1
|
Fonseca P, Ross M, Cerny A, Anderer P, Schipper F, Grassi A, van Gilst M, Overeem S. Estimating the Severity of Obstructive Sleep Apnea Using ECG, Respiratory Effort and Neural Networks. IEEE J Biomed Health Inform 2024; 28:3895-3906. [PMID: 38551823 DOI: 10.1109/jbhi.2024.3383240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
OBJECTIVE wearable sensor technology has progressed significantly in the last decade, but its clinical usability for the assessment of obstructive sleep apnea (OSA) is limited by the lack of large and representative datasets simultaneously acquired with polysomnography (PSG). The objective of this study was to explore the use of cardiorespiratory signals common in standard PSGs which can be easily measured with wearable sensors, to estimate the severity of OSA. METHODS an artificial neural network was developed for detecting sleep disordered breathing events using electrocardiogram (ECG) and respiratory effort. The network was combined with a previously developed cardiorespiratory sleep staging algorithm and evaluated in terms of sleep staging classification performance, apnea-hypopnea index (AHI) estimation, and OSA severity estimation against PSG on a cohort of 653 participants with a wide range of OSA severity. RESULTS four-class sleep staging achieved a κ of 0.69 versus PSG, distinguishing wake, combined N1-N2, N3 and REM. AHI estimation achieved an intraclass correlation coefficient of 0.91, and high diagnostic performance for different OSA severity thresholds. CONCLUSIONS this study highlights the potential of using cardiorespiratory signals to estimate OSA severity, even without the need for airflow or oxygen saturation (SpO2), traditionally used for assessing OSA. SIGNIFICANCE while further research is required to translate these findings to practical and unobtrusive sensors, this study demonstrates how existing, large datasets can serve as a foundation for wearable systems for OSA monitoring. Ultimately, this approach could enable long-term assessment of sleep disordered breathing, facilitating new avenues for clinical research in this field.
Collapse
|
2
|
Xie J, Fonseca P, van Dijk J, Overeem S, Long X. A multi-task learning model using RR intervals and respiratory effort to assess sleep disordered breathing. Biomed Eng Online 2024; 23:45. [PMID: 38705982 PMCID: PMC11070105 DOI: 10.1186/s12938-024-01240-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Sleep-disordered breathing (SDB) affects a significant portion of the population. As such, there is a need for accessible and affordable assessment methods for diagnosis but also case-finding and long-term follow-up. Research has focused on exploiting cardiac and respiratory signals to extract proxy measures for sleep combined with SDB event detection. We introduce a novel multi-task model combining cardiac activity and respiratory effort to perform sleep-wake classification and SDB event detection in order to automatically estimate the apnea-hypopnea index (AHI) as severity indicator. METHODS The proposed multi-task model utilized both convolutional and recurrent neural networks and was formed by a shared part for common feature extraction, a task-specific part for sleep-wake classification, and a task-specific part for SDB event detection. The model was trained with RR intervals derived from electrocardiogram and respiratory effort signals. To assess performance, overnight polysomnography (PSG) recordings from 198 patients with varying degree of SDB were included, with manually annotated sleep stages and SDB events. RESULTS We achieved a Cohen's kappa of 0.70 in the sleep-wake classification task, corresponding to a Spearman's correlation coefficient (R) of 0.830 between the estimated total sleep time (TST) and the TST obtained from PSG-based sleep scoring. Combining the sleep-wake classification and SDB detection results of the multi-task model, we obtained an R of 0.891 between the estimated and the reference AHI. For severity classification of SBD groups based on AHI, a Cohen's kappa of 0.58 was achieved. The multi-task model performed better than a single-task model proposed in a previous study for AHI estimation, in particular for patients with a lower sleep efficiency (R of 0.861 with the multi-task model and R of 0.746 with single-task model with subjects having sleep efficiency < 60%). CONCLUSION Assisted with automatic sleep-wake classification, our multi-task model demonstrated proficiency in estimating AHI and assessing SDB severity based on AHI in a fully automatic manner using RR intervals and respiratory effort. This shows the potential for improving SDB screening with unobtrusive sensors also for subjects with low sleep efficiency without adding additional sensors for sleep-wake detection.
Collapse
Affiliation(s)
- Jiali Xie
- Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands.
- Department of Electrical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Eindhoven MedTech Innovaton Center (e/MTIC), P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Pedro Fonseca
- Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
- Philips Research, High Tech Campus, 5656 AE, Eindhoven, The Netherlands
- Eindhoven MedTech Innovaton Center (e/MTIC), P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Johannes van Dijk
- Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, 5591 VE, Heeze, The Netherlands
- Department of Orthodontics, Ulm University, 89081, Ulm, Germany
- Eindhoven MedTech Innovaton Center (e/MTIC), P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Sebastiaan Overeem
- Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, 5591 VE, Heeze, The Netherlands
- Eindhoven MedTech Innovaton Center (e/MTIC), P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Xi Long
- Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
- Eindhoven MedTech Innovaton Center (e/MTIC), P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
3
|
Wulterkens BM, Den Teuling NGP, Hermans LWA, Asin J, Duis N, Overeem S, Fonseca P, van Gilst MM. Multi-night home assessment of sleep structure in OSA with and without insomnia. Sleep Med 2024; 117:152-161. [PMID: 38547592 DOI: 10.1016/j.sleep.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/07/2024] [Accepted: 03/17/2024] [Indexed: 04/16/2024]
Abstract
OBJECTIVE To explore sleep structure in participants with obstructive sleep apnea (OSA) and comorbid insomnia (COMISA) and participants with OSA without insomnia (OSA-only) using both single-night polysomnography and multi-night wrist-worn photoplethysmography/accelerometry. METHODS Multi-night 4-class sleep-staging was performed with a validated algorithm based on actigraphy and heart rate variability, in 67 COMISA (23 women, median age: 51 years) and 50 OSA-only (15 women, median age: 51) participants. Sleep statistics were compared using linear regression models and mixed-effects models. Multi-night variability was explored using a clustering approach and between- and within-participant analysis. RESULTS Polysomnographic parameters showed no significant group differences. Multi-night measurements, during 13.4 ± 5.2 nights per subject, demonstrated a longer sleep onset latency and lower sleep efficiency for the COMISA group. Detailed analysis of wake parameters revealed longer mean durations of awakenings in COMISA, as well as higher numbers of awakenings lasting 5 min and longer (WKN≥5min) and longer wake after sleep onset containing only awakenings of 5 min or longer. Within-participant variance was significantly larger in COMISA for sleep onset latency, sleep efficiency, mean duration of awakenings and WKN≥5min. Unsupervised clustering uncovered three clusters; participants with consistently high values for at least one of the wake parameters, participants with consistently low values, and participants displaying higher variability. CONCLUSION Patients with COMISA more often showed extended, and more variable periods of wakefulness. These observations were not discernible using single night polysomnography, highlighting the relevance of multi-night measurements to assess characteristics indicative for insomnia.
