1
|
Gambogi LB, de Souza LC, Caramelli P. How to differentiate behavioral variant frontotemporal dementia from primary psychiatric disorders: practical aspects for the clinician. ARQUIVOS DE NEURO-PSIQUIATRIA 2022; 80:7-14. [PMID: 35976330 PMCID: PMC9491418 DOI: 10.1590/0004-282x-anp-2022-s140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Due to the early and prominent behavioral changes which characterize behavioral variant frontotemporal dementia (bvFTD), patients are more likely to seek psychiatric help and are often initially diagnosed with a primary psychiatric disorder (PPD). Differentiating these conditions is critical because of the dramatically different outcomes, differences in patient management, family counseling and caregiver education. OBJECTIVE To propose a practical guide to distinguish between bvFTD and PDD. METHODS We conducted a non-systematic review of the published manuscripts in the field, including some previous investigations from our own group and work on which we have collaborated, and summarized the main findings and proposals that may be useful for neurological practice. RESULTS The reviewed literature suggests that a comprehensive clinical history, brief cognitive and neuropsychological evaluations, detailed neurological examination with special attention to motor alterations related to bvFTD, structural and functional neuroimaging evaluation, genetic investigation in selected cases, and assistance from a multidisciplinary team, including a neurologist and a psychiatrist with expertise in bvFTD, are very helpful in differentiating these conditions. CONCLUSIONS Although the clinician may commonly face great difficulty in differentiating between bvFTD and PPD, the use of appropriate tools in a systematic way and the availability of a well-trained multidisciplinary group can significantly increase diagnostic accuracy.
Collapse
Affiliation(s)
- Leandro Boson Gambogi
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Grupo de Neurologia Cognitiva e Comportamental, Belo Horizonte MG, Brazil
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Neurociências, Belo Horizonte MG, Brazil
| | - Leonardo Cruz de Souza
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Grupo de Neurologia Cognitiva e Comportamental, Belo Horizonte MG, Brazil
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Neurociências, Belo Horizonte MG, Brazil
| | - Paulo Caramelli
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Grupo de Neurologia Cognitiva e Comportamental, Belo Horizonte MG, Brazil
- Universidade Federal de Minas Gerais, Programa de Pós-Graduação em Neurociências, Belo Horizonte MG, Brazil
| |
Collapse
|
2
|
Brisson M, Brodeur C, Létourneau‐Guillon L, Masellis M, Stoessl J, Tamm A, Zukotynski K, Ismail Z, Gauthier S, Rosa‐Neto P, Soucy J. CCCDTD5: Clinical role of neuroimaging and liquid biomarkers in patients with cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 6:e12098. [PMID: 33532543 PMCID: PMC7821956 DOI: 10.1002/trc2.12098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 04/21/2023]
Abstract
Since 1989, four Canadian Consensus Conferences on the Diagnosis and Treatment of Dementia (CCCDTDs) have provided evidence-based dementia diagnostic and treatment guidelines for Canadian clinicians and researchers. We present the results from the Neuroimaging and Fluid Biomarkers Group of the 5th CCCDTD (CCCDTD5), which addressed topics chosen by the steering committee to reflect advances in the field and build on our previous guidelines. Recommendations on Imaging and Fluid Biomarker Use from this Conference cover a series of different fields. Prior structural imaging recommendations for both computerized tomography (CT) and magnetic resonance imaging (MRI) remain largely unchanged, but MRI is now more central to the evaluation than before, with suggested sequences described here. The use of visual rating scales for both atrophy and white matter anomalies is now included in our recommendations. Molecular imaging with [18F]-fluorodeoxyglucose ([18F]-FDG) Positron Emisson Tomography (PET) or [99mTc]-hexamethylpropyleneamine oxime/ethylene cysteinate dimer ([99mTc]-HMPAO/ECD) Single Photon Emission Tomography (SPECT), should now decidedly favor PET. The value of [18F]-FDG PET in the assessment of neurodegenerative conditions has been established with greater certainty since the previous conference, and it has now been recognized as a useful biomarker to establish the presence of neurodegeneration by a number of professional organizations around the world. Furthermore, the role of amyloid PET has been clarified and our recommendations follow those from other groups in multiple countries. SPECT with [123I]-ioflupane (DaTscanTM) is now included as a useful study in differentiating Alzheimer's disease (AD) from Lewy body disease. Finally, liquid biomarkers are in a rapid phase of development and, could lead to a revolution in the assessment AD and other neurodegenerative conditions at a reasonable cost. We hope these guidelines will be useful for clinicians, researchers, policy makers, and the lay public, to inform a current and evidence-based approach to the use of neuroimaging and liquid biomarkers in clinical dementia evaluation and management.
