1
|
Nayab S, Jan K, Kim SH, Kim SH, Shams DF, Son Y, Yoon M, Lee H. Insight into the inhibitory potential of metal complexes supported by ( E)-2-morpholino- N-(thiophen-2-ylmethylene)ethanamine: synthesis, structural properties, biological evaluation and docking studies. Dalton Trans 2024; 53:11295-11309. [PMID: 38898716 DOI: 10.1039/d4dt00362d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A thiophene-derived Schiff base ligand (E)-2-morpholino-N-(thiophen-2-ylmethylene)ethanamine was used for the synthesis of M(II) complexes, [TEM(M)X2] (M = Co, Cu, Zn; X = Cl; M = Cd, X = Br). Structural characterization of the synthesized complexes revealed distorted tetrahedral geometry around the M(II) center. In vitro investigation of the synthesized ligand and its M(II) complexes showed considerable anti-urease and leishmanicidal potential. The synthesized complexes also exhibited a significant inhibitory effect on urease, with IC50 values in the range of 3.50-8.05 μM. In addition, the docking results were consistent with the experimental results. A preliminary study of human colorectal cancer (HCT), hepatic cancer (HepG2), and breast cancer (MCF-7) cell lines showed marked anticancer activities of these complexes.
Collapse
Affiliation(s)
- Saira Nayab
- Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir (U) 18050, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Kalsoom Jan
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01851, USA
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01851, USA
| | - Seung-Hyeon Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Sa-Hyun Kim
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Dilawar Farhan Shams
- Department of Environmental Chemistry, Abdul Wali Khan University Maradan, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Younghu Son
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Minyoung Yoon
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| | - Hyosun Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
2
|
Lee J, Melchakova I, Nayab S, Kim K, Ko YH, Yoon M, Avramov P, Lee H. Synthesis and Characterization of Zinc(II), Cadmium(II), and Palladium(II) Complexes with the Thiophene-Derived Schiff Base Ligand. ACS OMEGA 2023; 8:6016-6029. [PMID: 36816644 PMCID: PMC9933481 DOI: 10.1021/acsomega.2c08001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/23/2023] [Indexed: 06/01/2023]
Abstract
Zn(II), Pd(II), and Cd(II) complexes, [L TH MCl 2 ] (M = Zn, Pd; X = Br, Cl) and [L TH Cd(μ-X)X] n (X = Cl, Br; n = n, 2), supported by the (E)-N 1,N 1-dimethyl-N 2-(thiophen-2-ylmethylene)ethane-1,2-diamine (L TH ) ligand are synthesized and structurally characterized. Density functional theory (DFT) electronic structure calculations and variable-temperature NMR support the presence of two conformers and a dynamic interconversion process of the minor conformer to the major one in solution. It is found that the existence of two relevant complex conformers and their respective ratios in solution depend on the central metal ions and counter ions, either Cl- or Br-. Among the two relevant conformers, a single conformer is crystallized and X-ray diffraction analysis revealed a distorted tetrahedral geometry for Zn(II) complexes, and a distorted square planar and square pyramidal geometry for Pd(II) and Cd(II) complexes, respectively. It is shown that [L TH MCl 2 ]/LiO i Pr (M = Zn, Pd) and [L TH Cd(μ-Cl)Cl] n /LiO i Pr can effectively catalyze the ring-opening polymerization (ROP) reaction of rac-lactide (rac-LA) with 94% conversion within 30 s with [L TH ZnCl 2 ]/LiO i Pr at 0 °C. Overall, hetero-enriched poly(lactic acid)s (PLAs) were provided by these catalytic systems with [L TH ZnCl 2 ]/LiO i Pr producing PLA with higher heterotactic bias (P r up to 0.74 at 0 °C).