Collapse
Affiliation(s)
- Bernice M Wulterkens
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Philips Sleep and Respiratory Care, Eindhoven, the Netherlands.
| | | | - Lieke W A Hermans
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Jerryll Asin
- Center for Sleep Medicine, Amphia Hospital, Breda, the Netherlands
| | - Nanny Duis
- Center for Sleep Medicine, Amphia Hospital, Breda, the Netherlands
| | - Sebastiaan Overeem
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Sleep Medicine Center Kempenhaeghe, Heeze, the Netherlands
| | - Pedro Fonseca
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Philips Sleep and Respiratory Care, Eindhoven, the Netherlands
| | - Merel M van Gilst
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Sleep Medicine Center Kempenhaeghe, Heeze, the Netherlands
| |
Collapse
|
4
|
Wulterkens BM, Hermans LWA, Fonseca P, Janssen HCJP, van Hirtum PV, Overeem S, van Gilst MM. Heart rate response to cortical arousals in patients with isolated obstructive sleep apnea and with comorbid insomnia (COMISA). Sleep Breath 2024; 28:735-744. [PMID: 38062226 DOI: 10.1007/s11325-023-02954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 05/31/2024]
Abstract
PURPOSE Comorbid insomnia often occurs in patients with obstructive sleep apnea (OSA), referred to as COMISA. Cortical arousals manifest as a common feature in both OSA and insomnia, often accompanied by elevated heart rate (HR). Our objective was to evaluate the heart rate response to nocturnal cortical arousals in patients with COMISA and patients with OSA alone. METHODS We analyzed data from patients with COMISA and from patients with OSA matched for apnea-hypopnea index. Sleep staging and analysis of respiratory events and cortical arousals were performed using the Philips Somnolyzer automatic scoring system. Beat-by-beat HR was analyzed from the onset of the cortical arousal to 30 heartbeats afterwards. HR responses were divided into peak and recovery phases. Cortical arousals were separately evaluated according to subtype (related to respiratory events and spontaneous) and duration (3-6 s, 6-10 s, 10-15 s). RESULTS A total of 72 patients with COMISA and 72 patients with OSA were included in this study. There were no overall group differences in the number of cortical arousals with and without autonomic activation. No significant differences were found for spontaneous cortical arousals. The OSA group had more cortical arousals related to respiratory events (21.0 [14.8-30.0] vs 16.0 [9.0-27.0], p = 0.016). However, the COMISA group had longer cortical arousals (7.2 [6.4-7.8] vs 6.7 [6.2-7.7] s, p = 0.024) and the HR recovery phase was prolonged (52.5 [30.8-82.5] vs 40.0 [21.8-55.5] beats/min, p = 0.017). Both the peak and the recovery phase for longer cortical arousals with a duration of 10-15 s were significantly higher in patients with COMISA compared to patients with OSA (47.0 [27.0-97.5] vs 34.0 [21.0-71.0] beats/min, p = 0.032 and 87.0 [47.0-132.0] vs 71.0 [43.0-103.5] beats/min, p = 0.049, respectively). CONCLUSIONS The HR recovery phase after cortical arousals related to respiratory events is prolonged in patients with COMISA compared to patients with OSA alone. This response could be indicative of the insomnia component in COMISA.
Collapse
Affiliation(s)
- Bernice M Wulterkens
- Department of Electrical Engineering, Eindhoven University of Technology, PO BOX 513, Eindhoven, 5600 MB, The Netherlands.
- Philips Research, Eindhoven, The Netherlands.
| | | | - Pedro Fonseca
- Department of Electrical Engineering, Eindhoven University of Technology, PO BOX 513, Eindhoven, 5600 MB, The Netherlands
- Philips Research, Eindhoven, The Netherlands
| | | | | | - Sebastiaan Overeem
- Department of Electrical Engineering, Eindhoven University of Technology, PO BOX 513, Eindhoven, 5600 MB, The Netherlands
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands
| | - Merel M van Gilst
- Department of Electrical Engineering, Eindhoven University of Technology, PO BOX 513, Eindhoven, 5600 MB, The Netherlands
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands
| |
Collapse
|
5
|
Hermans L, van Meulen F, Anderer P, Ross M, Cerny A, van Gilst M, Overeem S, Fonseca P. Performance of cardiorespiratory-based sleep staging in patients using beta blockers. J Clin Sleep Med 2024; 20:575-581. [PMID: 38063156 PMCID: PMC10985295 DOI: 10.5664/jcsm.10938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 04/04/2024]
Abstract
STUDY OBJECTIVES Automatic sleep staging based on cardiorespiratory signals from home sleep monitoring devices holds great clinical potential. Using state-of-the-art machine learning, promising performance has been reached in patients with sleep disorders. However, it is unknown whether performance would hold in individuals with potentially altered autonomic physiology, for example under the influence of medication. Here, we assess an existing sleep staging algorithm in patients with sleep disorders with and without the use of beta blockers. METHODS We analyzed a retrospective dataset of sleep recordings of 57 patients with sleep disorders using beta blockers and 57 age-matched patients with sleep disorders not using beta blockers. Sleep stages were automatically scored based on electrocardiography and respiratory effort from a thoracic belt, using a previously developed machine-learning algorithm (CReSS algorithm). For both patient groups, sleep stages classified by the model were compared to gold standard manual polysomnography scoring using epoch-by-epoch agreement. Additionally, for both groups, overall sleep parameters were calculated and compared between the two scoring methods. RESULTS Substantial agreement was achieved for four-class sleep staging in both patient groups (beta blockers: kappa = 0.635, accuracy = 78.1%; controls: kappa = 0.660, accuracy = 78.8%). No statistical difference in epoch-by-epoch agreement was found between the two groups. Additionally, the groups did not differ on agreement of derived sleep parameters. CONCLUSIONS We showed that the performance of the CReSS algorithm is not deteriorated in patients using beta blockers. Results do not indicate a fundamental limitation in leveraging autonomic characteristics to obtain a surrogate measure of sleep in this clinically relevant population. CITATION Hermans L, van Meulen F, Anderer P, et al. Performance of cardiorespiratory-based sleep staging in patients using beta blockers. J Clin Sleep Med. 2024;20(4):575-581.