Collapse
Affiliation(s)
- Mélanie Brisson
- Centre hospitalier de l'université de QuébecQuebec CityCanada
| | | | | | | | - Jon Stoessl
- Vancouver Coastal Health, University of British‐ColumbiaVancouverCanada
| | | | | | - Zahinoor Ismail
- Department of Psychiatry, Hotchkiss Brain Institute and O'Brien Institute for Public HealthUniversity of CalgaryCalgaryCanada
| | | | - Pedro Rosa‐Neto
- McGill Center for Studies in AgingCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
| | - Jean‐Paul Soucy
- Centre hospitalier de l'université de MontréalMontrealCanada
- McConnell Brain Imaging Centre, Montreal Neurological InstituteMontrealCanada
- PERFORM Center, Concordia UniversityMontrealCanada
| |
Collapse
|
3
|
Ismail Z, Black SE, Camicioli R, Chertkow H, Herrmann N, Laforce R, Montero‐Odasso M, Rockwood K, Rosa‐Neto P, Seitz D, Sivananthan S, Smith EE, Soucy J, Vedel I, Gauthier S. Recommendations of the 5th Canadian Consensus Conference on the diagnosis and treatment of dementia. Alzheimers Dement 2020; 16:1182-1195. [PMID: 32725777 PMCID: PMC7984031 DOI: 10.1002/alz.12105] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/03/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
Since 1989, four Canadian Consensus Conferences on the Diagnosis and Treatment of Dementia (CCCDTD) have provided evidence-based dementia guidelines for Canadian clinicians and researchers. We present the results of the 5th CCCDTD, which convened in October 2019, to address topics chosen by the steering committee to reflect advances in the field, and build on previous guidelines. Topics included: (1) utility of the National Institute on Aging research framework for clinical Alzheimer's disease (AD) diagnosis; (2) updating diagnostic criteria for vascular cognitive impairment, and its management; (3) dementia case finding and detection; (4) neuroimaging and fluid biomarkers in diagnosis; (5) use of non-cognitive markers of dementia for better dementia detection; (6) risk reduction/prevention; (7) psychosocial and non-pharmacological interventions; and (8) deprescription of medications used to treat dementia. We hope the guidelines are useful for clinicians, researchers, policy makers, and the lay public, to inform a current and evidence-based approach to dementia.