Collapse
Affiliation(s)
- Jaegyeong Lee
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Iuliia Melchakova
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Saira Nayab
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal 18050, Upper Dir, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Kyeonghun Kim
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Young Ho Ko
- Center
for Self-Assembly and Complexity (CSC), Institute for Basic Science
(IBS), Pohang University of Science and
Technology (POSTEC), Pohang 37673, Republic
of Korea
| | - Minyoung Yoon
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Paul Avramov
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Hyosun Lee
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Kim K, Nayab S, Cho Y, Jung H, Yeo H, Lee H, Lee SH. Catalytic performance of tridentate versus bidentate Co(ii) complexes supported by Schiff base ligands in vinyl addition polymerization of norbornene. RSC Adv 2022; 12:35896-35904. [PMID: 36605356 PMCID: PMC9769537 DOI: 10.1039/d2ra07241f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
A series of Co(ii) complexes supported by Schiff base ligands, LA-LC, where LA, LB, and LC are (E)-3-methoxy-N-(quinolin-2-ylmethylene)propan-1-amine, (E)-N 1,N 1-dimethyl-N 2-(pyridin-2-ylmethylene)ethane-1,2-diamine, and (E)-N 1,N 1-dimethyl-N 2-(thiophen-2-ylmethylene)ethane-1,2-diamine, respectively, were designed and synthesized. Structural studies revealed a distorted trigonal bipyramidal geometry for [LBCoCl2] and a distorted tetrahedral geometry for [LCCoCl2]. After activation with modified methyl aluminoxane (MMAO), all the Co(ii) complexes catalyzed the polymerization of norbornene (NB) to yield vinyl-type polynorbornenes (PNBs) with activities of up to 4.69 × 104 gPNB mol Co-1 h-1 at 25 °C. High-molecular-weight (M n of up to 1.71 × 105 g mol-1) soluble PNBs with moderate molecular-weight distributions (MWD) were obtained. The activity of the Co(ii)/MMAO catalytic system is influenced by the steric hindrance and electronic properties of the ligands.
Collapse
Affiliation(s)
- Kyeonghun Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National UniversityDaegu41566Republic of Korea
| | - Saira Nayab
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National UniversityDaegu41566Republic of Korea,Department of Chemistry, Shaheed Benazir Bhutto UniversitySheringal Dir (Upper) 18000Khyber PakhtunkhwaIslamic Republic of Pakistan
| | - Yerim Cho
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National UniversityDaegu41566Republic of Korea
| | - Hyewon Jung
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical TechnologyUlsan 44412Republic of Korea
| | - Hyeonuk Yeo
- Department of Chemistry Education and Department of Pharmacy, Kyungpook National UniversityDaegu41566Republic of Korea
| | - Hyosun Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National UniversityDaegu41566Republic of Korea
| | - Sang-Ho Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical TechnologyUlsan 44412Republic of Korea
| |
Collapse
|
4
|
Gholami MD, O'Mullane AP, Sonar P, Ayoko GA, Izake EL. Antibody coated conductive polymer for the electrochemical immunosensing of Human Cardiac Troponin I in blood plasma. Anal Chim Acta 2021; 1185:339082. [PMID: 34711328 DOI: 10.1016/j.aca.2021.339082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/05/2023]
Abstract
Cardiac troponin I (cTnI) is a sensitive biomarker for cardiovascular disease (CVD). Rapid determination of cTnI concentration in blood can greatly reduce the potential of significant heart damage and heart failure. Herein, we demonstrate a new electrochemical immunosensor for selective affinity binding and rapid detection of cTnI in blood plasma by an electrochemical method. A conductive film of "poly 2,5-bis(2-thienyl)3,4-diamine-terthiophene (PDATT)" was deposited onto an Indium Tin Oxide (ITO) electrode using chronoamperometry. Anti-cardiac troponin I antibody was then attached to the two amine (NH2) groups substituted on the central thiophene of terthiophene repeating unit of the polymer chain via amide bond formation. The gaps on the surface of the antibody coated immunosensor were backfilled with bovine serum albumin (BSA) to prevent nonspecific binding of interfering molecules. Differential pulse voltammetry (DPV) was used to determine cTnI upon the formation of cTnI immunocomplex on the sensing surface, appearing a peak at 0.27 V. The response range was 0.01-100 ng mL-1 with limit of quantification down to 0.01 ng mL-1. The developed immunosensor was used to determine cTnI in spiked blood plasma without interference from cardiac troponin T (cTnT). Therefore, this new sensor can be utilised for the detection of cTnI biomarker in pathological laboratories and points of care in less than 15 min.