Collapse
Affiliation(s)
- Lieke Hermans
- Philips Research, Eindhoven, The Netherlands
- Department of Electrical Engineering, TU/e Eindhoven, Eindhoven, The Netherlands
| | - Fokke van Meulen
- Department of Electrical Engineering, TU/e Eindhoven, Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands
| | - Peter Anderer
- Philips Sleep and Respiratory Care, Vienna, Austria
- The Siesta Group Schlafanalyse GmbH, Vienna, Austria
| | - Marco Ross
- Department of Electrical Engineering, TU/e Eindhoven, Eindhoven, The Netherlands
- Philips Sleep and Respiratory Care, Vienna, Austria
- The Siesta Group Schlafanalyse GmbH, Vienna, Austria
| | | | - Merel van Gilst
- Department of Electrical Engineering, TU/e Eindhoven, Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands
| | - Sebastiaan Overeem
- Department of Electrical Engineering, TU/e Eindhoven, Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands
| | - Pedro Fonseca
- Philips Research, Eindhoven, The Netherlands
- Department of Electrical Engineering, TU/e Eindhoven, Eindhoven, The Netherlands
| |
Collapse
|
6
|
Ross M, Fonseca P, Overeem S, Vasko R, Cerny A, Shaw E, Anderer P. Autonomic arousal detection and cardio-respiratory sleep staging improve the accuracy of home sleep apnea tests. Front Physiol 2023; 14:1254679. [PMID: 37693002 PMCID: PMC10484584 DOI: 10.3389/fphys.2023.1254679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction: The apnea-hypopnea index (AHI), defined as the number of apneas and hypopneas per hour of sleep, is still used as an important index to assess sleep disordered breathing (SDB) severity, where hypopneas are confirmed by the presence of an oxygen desaturation or an arousal. Ambulatory polygraphy without neurological signals, often referred to as home sleep apnea testing (HSAT), can potentially underestimate the severity of sleep disordered breathing (SDB) as sleep and arousals are not assessed. We aim to improve the diagnostic accuracy of HSATs by extracting surrogate sleep and arousal information derived from autonomic nervous system activity with artificial intelligence. Methods: We used polysomnographic (PSG) recordings from 245 subjects (148 with simultaneously recorded HSATs) to develop and validate a new algorithm to detect autonomic arousals using artificial intelligence. A clinically validated auto-scoring algorithm (Somnolyzer) scored respiratory events, cortical arousals, and sleep stages in PSGs, and provided respiratory events and sleep stages from cardio-respiratory signals in HSATs. In a four-fold cross validation of the newly developed algorithm, we evaluated the accuracy of the estimated arousal index and HSAT-derived surrogates for the AHI. Results: The agreement between the autonomic and cortical arousal index was moderate to good with an intraclass correlation coefficient of 0.73. When using thresholds of 5, 15, and 30 to categorize SDB into none, mild, moderate, and severe, the addition of sleep and arousal information significantly improved the classification accuracy from 70.2% (Cohen's κ = 0.58) to 80.4% (κ = 0.72), with a significant reduction of patients where the severity category was underestimated from 18.8% to 7.3%. Discussion: Extracting sleep and arousal information from autonomic nervous system activity can improve the diagnostic accuracy of HSATs by significantly reducing the probability of underestimating SDB severity without compromising specificity.
Collapse
Affiliation(s)
- Marco Ross
- Philips Sleep and Respiratory Care, Vienna, Austria
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Pedro Fonseca
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Philips Research, Eindhoven, Netherlands
| | - Sebastiaan Overeem
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Sleep Medicine Center Kempenhaeghe, Heeze, Netherlands
| | - Ray Vasko
- Philips Sleep and Respiratory Care, Pittsburgh, PA, United States
| | | | - Edmund Shaw
- Philips Sleep and Respiratory Care, Pittsburgh, PA, United States
| | | |
Collapse
|
7
|
Xie J, Fonseca P, van Dijk JP, Long X, Overeem S. The Use of Respiratory Effort Improves an ECG-Based Deep Learning Algorithm to Assess Sleep-Disordered Breathing. Diagnostics (Basel) 2023; 13:2146. [PMID: 37443540 DOI: 10.3390/diagnostics13132146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Sleep apnea is a prevalent sleep-disordered breathing (SDB) condition that affects a large population worldwide. Research has demonstrated the potential of using electrocardiographic (ECG) signals (heart rate and ECG-derived respiration, EDR) to detect SDB. However, EDR may be a suboptimal replacement for respiration signals. METHODS We evaluated a previously described ECG-based deep learning algorithm in an independent dataset including 198 patients and compared performance for SDB event detection using thoracic respiratory effort versus EDR. We also evaluated the algorithm in terms of apnea-hypopnea index (AHI) estimation performance, and SDB severity classification based on the estimated AHI. RESULTS Using respiratory effort instead of EDR, we achieved an improved performance in SDB event detection (F1 score = 0.708), AHI estimation (Spearman's correlation = 0.922), and SDB severity classification (Cohen's kappa of 0.62 was obtained based on AHI). CONCLUSION Respiratory effort is superior to EDR to assess SDB. Using respiratory effort and ECG, the previously described algorithm achieves good performance in a new dataset from an independent laboratory confirming its adequacy for this task.
Collapse
Affiliation(s)
- Jiali Xie
- Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Pedro Fonseca
- Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Philips Research, High Tech Campus, 5656 AE Eindhoven, The Netherlands
| | - Johannes P van Dijk
- Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, 5591 VE Heeze, The Netherlands
- Department of Orthodontics, Ulm University, 89081 Ulm, Germany
| | - Xi Long
- Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Philips Research, High Tech Campus, 5656 AE Eindhoven, The Netherlands
| | - Sebastiaan Overeem
- Biomedical Diagnostics Lab, Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, 5591 VE Heeze, The Netherlands
| |
Collapse
|
8
|
Fonseca P, Ross M, Cerny A, Anderer P, van Meulen F, Janssen H, Pijpers A, Dujardin S, van Hirtum P, van Gilst M, Overeem S. A computationally efficient algorithm for wearable sleep staging in clinical populations. Sci Rep 2023; 13:9182. [PMID: 37280297 PMCID: PMC10244431 DOI: 10.1038/s41598-023-36444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/03/2023] [Indexed: 06/08/2023] Open
Abstract
This study describes a computationally efficient algorithm for 4-class sleep staging based on cardiac activity and body movements. Using an accelerometer to calculate gross body movements and a reflective photoplethysmographic (PPG) sensor to determine interbeat intervals and a corresponding instantaneous heart rate signal, a neural network was trained to classify between wake, combined N1 and N2, N3 and REM sleep in epochs of 30 s. The classifier was validated on a hold-out set by comparing the output against manually scored sleep stages based on polysomnography (PSG). In addition, the execution time was compared with that of a previously developed heart rate variability (HRV) feature-based sleep staging algorithm. With a median epoch-per-epoch κ of 0.638 and accuracy of 77.8% the algorithm achieved an equivalent performance when compared to the previously developed HRV-based approach, but with a 50-times faster execution time. This shows how a neural network, without leveraging any a priori knowledge of the domain, can automatically "discover" a suitable mapping between cardiac activity and body movements, and sleep stages, even in patients with different sleep pathologies. In addition to the high performance, the reduced complexity of the algorithm makes practical implementation feasible, opening up new avenues in sleep diagnostics.