Collapse
Affiliation(s)
- Zahinoor Ismail
- Department of PsychiatryHotchkiss Brain Institute and O'Brien Institute for Public HealthUniversity of CalgaryCalgaryAlbertaCanada
| | - Sandra E. Black
- Department of Medicine (Neurology) Sunnybrook Health Sciences CentreUniversity of TorontoTorontoOntarioCanada
| | - Richard Camicioli
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Howard Chertkow
- University of TorontoBaycrest Health SciencesTorontoOntarioCanada
| | | | - Robert Laforce
- Clinique Interdisciplinaire de MémoireDépartement des Sciences NeurologiquesCHU de Québec, and Faculté de MédecineUniversité LavalLavalQuébecCanada
| | - Manuel Montero‐Odasso
- Departments of Medicine, and Epidemiology and BiostatisticsUniversity of Western OntarioLondonOntarioCanada
- Gait and Brain Lab, Parkwood InstituteLondonOntarioCanada
| | | | - Pedro Rosa‐Neto
- Neurosurgery and PsychiatryMcGill Centre for Studies in AgingMontrealQuebecCanada
| | - Dallas Seitz
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | | | - Eric E. Smith
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Jean‐Paul Soucy
- McConnell Brain Imaging CentreMontreal Neurological InstituteMcGill UniversityPERFORM CentreConcordia UniversityMontrealQuebecCanada
| | - Isabelle Vedel
- Department of Family MedicineMcGill UniversityMontrealQuebecCanada
| | - Serge Gauthier
- Alzheimer Disease Research UnitMcGill Center for Studies in AgingMontrealQuebecCanada
| | | |
Collapse
|
4
|
Ducharme S, Dols A, Laforce R, Devenney E, Kumfor F, van den Stock J, Dallaire-Théroux C, Seelaar H, Gossink F, Vijverberg E, Huey E, Vandenbulcke M, Masellis M, Trieu C, Onyike C, Caramelli P, de Souza LC, Santillo A, Waldö ML, Landin-Romero R, Piguet O, Kelso W, Eratne D, Velakoulis D, Ikeda M, Perry D, Pressman P, Boeve B, Vandenberghe R, Mendez M, Azuar C, Levy R, Le Ber I, Baez S, Lerner A, Ellajosyula R, Pasquier F, Galimberti D, Scarpini E, van Swieten J, Hornberger M, Rosen H, Hodges J, Diehl-Schmid J, Pijnenburg Y. Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders. Brain 2020; 143:1632-1650. [PMID: 32129844 PMCID: PMC7849953 DOI: 10.1093/brain/awaa018] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
The behavioural variant of frontotemporal dementia (bvFTD) is a frequent cause of early-onset dementia. The diagnosis of bvFTD remains challenging because of the limited accuracy of neuroimaging in the early disease stages and the absence of molecular biomarkers, and therefore relies predominantly on clinical assessment. BvFTD shows significant symptomatic overlap with non-degenerative primary psychiatric disorders including major depressive disorder, bipolar disorder, schizophrenia, obsessive-compulsive disorder, autism spectrum disorders and even personality disorders. To date, ∼50% of patients with bvFTD receive a prior psychiatric diagnosis, and average diagnostic delay is up to 5-6 years from symptom onset. It is also not uncommon for patients with primary psychiatric disorders to be wrongly diagnosed with bvFTD. The Neuropsychiatric International Consortium for Frontotemporal Dementia was recently established to determine the current best clinical practice and set up an international collaboration to share a common dataset for future research. The goal of the present paper was to review the existing literature on the diagnosis of bvFTD and its differential diagnosis with primary psychiatric disorders to provide consensus recommendations on the clinical assessment. A systematic literature search with a narrative review was performed to determine all bvFTD-related diagnostic evidence for the following topics: bvFTD history taking, psychiatric assessment, clinical scales, physical and neurological examination, bedside cognitive tests, neuropsychological assessment, social cognition, structural neuroimaging, functional neuroimaging, CSF and genetic testing. For each topic, responsible team members proposed a set of minimal requirements, optimal clinical recommendations, and tools requiring further research or those that should be developed. Recommendations were listed if they reached a ≥ 85% expert consensus based on an online survey among all consortium participants. New recommendations include performing at least one formal social cognition test in the standard neuropsychological battery for bvFTD. We emphasize the importance of 3D-T1 brain MRI with a standardized review protocol including validated visual atrophy rating scales, and to consider volumetric analyses if available. We clarify the role of 18F-fluorodeoxyglucose PET for the exclusion of bvFTD when normal, whereas non-specific regional metabolism abnormalities should not be over-interpreted in the case of a psychiatric differential diagnosis. We highlight the potential role of serum or CSF neurofilament light chain to differentiate bvFTD from primary psychiatric disorders. Finally, based on the increasing literature and clinical experience, the consortium determined that screening for C9orf72 mutation should be performed in all possible/probable bvFTD cases or suspected cases with strong psychiatric features.
