effect of different factors viz NaCl, lactose, tryptone, and inducer on the microbial production of L-DOPA. The method mentioned above is less time consuming and does not require any harsh chemicals, proving it to be an eco-friendly process. After optimizing selected factors, i.e., NaCl (1.2 g/l), lactose (1.5 g/l), tryptone (4 g/l), and inducer (0.1 g/l), 16.9 % of enhancement in L-DOPA production with 66.6% of process cost saving was observed. The production of L-DOPA was increased from 3.426 ± 0.08 g/l to 4.123 ± 0.05 g/l after optimization. Subsequently, unstructured kinetic models were adopted to simulate the fermentation kinetics and understand the metabolic process. Fisher' F test and determination coefficients (R2) confirmed that the Velhurst-Pearl logistic equation, Luedeking-Piret equation, and modified Luedeking-Piret equation was best fitted with the biomass production, product formation, and substrate utilization, respectively.
Collapse
Affiliation(s)
- Ananya Naha
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, India
| | - Santosh Kumar Jha
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, India
| | - Hare Ram Singh
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, India
| | - Muthu Kumar Sampath
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
4
|
Accumulation of l-DOPA in various organs of faba bean and influence of drought, nitrogen stress, and processing methods on l-DOPA yield. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Jhample SB, Bhagwat PK, Dandge PB. Statistical media optimization for enhanced production of fibrinolytic enzyme from newly isolated Proteus penneri SP-20. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|