Collapse
Affiliation(s)
- Pedro Fonseca
- Philips Research Eindhoven, High Tech Campus 34, 5656AE, Eindhoven, The Netherlands.
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Marco Ross
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Sleep and Respiratory Care, Philips Austria GmbH, Vienna, Austria
| | - Andreas Cerny
- Sleep and Respiratory Care, Philips Austria GmbH, Vienna, Austria
| | - Peter Anderer
- Sleep and Respiratory Care, Philips Austria GmbH, Vienna, Austria
| | - Fokke van Meulen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands
| | - Hennie Janssen
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands
| | | | | | | | - Merel van Gilst
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands
| | - Sebastiaan Overeem
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, Heeze, The Netherlands
| |
Collapse
|
9
|
van Meulen FB, Grassi A, van den Heuvel L, Overeem S, van Gilst MM, van Dijk JP, Maass H, van Gastel MJH, Fonseca P. Contactless Camera-Based Sleep Staging: The HealthBed Study. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010109. [PMID: 36671681 PMCID: PMC9855193 DOI: 10.3390/bioengineering10010109] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Polysomnography (PSG) remains the gold standard for sleep monitoring but is obtrusive in nature. Advances in camera sensor technology and data analysis techniques enable contactless monitoring of heart rate variability (HRV). In turn, this may allow remote assessment of sleep stages, as different HRV metrics indirectly reflect the expression of sleep stages. We evaluated a camera-based remote photoplethysmography (PPG) setup to perform automated classification of sleep stages in near darkness. Based on the contactless measurement of pulse rate variability, we use a previously developed HRV-based algorithm for 3 and 4-class sleep stage classification. Performance was evaluated on data of 46 healthy participants obtained from simultaneous overnight recording of PSG and camera-based remote PPG. To validate the results and for benchmarking purposes, the same algorithm was used to classify sleep stages based on the corresponding ECG data. Compared to manually scored PSG, the remote PPG-based algorithm achieved moderate agreement on both 3 class (Wake-N1/N2/N3-REM) and 4 class (Wake-N1/N2-N3-REM) classification, with average κ of 0.58 and 0.49 and accuracy of 81% and 68%, respectively. This is in range with other performance metrics reported on sensing technologies for wearable sleep staging, showing the potential of video-based non-contact sleep staging.
Collapse
Affiliation(s)
- Fokke B. van Meulen
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, 5591 VE Heeze, The Netherlands
- Correspondence:
| | - Angela Grassi
- Philips Research, 5656 AE Eindhoven, The Netherlands
| | | | - Sebastiaan Overeem
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, 5591 VE Heeze, The Netherlands
| | - Merel M. van Gilst
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, 5591 VE Heeze, The Netherlands
| | - Johannes P. van Dijk
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Sleep Medicine Center Kempenhaeghe, 5591 VE Heeze, The Netherlands
| | - Henning Maass
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Philips Research, 5656 AE Eindhoven, The Netherlands
| | - Mark J. H. van Gastel
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Philips Research, 5656 AE Eindhoven, The Netherlands
| | - Pedro Fonseca
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
- Philips Research, 5656 AE Eindhoven, The Netherlands
| |
Collapse
|
10
|
Radha M, Fonseca P, Moreau A, Ross M, Cerny A, Anderer P, Long X, Aarts RM. A deep transfer learning approach for wearable sleep stage classification with photoplethysmography. NPJ Digit Med 2021; 4:135. [PMID: 34526643 PMCID: PMC8443610 DOI: 10.1038/s41746-021-00510-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/23/2021] [Indexed: 11/21/2022] Open
Abstract
Unobtrusive home sleep monitoring using wrist-worn wearable photoplethysmography (PPG) could open the way for better sleep disorder screening and health monitoring. However, PPG is rarely included in large sleep studies with gold-standard sleep annotation from polysomnography. Therefore, training data-intensive state-of-the-art deep neural networks is challenging. In this work a deep recurrent neural network is first trained using a large sleep data set with electrocardiogram (ECG) data (292 participants, 584 recordings) to perform 4-class sleep stage classification (wake, rapid-eye-movement, N1/N2, and N3). A small part of its weights is adapted to a smaller, newer PPG data set (60 healthy participants, 101 recordings) through three variations of transfer learning. Best results (Cohen's kappa of 0.65 ± 0.11, accuracy of 76.36 ± 7.57%) were achieved with the domain and decision combined transfer learning strategy, significantly outperforming the PPG-trained and ECG-trained baselines. This performance for PPG-based 4-class sleep stage classification is unprecedented in literature, bringing home sleep stage monitoring closer to clinical use. The work demonstrates the merit of transfer learning in developing reliable methods for new sensor technologies by reusing similar, older non-wearable data sets. Further study should evaluate our approach in patients with sleep disorders such as insomnia and sleep apnoea.
Collapse
Affiliation(s)
- Mustafa Radha
- Philips Research, Eindhoven, the Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Pedro Fonseca
- Philips Research, Eindhoven, the Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | | | | | | | | | - Xi Long
- Philips Research, Eindhoven, the Netherlands.