Collapse
Affiliation(s)
- Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Str., Montreal, Quebec, H3A 2B4, Canada
| | - Annemiek Dols
- Department of Old Age Psychiatry, GGZ InGeest, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire (CIME), Laval University, Quebec, Canada
| | - Emma Devenney
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Fiona Kumfor
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Jan van den Stock
- Laboratory for Translational Neuropsychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Harro Seelaar
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Flora Gossink
- Department of Old Age Psychiatry, GGZ InGeest, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Everard Vijverberg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Edward Huey
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Psychiatry, Colombia University, New York, USA
| | - Mathieu Vandenbulcke
- Department of Geriatric Psychiatry, University Hospitals Leuven, Leuven, Belgium
| | - Mario Masellis
- Department of Neurology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Calvin Trieu
- Department of Old Age Psychiatry, GGZ InGeest, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Chiadi Onyike
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Paulo Caramelli
- Behavioral and Cognitive Neurology Research Group, Department of Internal Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo Cruz de Souza
- Behavioral and Cognitive Neurology Research Group, Department of Internal Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Maria Landqvist Waldö
- Division of Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Olivier Piguet
- Division of Clinical Sciences Helsingborg, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Wendy Kelso
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Australia
| | - Dhamidhu Eratne
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Australia
| | - Dennis Velakoulis
- Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne, Australia
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - David Perry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, USA
| | - Peter Pressman
- Department of Neurology, University of Colorado Denver, Aurora, USA
| | - Bradley Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rik Vandenberghe
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Mario Mendez
- Department of Neurology, UCLA Medical Centre, University of California Los Angeles, Los Angeles, USA
| | - Carole Azuar
- Department of Neurology, Hôpital La Pitié Salpêtrière, Paris, France
| | - Richard Levy
- Department of Neurology, Hôpital La Pitié Salpêtrière, Paris, France
| | - Isabelle Le Ber
- Department of Neurology, Hôpital La Pitié Salpêtrière, Paris, France
| | - Sandra Baez
- Department of Psychology, Andes University, Bogota, Colombia
| | - Alan Lerner
- Department of Neurology, University Hospital Cleveland Medical Center, Cleveland, USA
| | - Ratnavalli Ellajosyula
- Department of Neurology, Manipal Hospital and Annasawmy Mudaliar Hospital, Bangalore, India
| | - Florence Pasquier
- Univ Lille, Inserm U1171, Memory Center, CHU Lille, DISTAlz, Lille, France
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Policlinico, Neurodegenerative Diseases Unit Milan, Italy
| | - Elio Scarpini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan, Italy
- Fondazione IRCCS Ca’ Granda, Ospedale Policlinico, Neurodegenerative Diseases Unit Milan, Italy
| | - John van Swieten
- Department of Neurology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | - Howard Rosen
- Memory and Aging Center, University of California San Francisco, San Francisco, USA
| | - John Hodges
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Yolande Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Abstract
The diagnosis of dementia probably due to Alzheimer's disease is still primarily a clinical one. In cases that remain clinically unclear, however, biomarkers for amyloid deposition and neuronal injury can help to identify the underlying cause. One biomarker even for early neuronal injury in the stage of mild cognitive impairment is cerebral glucose hypometabolism measured by 18F-FDG PET. Distinct patterns of hypometabolism can be seen, for example, in dementia due to Alzheimer's disease, frontotemporal lobar degeneration, and dementia with Lewy bodies. This makes it possible to distinguish between different neurodegenerative diseases as well as major depressive disorder. While the sensitivity of 18F-FDG PET to detect Alzheimer's disease is high, specificity is low and the additional use of biomarkers for amyloid deposition might be beneficial in some cases. In conclusion, 18F-FDG PET is a useful tool when the cause for dementia remains unclear and different diagnosis would lead to different treatment approaches. Due to the lack of treatment options in pre-dementia stages, the use of 18F-FDG PET is currently not recommended for these cases in a purely clinical setting.