Collapse
Affiliation(s)
- Mahnaz D Gholami
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia.
| | - Prashant Sonar
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Godwin A Ayoko
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia
| | - Emad L Izake
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia; Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
5
|
A new Pd(II)-Hydrazide-Triphenylphosphine complex: Synthesis, crystal structure, spectroscopic characterization and theoretical calculations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Kirishnamaline G, Magdaline JD, Chithambarathanu T, Aruldhas D, Anuf AR. Theoretical investigation of structure, anticancer activity and molecular docking of thiourea derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Sert Y, El-Hiti GA, Gökce H, Ucun F, Abdel-Wahab BF, Kariuki BM. DFT, molecular docking and experimental FT-IR, laser-Raman, NMR and UV investigations on a potential anticancer agent containing triazole ring system. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128077] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Dikmen G, Kani İ. Synthesis, spectroscopic characterization (FT-IR, Raman, UV-VIS, XRD), DFT studies and DNA binding properties of [Ni(C6H5CH2COO)(C12H8N2)2](ClO4)(CH3OH) compound. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Anizaim AH, Zaini MF, Laruna MA, Razak IA, Arshad S. ( E)-1-(Benzo[ d][1,3]dioxol-5-yl)-3-([2,2'-bi-thio-phen]-5-yl)prop-2-en-1-one: crystal structure, UV-Vis analysis and theoretical studies of a new π-conjugated chalcone. Acta Crystallogr E Crystallogr Commun 2019; 75:632-637. [PMID: 31110801 PMCID: PMC6505620 DOI: 10.1107/s2056989019004912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/10/2019] [Indexed: 11/11/2022]
Abstract
In the title compound, C18H12O3S2, synthesized by the Claisen-Schmidt condensation method, the essentially planar chalcone unit adopts an s-cis configuration with respect to the carbonyl group within the ethyl-enic bridge. In the crystal, weak C-H⋯π inter-actions connect the mol-ecules into zigzag chains along the b-axis direction. The mol-ecular structure was optimized geometrically using Density Functional Theory (DFT) calculations at the B3LYP/6-311 G++(d,p) basis set level and compared with the experimental values. Mol-ecular orbital calculations providing electron-density plots of HOMO and LUMO mol-ecular orbitals and mol-ecular electrostatic potentials (MEP) were also computed both with the DFT/B3LYP/6-311 G++(d,p) basis set. The experimental energy gap is 3.18 eV, whereas the theoretical HOMO-LUMO energy gap value is 2.73 eV. Hirshfeld surface analysis was used to further investigate the weak inter-actions present.
Collapse
Affiliation(s)
- Ainizatul Husna Anizaim
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Muhamad Fikri Zaini
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Muhammad Adlan Laruna
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Ibrahim Abdul Razak
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Suhana Arshad
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| |
Collapse
|
10
|
Özbek N, Alyar S, Memmi BK, Gündüzalp AB, Bahçeci Z, Alyar H. Synthesis, characterization, computational studies, antimicrobial activities and carbonic anhydrase inhibitor effects of 2-hydroxy acetophenone-N-methyl p-toluenesulfonylhydrazone and its Co(II), Pd(II), Pt(II) complexes. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.07.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Deka BC, Purkayastha SK, Bhattacharyya PK. Formation of thiophene sandwiches through cation–π interaction: A DFT study. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Gündüzalp AB, Özsen İ, Alyar H, Alyar S, Özbek N. Biologically active Schiff bases containing thiophene/furan ring and their copper(II) complexes: Synthesis, spectral, nonlinear optical and density functional studies. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|