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Ronald M Aarts
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
11
|
Fonseca P, van Gilst MM, Radha M, Ross M, Moreau A, Cerny A, Anderer P, Long X, van Dijk JP, Overeem S. Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population. Sleep 2021; 43:5811423. [PMID: 32249911 DOI: 10.1093/sleep/zsaa048] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
STUDY OBJECTIVES To validate a previously developed sleep staging algorithm using heart rate variability (HRV) and body movements in an independent broad cohort of unselected sleep disordered patients. METHODS We applied a previously designed algorithm for automatic sleep staging using long short-term memory recurrent neural networks to model sleep architecture. The classifier uses 132 HRV features computed from electrocardiography and activity counts from accelerometry. We retrained our algorithm using two public datasets containing both healthy sleepers and sleep disordered patients. We then tested the performance of the algorithm on an independent hold-out validation set of sleep recordings from a wide range of sleep disorders collected in a tertiary sleep medicine center. RESULTS The classifier achieved substantial agreement on four-class sleep staging (wake/N1-N2/N3/rapid eye movement [REM]), with an average κ of 0.60 and accuracy of 75.9%. The performance of the sleep staging algorithm was significantly higher in insomnia patients (κ = 0.62, accuracy = 77.3%). Only in REM parasomnias, the performance was significantly lower (κ = 0.47, accuracy = 70.5%). For two-class wake/sleep classification, the classifier achieved a κ of 0.65, with a sensitivity (to wake) of 72.9% and specificity of 94.0%. CONCLUSIONS This study shows that the combination of HRV, body movements, and a state-of-the-art deep neural network can reach substantial agreement in automatic sleep staging compared with polysomnography, even in patients suffering from a multitude of sleep disorders. The physiological signals required can be obtained in various ways, including non-obtrusive wrist-worn sensors, opening up new avenues for clinical diagnostics.
Collapse
Affiliation(s)
- Pedro Fonseca
- Philips Research, Eindhoven, The Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Merel M van Gilst
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Sleep Medicine Centre Kempenhaeghe, Heeze, The Netherlands
| | - Mustafa Radha
- Philips Research, Eindhoven, The Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Marco Ross
- Sleep and Respiratory Care, Home Healthcare Solutions, Philips Austria GmbH, Vienna, Austria
| | - Arnaud Moreau
- Sleep and Respiratory Care, Home Healthcare Solutions, Philips Austria GmbH, Vienna, Austria
| | - Andreas Cerny
- Sleep and Respiratory Care, Home Healthcare Solutions, Philips Austria GmbH, Vienna, Austria
| | - Peter Anderer
- Sleep and Respiratory Care, Home Healthcare Solutions, Philips Austria GmbH, Vienna, Austria
| | - Xi Long
- Philips Research, Eindhoven, The Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Johannes P van Dijk
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Sleep Medicine Centre Kempenhaeghe, Heeze, The Netherlands
| | - Sebastiaan Overeem
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Sleep Medicine Centre Kempenhaeghe, Heeze, The Netherlands
| |
Collapse
|
12
|
Papini GB, Fonseca P, van Gilst MM, Bergmans JWM, Vullings R, Overeem S. Wearable monitoring of sleep-disordered breathing: estimation of the apnea-hypopnea index using wrist-worn reflective photoplethysmography. Sci Rep 2020; 10:13512. [PMID: 32782313 PMCID: PMC7421543 DOI: 10.1038/s41598-020-69935-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
A large part of the worldwide population suffers from obstructive sleep apnea (OSA), a disorder impairing the restorative function of sleep and constituting a risk factor for several cardiovascular pathologies. The standard diagnostic metric to define OSA is the apnea-hypopnea index (AHI), typically obtained by manually annotating polysomnographic recordings. However, this clinical procedure cannot be employed for screening and for long-term monitoring of OSA due to its obtrusiveness and cost. Here, we propose an automatic unobtrusive AHI estimation method fully based on wrist-worn reflective photoplethysmography (rPPG), employing a deep learning model exploiting cardiorespiratory and sleep information extracted from the rPPG signal trained with 250 recordings. We tested our method with an independent set of 188 heterogeneously disordered clinical recordings and we found it estimates the AHI with a good agreement to the gold standard polysomnography reference (correlation = 0.61, estimation error = 3±10 events/h). The estimated AHI was shown to reliably assess OSA severity (weighted Cohen's kappa = 0.51) and screen for OSA (ROC-AUC = 0.84/0.86/0.85 for mild/moderate/severe OSA). These findings suggest that wrist-worn rPPG measurements that can be implemented in wearables such as smartwatches, have the potential to complement standard OSA diagnostic techniques by allowing unobtrusive sleep and respiratory monitoring.
Collapse
Affiliation(s)
- Gabriele B Papini
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands.
- Philips Research, High Tech Campus, 5656 AE, Eindhoven, The Netherlands.
- Sleep Medicine Centre Kempenhaeghe, 5591 VE, Heeze, The Netherlands.
| | - Pedro Fonseca
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
- Philips Research, High Tech Campus, 5656 AE, Eindhoven, The Netherlands
| | - Merel M van Gilst
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
- Sleep Medicine Centre Kempenhaeghe, 5591 VE, Heeze, The Netherlands
| | - Jan W M Bergmans
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
- Philips Research, High Tech Campus, 5656 AE, Eindhoven, The Netherlands
| | - Rik Vullings
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
| | - Sebastiaan Overeem
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ, Eindhoven, The Netherlands
- Sleep Medicine Centre Kempenhaeghe, 5591 VE, Heeze, The Netherlands
| |
Collapse
|
13
|
Nano M, Fonseca P, Overeem S, Vullings R, Aarts RM. Lying Awake at Night: Cardiac Autonomic Activity in Relation to Sleep Onset and Maintenance. Front Neurosci 2020; 13:1405. [PMID: 32009886 PMCID: PMC6974549 DOI: 10.3389/fnins.2019.01405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/12/2019] [Indexed: 12/18/2022] Open
Abstract
Insomnia, i.e., difficulties initiating and/or maintaining sleep, is one of the most common sleep disorders. To study underlying mechanisms for insomnia, we studied autonomic activity changes around sleep onset in participants without clinical insomnia but with varying problems with initiating or maintaining sleep quantified as increased sleep onset latency (SOL) and wake after sleep onset (WASO), respectively. Polysomnography and electrocardiography were simultaneously recorded in 176 participants during a single night. Cardiac autonomic activity was assessed using frequency domain analysis of RR intervals and results show that the normalized spectral power in the low frequency band (LFnu) after sleep onset was significantly higher in participants with long SOL compared to participants with short SOL. Furthermore, the normalized spectral power in the high frequency band (HFnu) was significantly lower in participants with long SOL as compared to participants with short SOL over 3 time periods (first 10 min in bed intending to sleep, 10 min before, and 10 min after sleep onset). These results suggest that participants with long SOL are more aroused in all three examined time periods when compared to participants with short SOL, especially for young adults (20–40 years). As there is no clear consensus on the cutoff for an increased WASO, we used a data-driven approach to explore different cutoffs to define short WASO and long WASO groups. LFnu, HFnu, and LF/HF differed between the long and the short WASO groups. A higher LFnu and LF/HF and a lower HFnu was observed in participants with long WASO for most cutoffs. The highest effect size was found using the cutoff of 66 min. Our findings suggest that autonomic cardiac activity has predictive value with respect to sleep characteristics pertaining to sleep onset and maintenance.