Collapse
Affiliation(s)
- Marion M Ortner
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
6
|
Current Role for Biomarkers in Clinical Diagnosis of Alzheimer Disease and Frontotemporal Dementia. Curr Treat Options Neurol 2017; 19:46. [PMID: 29134465 DOI: 10.1007/s11940-017-0484-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose of review Alzheimer's disease (AD) and frontotemporal dementia can often be diagnosed accurately with careful clinical history, cognitive testing, neurological examination, and structural brain MRI. However, there are certain circumstances wherein detection of specific biomarkers of neurodegeneration or underlying AD pathology will impact the clinical diagnosis or treatment plan. We will review the currently available biomarkers for AD and frontotemporal dementia (FTD) and discuss their clinical importance. Recent findings With the advent of 18F-labeled tracers that bind amyloid plaques, amyloid PET is now clinically available for the detection of amyloid pathology and to aid in a biomarker-supported diagnosis of AD or mild cognitive impairment (MCI) due to AD. It is not yet possible to test for the specific FTD pathologies (tau or TDP-43); however, a diagnosis of FTD may be "imaging supported" based upon specific MRI or FDG-PET findings. Cerebrospinal fluid measures of amyloid-beta, total-tau, and phospho-tau are clinically available and allow detection of both of the cardinal pathologies of AD: amyloid and tau pathology. Summary It is appropriate to pursue biomarker testing in cases of MCI and dementia when there remains diagnostic uncertainty and the result will impact diagnosis or treatment. Practically speaking, due to the rising prevalence of amyloid positivity with advancing age, measurement of biomarkers in cases of MCI and dementia is most helpful in early-onset patients, patients with atypical clinical presentations, or when considering referral for AD clinical trials.
Collapse
|
7
|
Iyappan A, Younesi E, Redolfi A, Vrooman H, Khanna S, Frisoni GB, Hofmann-Apitius M. Neuroimaging Feature Terminology: A Controlled Terminology for the Annotation of Brain Imaging Features. J Alzheimers Dis 2017; 59:1153-1169. [PMID: 28731430 PMCID: PMC5611802 DOI: 10.3233/jad-161148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ontologies and terminologies are used for interoperability of knowledge and data in a standard manner among interdisciplinary research groups. Existing imaging ontologies capture general aspects of the imaging domain as a whole such as methodological concepts or calibrations of imaging instruments. However, none of the existing ontologies covers the diagnostic features measured by imaging technologies in the context of neurodegenerative diseases. Therefore, the Neuro-Imaging Feature Terminology (NIFT) was developed to organize the knowledge domain of measured brain features in association with neurodegenerative diseases by imaging technologies. The purpose is to identify quantitative imaging biomarkers that can be extracted from multi-modal brain imaging data. This terminology attempts to cover measured features and parameters in brain scans relevant to disease progression. In this paper, we demonstrate the systematic retrieval of measured indices from literature and how the extracted knowledge can be further used for disease modeling that integrates neuroimaging features with molecular processes.
Collapse
Affiliation(s)
- Anandhi Iyappan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for Information Technology, Bonn, Germany
| | - Erfan Younesi
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany
| | - Alberto Redolfi
- Laboratory of Epidemiology and Neuroimaging, IRCCS San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Henri Vrooman
- Departments of Radiology and Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC University Medical Center, The Netherlands
| | - Shashank Khanna
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for Information Technology, Bonn, Germany
| | - Giovanni B Frisoni
- Laboratory of Epidemiology and Neuroimaging, IRCCS San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Memory Clinic and Laboratoire de Neuroimagerie du Vieillissement (LANVIE), University Hospitals and University of Geneva, Geneva, Switzerland
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany.,Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn-Aachen International Center for Information Technology, Bonn, Germany
| | | |
Collapse
|
8
|
Sheikh-Bahaei N, Sajjadi SA, Manavaki R, Gillard JH. Imaging Biomarkers in Alzheimer's Disease: A Practical Guide for Clinicians. J Alzheimers Dis Rep 2017; 1:71-88. [PMID: 30480230 PMCID: PMC6159632 DOI: 10.3233/adr-170013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although recent developments in imaging biomarkers have revolutionized the diagnosis of Alzheimer’s disease at early stages, the utility of most of these techniques in clinical setting remains unclear. The aim of this review is to provide a clear stepwise algorithm on using multitier imaging biomarkers for the diagnosis of Alzheimer’s disease to be used by clinicians and radiologists for day-to-day practice. We summarized the role of most common imaging techniques and their appropriate clinical use based on current consensus guidelines and recommendations with brief sections on acquisition and analysis techniques for each imaging modality. Structural imaging, preferably MRI or alternatively high resolution CT, is the essential first tier of imaging. It improves the accuracy of clinical diagnosis and excludes other potential pathologies. When the results of clinical examination and structural imaging, assessed by dementia expert, are still inconclusive, functional imaging can be used as a more advanced option. PET with ligands such as amyloid tracers and 18F-fluorodeoxyglucose can improve the sensitivity and specificity of diagnosis particularly at the early stages of the disease. There are, however, limitations in using these techniques in wider community due to a combination of lack of facilities and expertise to interpret the findings. The role of some of the more recent imaging techniques including tau imaging, functional MRI, or diffusion tensor imaging in clinical practice, remains to be established in the ongoing and future studies.
Collapse
Affiliation(s)
- Nasim Sheikh-Bahaei
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | | - Roido Manavaki
- Department of Radiology, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | | |
Collapse
|
9
|
Schilling LP, Zimmer ER, Shin M, Leuzy A, Pascoal TA, Benedet AL, Borelli WV, Palmini A, Gauthier S, Rosa-Neto P. Imaging Alzheimer's disease pathophysiology with PET. Dement Neuropsychol 2016; 10:79-90. [PMID: 29213438 PMCID: PMC5642398 DOI: 10.1590/s1980-5764-2016dn1002003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) has been reconceptualised as a dynamic pathophysiological process characterized by preclinical, mild cognitive impairment (MCI), and dementia stages. Positron emission tomography (PET) associated with various molecular imaging agents reveals numerous aspects of dementia pathophysiology, such as brain amyloidosis, tau accumulation, neuroreceptor changes, metabolism abnormalities and neuroinflammation in dementia patients. In the context of a growing shift toward presymptomatic early diagnosis and disease-modifying interventions, PET molecular imaging agents provide an unprecedented means of quantifying the AD pathophysiological process, monitoring disease progression, ascertaining whether therapies engage their respective brain molecular targets, as well as quantifying pharmacological responses. In the present study, we highlight the most important contributions of PET in describing brain molecular abnormalities in AD.