Collapse
Affiliation(s)
- Marina Nano
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Philips Research, Eindhoven, Netherlands.,Sleep Medicine Centre Kempenhaeghe, Heeze, Netherlands
| | - Pedro Fonseca
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Philips Research, Eindhoven, Netherlands
| | - Sebastiaan Overeem
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Sleep Medicine Centre Kempenhaeghe, Heeze, Netherlands
| | - Rik Vullings
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Ronald M Aarts
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Philips Research, Eindhoven, Netherlands
| |
Collapse
|
14
|
Papini GB, Fonseca P, van Gilst MM, van Dijk JP, Pevernagie DAA, Bergmans JWM, Vullings R, Overeem S. Estimation of the apnea-hypopnea index in a heterogeneous sleep-disordered population using optimised cardiovascular features. Sci Rep 2019; 9:17448. [PMID: 31772228 PMCID: PMC6879766 DOI: 10.1038/s41598-019-53403-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent sleep disorder, which results in daytime symptoms, a reduced quality of life as well as long-term negative health consequences. OSA diagnosis and severity rating is typically based on the apnea-hypopnea index (AHI) retrieved from overnight poly(somno)graphy. However, polysomnography is costly, obtrusive and not suitable for long-term recordings. Here, we present a method for unobtrusive estimation of the AHI using ECG-based features to detect OSA-related events. Moreover, adding ECG-based sleep/wake scoring yields a fully automatic method for AHI-estimation. Importantly, our algorithm was developed and validated on a combination of clinical datasets, including datasets selectively including OSA-pathology but also a heterogeneous, “real-world” clinical sleep disordered population (262 participants in the validation set). The algorithm provides a good representation of the current gold standard AHI (0.72 correlation, estimation error of 0.56 ± 14.74 events/h), and can also be employed as a screening tool for a large range of OSA severities (ROC AUC ≥ 0.86, Cohen’s kappa ≥ 0.53 and precision ≥70%). The method compares favourably to other OSA monitoring strategies, showing the feasibility of cardiovascular-based surrogates for sleep monitoring to evolve into clinically usable tools.
Collapse
Affiliation(s)
- Gabriele B Papini
- Eindhoven University of Technology, Dept. of Electrical Engineering, Eindhoven, 5612 AZ, The Netherlands. .,Philips Research, High Tech Campus, Eindhoven, 5656 AE, The Netherlands. .,Sleep Medicine Centre Kempenhaeghe, Heeze, 5591 VE, The Netherlands.
| | - Pedro Fonseca
- Eindhoven University of Technology, Dept. of Electrical Engineering, Eindhoven, 5612 AZ, The Netherlands.,Philips Research, High Tech Campus, Eindhoven, 5656 AE, The Netherlands
| | - Merel M van Gilst
- Eindhoven University of Technology, Dept. of Electrical Engineering, Eindhoven, 5612 AZ, The Netherlands.,Sleep Medicine Centre Kempenhaeghe, Heeze, 5591 VE, The Netherlands
| | - Johannes P van Dijk
- Eindhoven University of Technology, Dept. of Electrical Engineering, Eindhoven, 5612 AZ, The Netherlands.,Sleep Medicine Centre Kempenhaeghe, Heeze, 5591 VE, The Netherlands
| | | | - Jan W M Bergmans
- Eindhoven University of Technology, Dept. of Electrical Engineering, Eindhoven, 5612 AZ, The Netherlands.,Philips Research, High Tech Campus, Eindhoven, 5656 AE, The Netherlands
| | - Rik Vullings
- Eindhoven University of Technology, Dept. of Electrical Engineering, Eindhoven, 5612 AZ, The Netherlands
| | - Sebastiaan Overeem
- Eindhoven University of Technology, Dept. of Electrical Engineering, Eindhoven, 5612 AZ, The Netherlands.,Sleep Medicine Centre Kempenhaeghe, Heeze, 5591 VE, The Netherlands
| |
Collapse
|
15
|
Radha M, Fonseca P, Moreau A, Ross M, Cerny A, Anderer P, Long X, Aarts RM. Sleep stage classification from heart-rate variability using long short-term memory neural networks. Sci Rep 2019; 9:14149. [PMID: 31578345 PMCID: PMC6775145 DOI: 10.1038/s41598-019-49703-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/10/2019] [Indexed: 01/29/2023] Open
Abstract
Automated sleep stage classification using heart rate variability (HRV) may provide an ergonomic and low-cost alternative to gold standard polysomnography, creating possibilities for unobtrusive home-based sleep monitoring. Current methods however are limited in their ability to take into account long-term sleep architectural patterns. A long short-term memory (LSTM) network is proposed as a solution to model long-term cardiac sleep architecture information and validated on a comprehensive data set (292 participants, 584 nights, 541.214 annotated 30 s sleep segments) comprising a wide range of ages and pathological profiles, annotated according to the Rechtschaffen and Kales (R&K) annotation standard. It is shown that the model outperforms state-of-the-art approaches which were often limited to non-temporal or short-term recurrent classifiers. The model achieves a Cohen's k of 0.61 ± 0.15 and accuracy of 77.00 ± 8.90% across the entire database. Further analysis revealed that the performance for individuals aged 50 years and older may decline. These results demonstrate the merit of deep temporal modelling using a diverse data set and advance the state-of-the-art for HRV-based sleep stage classification. Further research is warranted into individuals over the age of 50 as performance tends to worsen in this sub-population.
Collapse
Affiliation(s)
- Mustafa Radha
- Royal Philips, Research, High Tech Campus 34, 5656 AE, Eindhoven, The Netherlands.
- Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Pedro Fonseca
- Royal Philips, Research, High Tech Campus 34, 5656 AE, Eindhoven, The Netherlands
- Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Arnaud Moreau
- Philips Austria GmbH, Kranichberggasse 4, 1120, Vienna, Austria
| | - Marco Ross
- Philips Austria GmbH, Kranichberggasse 4, 1120, Vienna, Austria
| | - Andreas Cerny
- Philips Austria GmbH, Kranichberggasse 4, 1120, Vienna, Austria
| | - Peter Anderer
- Philips Austria GmbH, Kranichberggasse 4, 1120, Vienna, Austria
| | - Xi Long
- Royal Philips, Research, High Tech Campus 34, 5656 AE, Eindhoven, The Netherlands
- Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ronald M Aarts
- Royal Philips, Research, High Tech Campus 34, 5656 AE, Eindhoven, The Netherlands
- Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
16
|
Papini GB, Fonseca P, Eerikäinen LM, Overeem S, Bergmans JWM, Vullings R. Sinus or not: a new beat detection algorithm based on a pulse morphology quality index to extract normal sinus rhythm beats from wrist-worn photoplethysmography recordings. Physiol Meas 2018; 39:115007. [PMID: 30475748 DOI: 10.1088/1361-6579/aae7f8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Wrist-worn photoplethysmography (PPG) can enable free-living physiological monitoring of people during diverse activities, ranging from sleep to physical exercise. In many applications, it is important to remove the pulses not related to sinus rhythm beats from the PPG signal before using it as a cardiovascular descriptor. In this manuscript, we propose an algorithm to assess the morphology of the PPG signal in order to reject non-sinus rhythm pulses, such as artefacts or pulses related to arrhythmic beats. APPROACH The algorithm segments the PPG signal into individual pulses and dynamically evaluates their morphological likelihood of being normal sinus rhythm pulses via a template-matching approach that accounts for the physiological variability of the signal. The normal sinus rhythm likelihood of each pulse is expressed as a quality index that can be employed to reject artefacts and pulses related to arrhythmic beats. MAIN RESULTS Thresholding the pulse quality index enables near-perfect detection of normal sinus rhythm beats by rejecting most of the non-sinus rhythm pulses (positive predictive value 98%-99%), both in healthy subjects and arrhythmic patients. The rejection of arrhythmic beats is almost complete (sensitivity to arrhythmic beats 7%-3%), while the sensitivity to sinus rhythm beats is not compromised (96%-91%). SIGNIFICANCE The developed algorithm consistently detects normal sinus rhythm beats in a PPG signal by rejecting artefacts and, as a first of its kind, arrhythmic beats. This increases the reliability in the extraction of features which are adversely influenced by the presence of non-sinus pulses, whether related to inter-beat intervals or to pulse morphology, from wrist-worn PPG signals recorded in free-living conditions.
Collapse
Affiliation(s)
- Gabriele B Papini
- Department of Electrical Engineering, TU/e, Den Dolech 2, 5612 AZ Eindhoven, Netherlands. Philips Research, High Tech Campus, 5656 AE Eindhoven, Netherlands. Kempenhaeghe Foundation, Sleep Medicine Centre, PO Box 61, 5590 AB Heeze, Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Nano MM, Fonseca P, Overeem S, Vullings R, Aarts RM. Autonomic cardiac activity in adults with short and long sleep onset latency. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:1448-1451. [PMID: 30440665 DOI: 10.1109/embc.2018.8512534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Autonomic cardiac activity during sleep has been widely studied. Research has mostly focused on cardiac activity between different sleep stages and wakefulness as well as between normal and pathological sleep. This work investigates autonomic activity changes during sleep onset in healthy subjects with long and short sleep onset latency (SOL). Polysomnography (PSG) and electrocardiography (ECG) were simultaneously recorded in 186 healthy subjects during a single night. Autonomic activity was assessed based on frequency domain analysis of RR intervals and results show that the analysis of RR intervals differs significantly between the short SOL and the long SOL groups. We found that the spectral power in the low frequency band (LF) was significantly higher in the long SOL group compared to the short SOL group in the first 10 minutes in bed intended to sleep. There was no significant difference for LF and the spectral power in the high frequency band (HF) 10 minutes before and after sleep onset between the two groups. Only in the short SOL group there was a significant increase in HF from the first 10 minutes in bed intended to sleep to 10 minutes before SO, while LF decreased significantly in both groups. The effect of time (5.5-min bin) on the heart rate variability (HRV) features around sleep onset showed that both LF and HF differed significantly during the period surrounding sleep onset only in the short SOL group.
Collapse
|
18
|
Fonseca P, den Teuling N, Long X, Aarts RM. A comparison of probabilistic classifiers for sleep stage classification. Physiol Meas 2018; 39:055001. [PMID: 29620019 DOI: 10.1088/1361-6579/aabbc2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To compare conditional random fields (CRF), hidden Markov models (HMMs) and Bayesian linear discriminants (LDs) for cardiorespiratory sleep stage classification on a five-class sleep staging task (wake/N1/N2/N3/REM), to explore the benefits of incorporating time information in the classification and to evaluate the feasibility of sleep staging on obstructive sleep apnea (OSA) patients. APPROACH The classifiers with and without time information were evaluated with 10-fold cross-validation on five-, four- (wake/N1 + N2/N3/REM) and three-class (wake/NREM/REM) classification tasks using a data set comprising 443 night-time polysomnography (PSG) recordings of 231 participants (180 healthy participants, 100 of which had a 'regular' sleep architecture, and 51 participants previously diagnosed with OSA). MAIN RESULTS CRF with time information (CRFt) outperforms all other classifiers on all tasks, achieving a median accuracy and Cohen's κ for all participants of 62.8% and 0.44 for five classes, 68.8% and 0.47 for four classes, and 77.6% and 0.55 for three classes. An advantage was found in training classifiers, specifically for 'regular' and 'OSA' participants, achieving an improvement in classification performance for these groups. For 'regular' participants, CRFt achieved a median accuracy and Cohen's κ of 67.0% and 0.51, 70.8% and 0.53 and 81.3% and 0.62 for five-, four- and three-classes respectively, and for 'OSA' patients, of 59.9% and 0.40, 69.7% and 0.45, and 75.8% and 0.51 for five-, four- and three-classes respectively. SIGNIFICANCE The results suggest that CRFt is not only better at learning and predicting more complex and irregular sleep architectures, but that it also performs reasonably well in five-class classification-the standard for sleep scoring used in clinical PSG. Additionally, and albeit with a decrease in performance when compared with healthy participants, sleep stage classification in OSA patients using cardiorespiratory features and CRFt seems feasible with reasonable accuracy.