Collapse
Affiliation(s)
- Lucas Porcello Schilling
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre RS, Brazil
| | - Eduardo R Zimmer
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada.,Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre RS, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre RS, Brazil
| | - Monica Shin
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada
| | - Antoine Leuzy
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada.,Department NVS, Centre for Alzheimer Research, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada
| | - Andréa L Benedet
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada
| | - Wyllians Vendramini Borelli
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre RS, Brazil
| | - André Palmini
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre RS, Brazil
| | - Serge Gauthier
- Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada.,Alzheimer's Disease Research Unit, MCSA, Douglas Mental Health Research Institute, Montreal, Canada
| |
Collapse
|
10
|
Canadian Consensus Guidelines on Use of Amyloid Imaging in Canada: Update and Future Directions from the Specialized Task Force on Amyloid imaging in Canada. Can J Neurol Sci 2016; 43:503-12. [DOI: 10.1017/cjn.2015.401] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractPositron emission tomography (PET) imaging of brain amyloid beta is now clinically available in several countries including the United States and the United Kingdom, but not Canada. It has become an established technique in the field of neuroimaging of aging and dementia, with data incorporated in the new consensus guidelines for the diagnosis of Alzheimer disease and predementia Alzheimer’s disease–related conditions. At this point, there are three US Food and Drug Administration– and European Union–approved tracers. Guided by appropriate use criteria developed in 2013 by the Alzheimer’s Association and the Society of Nuclear Medicine and Molecular Imaging, the utility of amyloid imaging in medical practice is now supported by a growing body of research. In this paper, we aimed to provide an update on the 2012 Canadian consensus guidelines to dementia care practitioners on proper use of amyloid imaging. We also wished to generate momentum for the industry to submit a new drug proposal to Health Canada. A group of local, national, and international dementia experts and imaging specialists met to discuss scenarios in which amyloid PET could be used appropriately. Peer-reviewed and published literature between January 2004 and May 2015 was searched. Technical and regulatory considerations pertaining to Canada were considered. The results of a survey of current practices in Canadian dementia centers were considered. A set of specific clinical and research guidelines was agreed on that defines the types of patients and clinical circumstances in which amyloid PET could be used in Canada. Future research directions were also outlined, notably the importance of studies that would assess the pharmaco-economics of amyloid imaging.
Collapse
|
11
|
Atri A. Imaging of neurodegenerative cognitive and behavioral disorders: practical considerations for dementia clinical practice. HANDBOOK OF CLINICAL NEUROLOGY 2016; 136:971-984. [PMID: 27430453 DOI: 10.1016/b978-0-444-53486-6.00050-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter reviews clinical applications and imaging findings useful in medical practice relating to neurodegenerative cognitive/dementing disorders. The preponderance of evidence and consensus guidelines support an essential role of multitiered neuroimaging in the evaluation and management of neurodegenerative cognitive/dementia syndrome that range in severity from mild impairments to frank dementia. Additionally, imaging features are incorporated in updated clinical and research diagnostic criteria for most dementias, including Alzheimer's disease (AD), Dementia with Lewy bodies (DLB), Frontotemporal Lobar Degenerations/Frontotemporal Dementia (FTD), and Vascular Cognitive Impairment (VCI). Best clinical practices dictate that structural imaging, preferably with magnetic resonance imaging (MRI) when possible and computed tomography when not, be obtained as a first-tier approach during the course of a thorough clinical evaluation to improve diagnostic confidence and assess for nonneurodegenerative treatable conditions that may cause or substantially contribute to cognitive/behavioral symptoms or which may dictate a substantial change in management. These conditions include less common structural (e.g., mass lesions such as tumors and hematomas; normal-pressure hydrocephalus), inflammatory, autoimmune and infectious conditions, and more common comorbid contributing conditions (e.g., vascular cerebral injury causing leukoaraiosis, infarcts, or microhemorrhages) that can produce a mixed dementia syndrome. When, after appropriate clinical, cognitive/neuropsychologic, and structural neuroimaging assessment, a dementia specialist remains in doubt regarding etiology and appropriate management, second-tier imaging with molecular methods, preferably with fluorodexoyglucose positron emission tomography (PET) (or single-photon emission computed tomography if PET is unavailable) can provide more diagnostic specificity (e.g., help differentiate between atypical AD and FTD as the etiology for a frontal/dysexecutive syndrome). The potential clinical utility of other promising methods, whether already approved for use (e.g., amyloid PET) or as yet only used in research (e.g., tau PET, functional MRI, diffusor tensor imaging), remains to be proven for widespread use in community practice. However, these constitute unreimbursed third-tier options that merit further study for clinical and cost-effective utility. In the future, combination use of imaging methods will likely improve diagnostic accuracy.