Collapse
Affiliation(s)
- Pedro Fonseca
- Philips Research, High Tech Campus 34, 5656 AE Eindhoven, Netherlands. Department of Electrical Engineering, Eindhoven University of Technology, Postbus 513, 5600MB Eindhoven, Netherlands
| | | | | | | |
Collapse
|
19
|
Radha M, Zhang G, Gelissen J, Groot KD, Haakma R, Aarts RM. Arterial path selection to measure pulse wave velocity as a surrogate marker of blood pressure. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa5b40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Fonseca P, den Teuling N, Long X, Aarts RM. Cardiorespiratory Sleep Stage Detection Using Conditional Random Fields. IEEE J Biomed Health Inform 2016; 21:956-966. [PMID: 27076473 DOI: 10.1109/jbhi.2016.2550104] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper explores the probabilistic properties of sleep stage sequences and transitions to improve the performance of sleep stage detection using cardiorespiratory features. A new classifier, based on conditional random fields, is used in different sleep stage detection tasks (N3, NREM, REM, and wake) in night-time recordings of electrocardiogram and respiratory inductance plethysmography of healthy subjects. Using a dataset of 342 polysomnographic recordings of healthy subjects, among which 135 with regular sleep architecture, it outperforms hidden Markov models and Bayesian linear discriminants in all tasks, achieving an average accuracy of 87.38% and kappa of 0.41 (87.27% and 0.49 for regular subjects) for N3 detection, 78.71% and 0.55 (80.34% and 0.56 for regular subjects) for NREM detection, 88.49% and 0.51 (87.35% and 0.57 for regular subjects) for REM, and 85.69% and 0.51 (90.42% and 0.52 for regular subjects) for wake. In comparison with the state of the art, and having been tested on a much larger dataset, the classifier was found to outperform most of the work reported in the literature for some of the tasks, in particular for subjects with regular sleep architecture. It achieves a comparable accuracy for N3, higher accuracy and kappa for REM, and higher accuracy and comparable kappa for NREM than the best performing classifiers described in the literature.
Collapse
|
21
|
Fonseca P, Aarts RM, Long X, Rolink J, Leonhardt S. Estimating actigraphy from motion artifacts in ECG and respiratory effort signals. Physiol Meas 2015; 37:67-82. [DOI: 10.1088/0967-3334/37/1/67] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Long X, Fonseca P, Aarts RM, Haakma R, Rolink J, Leonhardt S. Detection of Nocturnal Slow Wave Sleep Based on Cardiorespiratory Activity in Healthy Adults. IEEE J Biomed Health Inform 2015; 21:123-133. [PMID: 26452293 DOI: 10.1109/jbhi.2015.2487446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human slow wave sleep (SWS) during bedtime is paramount for energy conservation and memory consolidation. This study aims at automatically detecting SWS from nocturnal sleep using cardiorespiratory signals that can be acquired with unobtrusive sensors in a home-based scenario. From the signals, time-dependent features are extracted for continuous 30-s epochs. To reduce the measuring noise, body motion artifacts, and/or within-subject variability in physiology conveyed by the features, and thus, enhance the detection performance, we propose to smooth the features over each night using a spline fitting method. In addition, it was found that the changes in cardiorespiratory activity precede the transitions between SWS and the other sleep stages (non-SWS). To this matter, a novel scheme is proposed that performs the SWS detection for each epoch using the feature values prior to that epoch. Experiments were conducted with a large dataset of 325 overnight polysomnography (PSG) recordings using a linear discriminant classifier and tenfold cross validation. Features were selected with a correlation-based method. Results show that the performance in classifying SWS and non-SWS can be significantly improved when smoothing the features and using the preceding feature values of 5-min earlier. We achieved a Cohen's Kappa coefficient of 0.57 (at an accuracy of 88.8%) using only six selected features for 257 recordings with a minimum of 30-min overnight SWS that were considered representative of their habitual sleeping pattern at home. These features included the standard deviation, low-frequency spectral power, and detrended fluctuation of heartbeat intervals as well as the variations of respiratory frequency and upper and lower respiratory envelopes. A marked drop in Kappa to 0.21 was observed for the other nights with SWS time of less than 30 min, which were found to more likely occur in elderly. This will be the future challenge in cardiorespiratory-based SWS detection.
Collapse
|
23
|
Long X, Haakma R, Leufkens TRM, Fonseca P, Aarts RM. Effects of Between- and Within-Subject Variability on Autonomic Cardiorespiratory Activity during Sleep and Their Limitations on Sleep Staging: A Multilevel Analysis. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2015; 2015:583620. [PMID: 26366167 PMCID: PMC4558458 DOI: 10.1155/2015/583620] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/08/2015] [Accepted: 07/21/2015] [Indexed: 11/17/2022]
Abstract
Autonomic cardiorespiratory activity changes across sleep stages. However, it is unknown to what extent it is affected by between- and within-subject variability during sleep. As it is hypothesized that the variability is caused by differences in subject demographics (age, gender, and body mass index), time, and physiology, we quantified these effects and investigated how they limit reliable cardiorespiratory-based sleep staging. Six representative parameters obtained from 165 overnight heartbeat and respiration recordings were analyzed. Multilevel models were used to evaluate the effects evoked by differences in sleep stages, demographics, time, and physiology between and within subjects. Results show that the between- and within-subject effects were found to be significant for each parameter. When adjusted by sleep stages, the effects in physiology between and within subjects explained more than 80% of total variance but the time and demographic effects explained less. If these effects are corrected, profound improvements in sleep staging can be observed. These results indicate that the differences in subject demographics, time, and physiology present significant effects on cardiorespiratory activity during sleep. The primary effects come from the physiological variability between and within subjects, markedly limiting the sleep staging performance. Efforts to diminish these effects will be the main challenge.
Collapse
Affiliation(s)
- Xi Long
- Department of Personal Health, Philips Research, 5656 AE Eindhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| | - Reinder Haakma
- Department of Personal Health, Philips Research, 5656 AE Eindhoven, Netherlands
| | - Tim R. M. Leufkens
- Department of Behavior, Cognition & Perception, Philips Research, 5656 AE Eindhoven, Netherlands
| | - Pedro Fonseca
- Department of Personal Health, Philips Research, 5656 AE Eindhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| | - Ronald M. Aarts
- Department of Personal Health, Philips Research, 5656 AE Eindhoven, Netherlands
- Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
24
|
Fonseca P, Long X, Radha M, Haakma R, Aarts RM, Rolink J. Sleep stage classification with ECG and respiratory effort. Physiol Meas 2015; 36:2027-40. [DOI: 10.1088/0967-3334/36/10/2027] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|