Collapse
Affiliation(s)
- Alireza Atri
- Ray Dolby Brain Health Center, California Pacific Medical Center Research Institute, Sutter Health, San Francisco, CA, USA.
| |
Collapse
|
12
|
Burhan AM, Marlatt NM, Palaniyappan L, Anazodo UC, Prato FS. Role of Hybrid Brain Imaging in Neuropsychiatric Disorders. Diagnostics (Basel) 2015; 5:577-614. [PMID: 26854172 PMCID: PMC4728476 DOI: 10.3390/diagnostics5040577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/21/2015] [Accepted: 11/26/2015] [Indexed: 01/09/2023] Open
Abstract
This is a focused review of imaging literature to scope the utility of hybrid brain imaging in neuropsychiatric disorders. The review focuses on brain imaging modalities that utilize hybrid (fusion) techniques to characterize abnormal brain molecular signals in combination with structural and functional changes that have been observed in neuropsychiatric disorders. An overview of clinical hybrid brain imaging technologies for human use is followed by a selective review of the literature that conceptualizes the use of these technologies in understanding basic mechanisms of major neuropsychiatric disorders and their therapeutics. Neuronal network abnormalities are highlighted throughout this review to scope the utility of hybrid imaging as a potential biomarker for each disorder.
Collapse
Affiliation(s)
- Amer M Burhan
- St. Joseph's Health Care London, Parkwood Institute, 550 Wellington Road, London, ON N6C 0A7, Canada.
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6C 2R6, Canada.
| | - Nicole M Marlatt
- St. Joseph's Health Care London, Parkwood Institute, 550 Wellington Road, London, ON N6C 0A7, Canada.
| | - Lena Palaniyappan
- Department of Psychiatry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6C 2R6, Canada.
| | | | - Frank S Prato
- Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| |
Collapse
|
13
|
Leuzy A, Zimmer ER, Heurling K, Rosa-Neto P, Gauthier S. Use of amyloid PET across the spectrum of Alzheimer's disease: clinical utility and associated ethical issues. Amyloid 2014; 21:143-8. [PMID: 24919109 DOI: 10.3109/13506129.2014.926267] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Recent advances have made possible the in vivo detection of beta-amyloid (Aβ) pathology using positron emission tomography. While the gold standard for amyloid imaging, carbon-11 labeled Pittsburgh compound B is increasingly being replaced by fluorine-18 labeled radiopharmaceuticals, with three already approved for clinical use by US and European regulatory bodies. Appropriate use criteria proposed by an amyloid imaging taskforce convened by the Alzheimer's Association and the Society of Nuclear Medicine and Molecular Imaging recommend restricting use of this technology to the evaluation of patients with mild cognitive impairment or atypical dementia syndromes. While use among asymptomatic individuals is currently viewed as inappropriate due prognostic uncertainty, elevated levels of brain Aβ among asymptomatic individuals may represent preclinical Alzheimer's disease. Amyloid imaging is likewise expected to play a role in the design of clinical trials. Though preliminary results suggest amyloid imaging to possess clinical utility and cost-effectiveness, both domains have yet to be assessed systematically. As the field moves toward adoption of a pro-disclosure stance for amyloid imaging findings, it is imperative that a broad range of stakeholders be involved to ensure the appropriateness of emerging policies and protocols.
Collapse
Affiliation(s)
- Antoine Leuzy
- Translational Neuroimaging Laboratory (TNL), Douglas Mental Health University Institute , Montreal , Canada
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Patterson C, Gauthier S. Diagnosis and treatment of dementia: the fourth canadian consensus conference. ALZHEIMERS RESEARCH & THERAPY 2013; 5:S1. [PMID: 24565164 PMCID: PMC3980322 DOI: 10.1186/alzrt196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|